378
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Improved brain uptake of peptide-based CNS drugs via alternative routes of administrations of its nanocarrier delivery systems: a promising strategy for CNS targeting delivery of peptides

, &

Bibliography

  • Pardridge WM. Drug targeting to the brain. Pharm Res 2007;24:1733-44
  • Sipos E, Kurunczi A, Feher A, et al. Intranasal delivery of human beta-amyloid peptide in rats: effective brain targeting. Cell Mol Neurobiol 2010;30:405-13
  • Pardridge WM. Brain drug targeting: the future of brain drug development. Cambridge University Press, Cambridge, UK; 2001
  • Malavolta L, Cabral FR. Peptides: important tools for the treatment of central nervous system disorders. Neuropeptides 2011;45:309-16
  • Otvos L Jr. Peptide-based drug design: here and now. Methods Mol Biol 2008;494:1-8
  • Barchet TM, Amiji MM. Challenges and opportunities in CNS delivery of therapeutics for neurodegenerative diseases. Expert Opin Drug Deliv 2009;6:211-25
  • Witt KA, Davis TP. CNS drug delivery: opioid peptides and the blood-brain barrier. AAPS J 2006;8:E76-88
  • Prokai-Tatrai K, Prokai L. Modifying peptide properties by prodrug design for enhanced transport into the CNS. Prog Drug Res 2003;61:155-88
  • Dutheil F, Jacob A, Dauchy S, et al. ABC transporters and cytochromes P450 in the human central nervous system: influence on brain pharmacokinetics and contribution to neurodegenerative disorders. Expert Opin Drug Metab Toxicol 2010;6:1161-74
  • Lo EH, Singhal AB, Torchilin VP, et al. Drug delivery to damaged brain. Brain Res Brain Res Rev 2001;38:140-8
  • Kusuhara H, Sugiyama Y. Efflux transport systems for drugs at the blood-brain barrier and blood-cerebrospinal fluid barrier (Part 1). Drug Discov Today 2001;6:150-6
  • Brightman MW. The intracerebral movement of proteins injected into blood and cerebrospinal fluid of mice. In: Abel L, Donald HF, editors. Prog Brain Res 1968;29:19-40. Elsevier
  • Pardridge WM. Recent developments in peptide drug delivery to the brain. Pharmacol Toxicol 1992;71:3-10
  • Redzic Z. Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences. Fluids Barriers CNS 2011;8:3
  • Simpson IA, Carruthers A, Vannucci SJ. Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab 2007;27:1766-91
  • Cornford EM, Hyman S, Cornford ME, et al. Glut1 glucose transporter in the primate choroid plexus endothelium. J Neuropathol Exp Neurol 1998;57:404-14
  • Fields HM, Rinaman L, Devaskar SU. Distribution of glucose transporter isoform-3 and hexokinase I in the postnatal murine brain. Brain Res 1999;846:260-4
  • Rubio-Aliaga I, Daniel H. Peptide transporters and their roles in physiological processes and drug disposition. Xenobiotica 2008;38:1022-42
  • Ocheltree SM, Shen H, Hu Y, et al. Role of PEPT2 in the choroid plexus uptake of glycylsarcosine and 5-aminolevulinic acid: studies in wild-type and null mice. Pharm Res 2004;21:1680-5
  • Schinkel AH. P-Glycoprotein, a gatekeeper in the blood-brain barrier. Adv Drug Deliv Rev 1999;36:179-94
  • Linnet K, Ejsing TB. A review on the impact of P-glycoprotein on the penetration of drugs into the brain. Focus on psychotropic drugs. Eur Neuropsychopharmacol 2008;18:157-69
  • Rao VV, Dahlheimer JL, Bardgett ME, et al. Choroid plexus epithelial expression of MDR1 P glycoprotein and multidrug resistance-associated protein contribute to the blood-cerebrospinal-fluid drug-permeability barrier. Proc Natl Acad Sci USA 1999;96:3900-5
  • Shawahna R, Uchida Y, Decleves X, et al. Transcriptomic and quantitative proteomic analysis of transporters and drug metabolizing enzymes in freshly isolated human brain microvessels. Mol Pharm 2011;8:1332-41
  • Strazielle N, Ghersi-Egea JF. Demonstration of a coupled metabolism-efflux process at the choroid plexus as a mechanism of brain protection toward xenobiotics. J Neurosci 1999;19:6275-89
  • Kapitulnik J. Drug transport and metabolism in the blood-brain barrier. Front Pharmacol 2011;2:37
  • Dodel RC, Du Y, Depboylu C, et al. Intravenous immunoglobulins containing antibodies against beta-amyloid for the treatment of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2004;75:1472-4
  • Dalakas MC. Intravenous immune globulin therapy for neurologic diseases. Ann Intern Med 1997;126:721-30
  • Lynch JR, Tang W, Wang H, et al. APOE genotype and an ApoE-mimetic peptide modify the systemic and central nervous system inflammatory response. J Biol Chem 2003;278:48529-33
  • Sohmiya M, Kato Y. Human growth hormone and insulin-like growth factor-I inhibit erythropoietin secretion from the kidneys of adult rats. J Endocrinol 2005;184:199-207
  • Edwards CMB, Cohen MA, Bloom SR. Peptides as drugs. QJM-Mon J Assoc Phys 1999;92:1-4
  • Enevoldsen MN, Kochoyan A, Jurgenson M, et al. Neuroprotective and memory enhancing properties of a dual agonist of the FGF receptor and NCAM. Neurobiol Dis 2012;48:533-45
  • Parthsarathy V, McClean PL, Holscher C, et al. A novel retro-inverso peptide inhibitor reduces amyloid deposition, oxidation and inflammation and stimulates neurogenesis in the APPswe/PS1DeltaE9 mouse model of Alzheimer’s disease. PLoS One 2013;8:e54769
  • Shen WC. Oral peptide and protein delivery: unfulfilled promises? Drug Discov Today 2003;8:607-8
  • Woitiski CB, Carvalho RA, Ribeiro AJ, et al. Strategies toward the improved oral delivery of insulin nanoparticles via gastrointestinal uptake and translocation. BioDrugs 2008;22:223-37
  • Taki Y, Sakane T, Nadai T, et al. First-pass metabolism of peptide drugs in rat perfused liver. J Pharm Pharmacol 1998;50:1013-18
  • Hamman J, Enslin G, Kotzé A. Oral delivery of peptide drugs. BioDrugs 2005;19:165-77
  • Misra A, Ganesh S, Shahiwala A, et al. Drug delivery to the central nervous system: a review. J Pharm Pharm Sci 2003;6:252-73
  • Abbott NJ, Romero IA. Transporting therapeutics across the blood-brain barrier. Mol Med Today 1996;2:106-13
  • Emerich DF, Plone M, Francis J, et al. Alleviation of behavioral deficits in aged rodents following implantation of encapsulated GDNF-producing fibroblasts. Brain Res 1996;736:99-110
  • Kordower JH, Emborg ME, Bloch J, et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 2000;290:767-73
  • Lang AE, Gill S, Patel NK, et al. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol 2006;59:459-66
  • Wong YC, Qian S, Zuo Z. Regioselective biotransformation of CNS drugs and its clinical impact on adverse drug reactions. Expert Opin Drug Metab Toxicol 2012;8:833-54
  • Wong YC, Zuo Z. Intranasal delivery–modification of drug metabolism and brain disposition. Pharm Res 2010;27:1208-23
  • Sarkar MA. Drug metabolism in the nasal mucosa. Pharm Res 1992;9:1-9
  • Dhuria SV, Hanson LR, Frey WH II. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci 2010;99:1654-73
  • Shipley MT. Transport of molecules from nose to brain - trans-neuronal anterograde and retrograde labeling in the rat olfactory system by wheat-germ agglutinin horseradish peroxidase applied to the nasal epithelium. Brain Res Bull 1985;15:129-42
  • Thorne RG, Emory CR, Ala TA, et al. Quantitative-analysis of the olfactory pathway for drug delivery to the brain. Brain Res 1995;692:278-82
  • Banks WA, During MJ, Niehoff ML. Brain uptake of the glucagon-like peptide-1 antagonist exendin(9-39) after intranasal administration. J Pharmacol Exp Ther 2004;309:469-75
  • Hanson LR, Martinez PM, Mignot E, et al. Intranasal administration of hypocretin 1 (Orexin A) bypasses the blood-brain barrier and targets the Brain: a new strategy for the treatment of narcolepsy. Drug Deliv Tech 2004;4:66-70
  • Ross TM, Martinez PM, Renner JC, et al. Intranasal administration of interferon beta bypasses the blood-brain barrier to target the central nervous system and cervical lymph nodes: a non-invasive treatment strategy for multiple sclerosis. J Neuroimmunol 2004;151:66-77
  • Thorne RG, Pronk GJ, Padmanabhan V, et al. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 2004;127:481-96
  • Geroski DH, Edelhauser HF. Drug delivery for posterior segment eye disease. Invest Ophthalmol Vis Sci 2000;41:961-4
  • Lee VH. New directions in the optimization of ocular drug delivery. J Ocul Pharmacol 1990;6:157-64
  • Koevary SB. Pharmacokinetics of topical ocular drug delivery: potential uses for the treatment of diseases of the posterior segment and beyond. Curr Drug Metab 2003;4:213-22
  • Koevary SB, Lam V, Patsiopoulos G, et al. Accumulation of porcine insulin in the rat brain and cerebrospinal fluid following ocular application. J Ocul Pharmacol Ther 2003;19:377-84
  • Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB J 2005;19:311-30
  • Yang H. Nanoparticle-mediated brain-specific drug delivery, imaging, and diagnosis. Pharm Res 2010;27:1759-71
  • Qian S, Li C, Zuo Z. Pharmacokinetics and disposition of various drug loaded liposomes. Curr Drug Metab 2012;13:372-95
  • Shah L, Yadav S, Amiji M. Nanotechnology for CNS delivery of bio-therapeutic agents. Drug Deliv Transl Res 2013;3:336-51
  • Sharma G, Modgil A, Sun CW, et al. Grafting of cell-penetrating peptide to receptor-targeted liposomes improves their transfection efficiency and transport across blood-brain barrier model. J Pharm Sci 2012;101:2468-78
  • Lindqvist A, Rip J, Gaillard PJ, et al. Enhanced brain delivery of the opioid peptide DAMGO in glutathione pegylated liposomes: a microdialysis study. Mol Pharm 2013;10:1533-41
  • Alyautdin R, Gothier D, Petrov V, et al. Analgesic activity of the hexapeptide dalargin adsorbed on the surface of polysorbate 80-coated poly(butyl cyanoacrylate) nanoparticles. Eur J Pharm Biopharm 1995;41:44-8
  • Shilo M, Motiei M, Hana P, et al. Transport of nanoparticles through the blood-brain barrier for imaging and therapeutic applications. Nanoscale 2014;6:2146-52
  • Kreuter J. Mechanism of polymeric nanoparticle-based drug transport across the blood-brain barrier (BBB). J Microencapsul 2013;30:49-54
  • Das D, Lin S. Double-coated poly (butylcynanoacrylate) nanoparticulate delivery systems for brain targeting of dalargin via oral administration. J Pharm Sci 2005;94:1343-53
  • Trapani A, De Giglio E, Cafagna D, et al. Characterization and evaluation of chitosan nanoparticles for dopamine brain delivery. Int J Pharm 2011;419:296-307
  • Donaldson K. Resolving the nanoparticles paradox. Nanomedicine (Lond) 2006;1:229-34
  • Oberdorster G, Sharp Z, Atudorei V, et al. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 2004;16:437-45
  • Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 2001;53:283-318
  • Voigt N, Henrich-Noack P, Kockentiedt S, et al. Surfactants, not size or zeta-potential influence blood–brain barrier passage of polymeric nanoparticles. Eur J Pharm Biopharm 2014;87:19-29
  • Block ML, Wu X, Pei Z, et al. Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons: the role of microglia, phagocytosis, and NADPH oxidase. FASEB J 2004;18:1618-20
  • Xu F, Piett C, Farkas S, et al. Silver nanoparticles (AgNPs) cause degeneration of cytoskeleton and disrupt synaptic machinery of cultured cortical neurons. Mol Brain 2013;6:29
  • Kircher MF, Mahmood U, King RS, et al. A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res 2003;63:8122-5
  • Simeonova M, Chorbadjiev K, Antcheva M. Study of the effect of polybutylcyanoacrylate nanoparticles and their metabolites on the primary immune response in mice to sheep red blood cells. Biomaterials 1998;19:2187-93
  • Sarker DK. Engineering of nanoemulsions for drug delivery. Curr Drug Deliv 2005;2:297-310
  • Vyas TK, Shahiwala A, Amiji MM. Improved oral bioavailability and brain transport of Saquinavir upon administration in novel nanoemulsion formulations. Int J Pharm 2008;347:93-101
  • Shah L, Gattacceca F, Amiji MM. CNS delivery and pharmacokinetic evaluations of DALDA analgesic peptide analog administered in nano-sized oil-in-water emulsion formulation. Pharm Res 2014;31:1315-24
  • Shah L, Kulkarni P, Ferris C, et al. Analgesic efficacy and safety of DALDA peptide analog delivery to the brain using oil-in-water nanoemulsion formulation. Pharm Res 2014. [Epub ahead of print]
  • Begley DJ. P-glycoprotein: the prototypical BBB efflux transporters. In: Taylor EM, editor. Efflux transporters and the blood-brain barrier. Nova Science Publishers, Inc, New York, USA: 2007. p. 107-35
  • Ruan Y, Yao L, Zhang B, et al. Nanoparticle-mediated delivery of Neurotoxin-II to the brain with intranasal administration: an effective strategy to improve antinociceptive activity of Neurotoxin. Drug Dev Ind Pharm 2012;38:123-8
  • Kreuter J, Ramge P, Petrov V, et al. Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm Res 2003;20:409-16
  • Mistry A, Stolnik S, Illum L. Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm 2009;379:146-57
  • Kumar M, Pandey RS, Patra KC, et al. Evaluation of neuropeptide loaded trimethyl chitosan nanoparticles for nose to brain delivery. Int J Biol Macromol 2013;61:189-95
  • Teijeiro-Osorio D, Remuñán-López C, Alonso MJ. New generation of hybrid poly/oligosaccharide nanoparticles as carriers for the nasal delivery of macromolecules. Biomacromolecules 2008;10:243-9
  • Zhang C, Chen J, Feng C, et al. Intranasal nanoparticles of basic fibroblast growth factor for brain delivery to treat Alzheimer’s disease. Int J Pharm 2014;461:192-202
  • Pardridge WM. Brain drug development and brain drug targeting. Pharm Res 2007;24:1729-32
  • Merkus FHM, van den Berg M. Can nasal drug delivery bypass the blood-brain barrier? Drugs R D 2007;8:133-44
  • Jain KK. Drug delivery systems - an overview. In: Jain K, editor. Drug delivery systems. Humana Press, 2008. p. 1-50
  • Summers MA, Moore JL, McAuley JW. Use of verapamil as a potential P-glycoprotein inhibitor in a patient with refractory epilepsy. Ann Pharmacother 2004;38:1631-4
  • Schroeder U, Sommerfeld P, Sabel BA. Efficacy of oral dalargin-loaded nanoparticle delivery across the blood-brain barrier. Peptides 1998;19:777-80
  • Lalatsa A, Garrett NL, Ferrarelli T, et al. Delivery of peptides to the blood and brain after oral uptake of quaternary ammonium palmitoyl glycol chitosan nanoparticles. Mol Pharm 2012;9:1764-74
  • Pinnen F, Cacciatore I, Cornacchia C, et al. CNS delivery of L-dopa by a new hybrid glutathione-methionine peptidomimetic prodrug. Amino Acids 2012;42:261-9
  • Jin Y, Song Y, Zhu X, et al. Goblet cell-targeting nanoparticles for oral insulin delivery and the influence of mucus on insulin transport. Biomaterials 2012;33:1573-82
  • Falsini B, Chiaretti A, Barone G, et al. Topical nerve growth factor as a visual rescue strategy in pediatric optic gliomas: a pilot study including electrophysiology. Neurorehabil Neural Repair 2011;25:512-20
  • Spencer B, Marr RA, Gindi R, et al. Peripheral delivery of a CNS targeted, metalo-protease reduces abeta toxicity in a mouse model of Alzheimer’s disease. PLoS One 2011;6:e16575
  • Asoh S, Ohsawa I, Mori T, et al. Protection against ischemic brain injury by protein therapeutics. Proc Natl Acad Sci USA 2002;99:17107-12
  • Horan PJ, Mattia A, Bilsky EJ, et al. Antinociceptive Profile of Biphalin, a Dimeric Enkephalin Analog. J Pharmacol Exp Ther 1993;265:1446-54
  • Burov S, Leko M, Dorosh M, et al. Creatinyl amino acids: new hybrid compounds with neuroprotective activity. J Pept Sci 2011;17:620-6
  • Baker AM, Batchelor DC, Thomas GB, et al. Central penetration and stability of N-terminal tripeptide of insulin-like growth factor-I, glycine-proline-glutamate in adult rat. Neuropeptides 2005;39:81-7
  • Yu R, Zeng Z, Guo X, et al. The TAT peptide endows PACAP with an enhanced ability to traverse bio-barriers. Neurosci Lett 2012;527:1-5
  • Rosler TW, Depboylu C, Arias-Carrion O, et al. Biodistribution and brain permeability of the extracellular domain of neuregulin-1-beta1. Neuropharmacology 2011;61:1413-18
  • D’Aurizio E, Sozio P, Cerasa LS, et al. Biodegradable microspheres loaded with an anti-Parkinson prodrug: an in vivo pharmacokinetic study. Mol Pharm 2011;8:2408-15
  • Garbayo E, Ansorena E, Blanco-Prieto MJ. Drug development in Parkinson’s disease: from emerging molecules to innovative drug delivery systems. Maturitas 2013;76:272-8
  • Ren T, Yang X, Wu N, et al. Sustained-release formulation of levodopa methyl ester/benserazide for prolonged suppressing dyskinesia expression in 6-OHDA-leisoned rats. Neurosci Lett 2011;502:117-22
  • Guillemyn K, Kleczkowska P, Novoa A, et al. In vivo antinociception of potent mu opioid agonist tetrapeptide analogues and comparison with a compact opioid agonist-neurokinin 1 receptor antagonist chimera. Mol Brain 2012;5:4
  • Saenger S, Goeldner C, Frey JR, et al. PEGylation enhances the therapeutic potential for insulin-like growth factor I in central nervous system disorders. Growth Horm IGF Res 2011;21:292-303
  • Sumbria RK, Hui EK, Lu JZ, et al. Disaggregation of amyloid plaque in brain of Alzheimer’s disease transgenic mice with daily subcutaneous administration of a tetravalent bispecific antibody that targets the transferrin receptor and the Abeta amyloid peptide. Mol Pharm 2013;10:3507-13
  • Bal SM, Slütter B, Verheul R, et al. Adjuvanted, antigen loaded N-trimethyl chitosan nanoparticles for nasal and intradermal vaccination: adjuvant- and site-dependent immunogenicity in mice. Eur J Pharm Sci 2012;45:475-81
  • Gao X, Wu B, Zhang Q, et al. Brain delivery of vasoactive intestinal peptide enhanced with the nanoparticles conjugated with wheat germ agglutinin following intranasal administration. J Control Release 2007;121:156-67
  • Capsoni S, Covaceuszach S, Ugolini G, et al. Delivery of NGF to the brain: intranasal versus ocular administration in anti-NGF transgenic mice. J Alzheimer’s Dis 2009;16:371-88
  • Jain AK, Khar RK, Ahmed FJ, et al. Effective insulin delivery using starch nanoparticles as a potential trans-nasal mucoadhesive carrier. Eur J Pharm Biopharm 2008;69:426-35
  • Krauland AH, Leitner VM, Grabovac V, et al. In vivo evaluation of a nasal insulin delivery system based on thiolated chitosan. J Pharm Sci 2006;95:2463-72
  • Kubek M, Domb A, Veronesi M. Attenuation of kindled seizures by intranasal delivery of neuropeptide-loaded nanoparticles. Neurotherapeutics 2009;6:359-71
  • Liu Q, Shao X, Chen J, et al. In vivo toxicity and immunogenicity of wheat germ agglutinin conjugated poly(ethylene glycol)-poly(lactic acid) nanoparticles for intranasal delivery to the brain. Toxicol Appl Pharmacol 2011;251:79-84
  • Liu Z, Jiang M, Kang T, et al. Lactoferrin-modified PEG-co-PCL nanoparticles for enhanced brain delivery of NAP peptide following intranasal administration. Biomaterials 2013;34:3870-81
  • Matsuo K, Koizumi H, Akashi M, et al. Intranasal immunization with poly(γ-glutamic acid) nanoparticles entrapping antigenic proteins can induce potent tumor immunity. J Control Release 2011;152:310-16
  • Ruan Y, Yao L, Zhang B, et al. Antinociceptive properties of nasal delivery of Neurotoxin-loaded nanoparticles coated with polysorbate-80. Peptides 2011;32:1526-9
  • Shahnaz G, Vetter A, Barthelmes J, et al. Thiolated chitosan nanoparticles for the nasal administration of leuprolide: bioavailability and pharmacokinetic characterization. Int J Pharm 2012;428:164-70
  • Xia H, Gao X, Gu G, et al. Low molecular weight protamine-functionalized nanoparticles for drug delivery to the brain after intranasal administration. Biomaterials 2011;32:9888-98
  • Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev 2012;64:614-28
  • Illum L. Nasal drug delivery–possibilities, problems and solutions. J Control Release 2003;87:187-98

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.