555
Views
21
CrossRef citations to date
0
Altmetric
Reviews

Genetic factors affecting drug disposition in Asian cancer patients

, , &

Bibliography

  • Papers of special note have been highlighted as either of interest (*) or of considerable interest (**) to readers.
  • Evans WE, McLeod HL. Pharmacogenomics–drug disposition, drug targets, and side effects. N Engl J Med. 2003;348:538–549. DOI:10.1056/NEJMra020526.
  • Kimchi-Sarfaty C, Oh JM, Kim I-W, et al. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science. 2007;315:525–528. DOI:10.1126/science.1135308.
  • Sauna ZE, Kimchi-Sarfaty C, Ambudkar SV, et al. Silent polymorphisms speak: how they affect pharmacogenomics and the treatment of cancer. Cancer Res. 2007;67:9609–9612. DOI:10.1158/0008-5472.CAN-07-2377.
  • Wang D, Johnson AD, Papp AC, et al. Multidrug resistance polypeptide 1 (MDR1, ABCB1) variant 3435C>T affects mRNA stability. Pharmacogenet Genomics. 2005;15:693–704.
  • O’Donnell PH, Dolan ME. Cancer pharmacoethnicity: ethnic differences in susceptibility to the effects of chemotherapy. Clin Cancer Res. 2009;15:4806–4814. DOI:10.1158/1078-0432.CCR-09-0344.

* This paper reviews the concept of pharmacoethnicity in oncology ie. the clinical importance of genetic heritage.

  • Rodríguez-Antona C, Niemi M, Backman JT, et al. Characterization of novel CYP2C8 haplotypes and their contribution to paclitaxel and repaglinide metabolism. Pharmacogenomics J. 2008;8:268–277. DOI:10.1038/sj.tpj.6500482.
  • ICoHs C. International Conference Harmonization (ICH) Topic E 5 (R1): ethnic factors in the acceptability of foreign clinical data. Fed Regist. 1998;63:31790–31796.
  • Tan S-H, Lee S-C, Goh B-C, et al. Pharmacogenetics in breast cancer therapy. Clin Cancer Res. 2008;14:8027–8041. DOI:10.1158/1078-0432.CCR-08-0993.
  • Tishkoff SA, Verrelli BC. Patterns of human genetic diversity: implications for human evolutionary history and disease. Annu Rev Genomics Hum Genet. 2003;4:293–340. DOI:10.1146/annurev.genom.4.070802.110226.
  • Tishkoff SA, Kidd KK. Implications of biogeography of human populations for “race” and medicine. Nat Genet. 2004;36:S21–S27. DOI:10.1038/ng1438.
  • Bamshad M, Wooding S, Salisbury BA, et al. Deconstructing the relationship between genetics and race. Nat Rev Genet. 2004;5:598–609. DOI:10.1038/nrg1401.
  • Barbujani G, Magagni A, Minch E, et al. An apportionment of human DNA diversity. Proc Natl Acad Sci U S A. 1997;94:4516–4519.
  • Sistonen J, Sajantila A, Lao O, et al. CYP2D6 worldwide genetic variation shows high frequency of altered activity variants and no continental structure. Pharmacogenet Genomics. 2007;17:93–101. DOI:10.1097/01.fpc.0000239974.69464.f2.
  • Ingelman-Sundberg M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J. 2005;5:6–13. DOI:10.1038/sj.tpj.6500285.
  • Lim H-S, Ju Lee H, Seok Lee K, et al. Clinical implications of CYP2D6 genotypes predictive of tamoxifen pharmacokinetics in metastatic breast cancer. J Clin Oncol. 2007;25:3837–3845. DOI:10.1200/JCO.2007.11.4850.

** This was a study in Korean which provided proof-of-concept that CYP2D6 variants may affect tamoxifen pharmacokinetics and clinical outcome.

  • Regan MM, Leyland-Jones B, Bouzyk M, et al. CYP2D6 genotype and tamoxifen response in postmenopausal women with endocrine-responsive breast cancer: the breast international group 1-98 trial. J Natl Cancer Inst. 2012;104:441–451. DOI:10.1093/jnci/djs125.
  • Lim JSL, Chen XA, Singh O, et al. Impact of CYP2D6, CYP3A5, CYP2C9 and CYP2C19 polymorphisms on tamoxifen pharmacokinetics in Asian breast cancer patients. Br J Clin Pharmacol. 2011;71:737–750. DOI:10.1111/j.1365-2125.2011.03905.x.
  • Kim I-W, Kim KI, Chang H-J, et al. Ethnic variability in the allelic distribution of pharmacogenes between Korean and other populations. Pharmacogenet Genomics. 2012;22:829–836. DOI:10.1097/FPC.0b013e328358dd70.
  • Teo Y-Y, Sim X, Ong RTH, et al. Singapore Genome Variation Project: a haplotype map of three Southeast Asian populations. Genome Res. 2009;19:2154–2162. DOI:10.1101/gr.095000.109.
  • Brunham LR, Chan SL, Li R, et al. Pharmacogenomic diversity in Singaporean populations and Europeans. Pharmacogenomics J. 2014;14:555–563. DOI:10.1038/tpj.2014.22.
  • Henn BM, Cavalli-Sforza LL, Feldman MW. The great human expansion. Proc Natl Acad Sci U S A. 2012;109:17758–17764. DOI:10.1073/pnas.1212380109.
  • Majumder PP. The human genetic history of South Asia. Curr Biol. 2010;20:R184–R187. DOI:10.1016/j.cub.2009.11.053.
  • Xing J, Watkins WS, Hu Y, et al. Genetic diversity in India and the inference of Eurasian population expansion. Genome Biol. 2010;11:R113. DOI:10.1186/gb-2010-11-11-r113.
  • Wang H, Ding K, Zhang Y, et al. Comparative and evolutionary pharmacogenetics of ABCB1: complex signatures of positive selection on coding and regulatory regions. Pharmacogenet Genomics. 2007;17:667–678. DOI:10.1097/FPC.0b013e328165249f.
  • Xue Y, Sun D, Daly A, et al. Adaptive evolution of UGT2B17 copy-number variation. Am J Hum Genet. 2008;83:337–346. DOI:10.1016/j.ajhg.2008.08.004.
  • Cooper RS, Kaufman JS, Ward R. Race and genomics. N Engl J Med. 2003;348:1166–1170. DOI:10.1056/NEJMsb022863.
  • Ng PC, Zhao Q, Levy S, et al. Individual genomes instead of race for personalized medicine. Clin Pharmacol Ther. 2008;84:306–309. DOI:10.1038/clpt.2008.114.
  • Lee S-C, Ng S-S, Oldenburg J, et al. Interethnic variability of warfarin maintenance requirement is explained by VKORC1 genotype in an Asian population. Clin Pharmacol Ther. 2006;79:197–205. DOI:10.1016/j.clpt.2005.11.006.
  • Matsusaka S, Lenz H-J. Pharmacogenomics of fluorouracil -based chemotherapy toxicity. Expert Opin Drug Metab Toxicol. 2015;11:811–821. DOI:10.1517/17425255.2015.1027684.
  • Koizumi W, Tanabe S, Saigenji K, et al. Phase I/II study of S-1 combined with cisplatin in patients with advanced gastric cancer. Br J Cancer. 2003;89:2207–2212. DOI:10.1038/sj.bjc.6601413.
  • Chuah B, Goh B-C, Lee S-C, et al. Comparison of the pharmacokinetics and pharmacodynamics of S-1 between Caucasian and East Asian patients. Cancer Sci. 2011;102:478–483. DOI:10.1111/j.1349-7006.2010.01793.x.
  • Haller DG, Cassidy J, Clarke SJ, et al. Potential regional differences for the tolerability profiles of fluoropyrimidines. J Clin Oncol. 2008;26:2118–2123. DOI:10.1200/JCO.2007.15.2090.

** This retrospective analysis of three Phase III studies highlights interethnic differences in 5-fluorouracil-induced toxicities.

  • Van Zuylen L, Verweij J, Nooter K, et al. Role of intestinal P-glycoprotein in the plasma and fecal disposition of docetaxel in humans. Clin Cancer Res. 2000;6:2598–2603.
  • Hoffmeyer S, Burk O, von Richter O, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A. 2000;97:3473–3478. DOI:10.1073/pnas.050585397.
  • Sakaeda T, Nakamura T, Okumura K. Pharmacogenetics of drug transporters and its impact on the pharmacotherapy. Curr Top Med Chem. 2004;4:1385–1398.
  • Hillgren KM, Keppler D, Zur AA, et al. Emerging transporters of clinical importance: an update from the International Transporter Consortium. Clin Pharmacol Ther. 2013;94:52–63. DOI:10.1038/clpt.2013.74.

** This paper is an update from the International Transporter Consortium, and highlights recent advances in the pharmacogenetics of drug transporters.

  • Ameyaw MM, Regateiro F, Li T, et al. MDR1 pharmacogenetics: frequency of the C3435T mutation in exon 26 is significantly influenced by ethnicity. Pharmacogenetics. 2001;11:217–221.
  • Lai Y, Varma M, Feng B, et al. Impact of drug transporter pharmacogenomics on pharmacokinetic and pharmacodynamic variability – considerations for drug development. Expert Opin Drug Metab Toxicol. 2012;8:723–743. DOI:10.1517/17425255.2012.678048.
  • Herve F, Gomas E, Duche JC, et al. Evidence for differences in the binding of drugs to the two main genetic variants of human alpha 1-acid glycoprotein. Br J Clin Pharmacol. 1993;36:241–249.
  • Zhou W, Christiani DC. East meets West: ethnic differences in epidemiology and clinical behaviors of lung cancer between East Asians and Caucasians. Chin J Cancer. 2011;30:287–292.
  • Blain PG, Mucklow JC, Rawlins MD, et al. Determinants of plasma alpha 1-acid glycoprotein (AAG) concentrations in health. Br J Clin Pharmacol. 1985;20:500–502.
  • Murray GI, Taylor MC, McFadyen MC, et al. Tumor-specific expression of cytochrome P450 CYP1B1. Cancer Res. 1997;57:3026–3031.
  • Rochat B, Morsman JM, Murray GI, et al. Human CYP1B1 and anticancer agent metabolism: mechanism for tumor-specific drug inactivation? J Pharmacol Exp Ther. 2001;296:537–541.
  • Scotto KW. Transcriptional regulation of ABC drug transporters. Oncogene. 2003;22:7496–7511. DOI:10.1038/sj.onc.1206950.
  • Soo RA, Wang LZ, Ng SS, et al. Distribution of gemcitabine pathway genotypes in ethnic Asians and their association with outcome in non-small cell lung cancer patients. Lung Cancer. 2009;63:121–127. DOI:10.1016/j.lungcan.2008.04.010.
  • De Morais SM, Wilkinson GR, Blaisdell J, et al. The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J Biol Chem. 1994;269:15419–15422.
  • Scott SA, Sangkuhl K, Stein CM, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clin Pharmacol Ther. 2013;94:317–323. DOI:10.1038/clpt.2013.105.
  • De Morais SM, Wilkinson GR, Blaisdell J, et al. Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese. Mol Pharmacol. 1994;46:594–598.
  • Yamamoto N, Murakami H, Nishina T, et al. The effect of CYP2C19 polymorphism on the safety, tolerability, and pharmacokinetics of tivantinib (ARQ 197): results from a phase I trial in advanced solid tumors. Ann Oncol. 2013;24:1653–1659. DOI:10.1093/annonc/mdt014.
  • Yang JJ, Landier W, Yang W, et al. Inherited NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children with acute lymphoblastic leukemia. J Clin Oncol. 2015;33:1235–1242. DOI:10.1200/JCO.2014.59.4671.

* This paper identifies a genetic variant relevant to East Asian populations which may affect the clinical outcome of children with acute lymphoblastic leukemia treated with mercaptopurine. It is likely to receive growing attention in the coming years.

  • Yang S-K, Hong M, Baek J, et al. A common missense variant in NUDT15 confers susceptibility to thiopurine-induced leukopenia. Nat Genet. 2014;46:1017–1020. DOI:10.1038/ng.3060.
  • Fan L, Goh B-C, Wong C-I, et al. Genotype of human carbonyl reductase CBR3 correlates with doxorubicin disposition and toxicity. Pharmacogenet Genomics. 2008;18:621–631. DOI:10.1097/FPC.0b013e328301a869.
  • Xie H-J, Yasar U, Lundgren S, et al. Role of polymorphic human CYP2B6 in cyclophosphamide bioactivation. Pharmacogenomics J. 2003;3:53–61. DOI:10.1038/sj.tpj.6500157.
  • Nakajima M, Komagata S, Fujiki Y, et al. Genetic polymorphisms of CYP2B6 affect the pharmacokinetics/pharmacodynamics of cyclophosphamide in Japanese cancer patients. Pharmacogenet Genomics. 2007;17:431–445. DOI:10.1097/FPC.0b013e328045c4fb.
  • Xiang X, Jada SR, Li HH, et al. Pharmacogenetics of SLCO1B1 gene and the impact of *1b and *15 haplotypes on irinotecan disposition in Asian cancer patients. Pharmacogenet Genomics. 2006;16:683–691. DOI:10.1097/01.fpc.0000230420.05221.71.
  • Nozawa T, Minami H, Sugiura S, et al. Role of organic anion transporter OATP1B1 (OATP-C) in hepatic uptake of irinotecan and its active metabolite, 7-ethyl-10-hydroxycamptothecin: in vitro evidence and effect of single nucleotide polymorphisms. Drug Metab Dispos. 2005;33:434–439. DOI:10.1124/dmd.104.001909.
  • Alvarellos ML, Lamba J, Sangkuhl K, et al. PharmGKB summary: gemcitabine pathway. Pharmacogenet Genomics. 2014;24:564–574. DOI:10.1097/FPC.0000000000000086.
  • Wong AL-A, Yap H-L, Yeo W-L., et al. Gemcitabine and platinum pathway pharmacogenetics in Asian breast cancer patients. Cancer Genomics Proteomics. 2011;8:255–259.
  • Owen RP, Gray JH, Taylor TR, et al. Genetic analysis and functional characterization of polymorphisms in the human concentrative nucleoside transporter, CNT2. Pharmacogenet Genomics. 2005;15:83–90.
  • Suthandiram S, Gan G-G, Zain SM, et al. Effect of polymorphisms within methotrexate pathway genes on methotrexate toxicity and plasma levels in adults with hematological malignancies. Pharmacogenomics. 2014;15:1479–1494. DOI:10.2217/pgs.14.97.
  • Murata M, Warren EH, Riddell SR. A human minor histocompatibility antigen resulting from differential expression due to a gene deletion. J Exp Med. 2003;197:1279–1289. DOI:10.1084/jem.20030044.
  • Wong AL-A, Wang L, Wong F, et al. Prospective, non-randomised, open-label study of UDP-gluconoryltransferase (UGT) 2B17 genotype as a predictive marker of exemestane pharmacokinetics (PK) in post-menopausal hormone receptor (HR)-positive Asian metastatic breast cancer (MBC) patients progressing after prior endocrine therapy [Internet]. ECC 2015 (18th ECCO–40th ESMO) Annual Congress; 2015 Sep 25–29; Vienna. Abstract number: 1889. [cited 2015 Oct 24]. Available from: http://www.europeancancercongress.org/Scientific-Programme/Abstract-search?abstractid=20436
  • Wong N-S, Seah EZ, Wang L-Z, et al. Impact of UDP-gluconoryltransferase 2B17 genotype on vorinostat metabolism and clinical outcomes in Asian women with breast cancer. Pharmacogenet Genomics. 2011;21:760–768. DOI:10.1097/FPC.0b013e32834a8639.
  • Sun D, Chen G, Dellinger RW, et al. Characterization of 17-dihydroexemestane glucuronidation: potential role of the UGT2B17 deletion in exemestane pharmacogenetics. Pharmacogenet Genomics. 2010;20:575–585. DOI:10.1097/FPC.0b013e32833b04af.
  • Garte S, Gaspari L, Alexandrie AK, et al. Metabolic gene polymorphism frequencies in control populations. Cancer Epidemiol Biomarkers Prev. 2001;10:1239–1248.
  • Khrunin AV, Moisseev A, Gorbunova V, et al. Genetic polymorphisms and the efficacy and toxicity of cisplatin-based chemotherapy in ovarian cancer patients. Pharmacogenomics J. 2010;10:54–61. DOI:10.1038/tpj.2009.45.
  • Hsieh KP, Lin YY, Cheng CL, et al. Novel mutations of CYP3A4 in Chinese. Drug Metab Dispos. 2001;29:268–273.
  • Yang X, Zhang B, Molony C, et al. Systematic genetic and genomic analysis of cytochrome P450 enzyme activities in human liver. Genome Res. 2010;20:1020–1036. DOI:10.1101/gr.103341.109.
  • Yang H-C, Lin C-W, Chen C-W, et al. Applying genome-wide gene-based expression quantitative trait locus mapping to study population ancestry and pharmacogenetics. BMC Genomics. 2014;15:319. DOI:10.1186/1471-2164-15-319.
  • Cooper DN. Functional intronic polymorphisms: buried treasure awaiting discovery within our genes. Hum Genomics. 2010;4:284–288.
  • Ingelman-Sundberg M, Sim SC. Intronic polymorphisms of cytochromes P450. Hum Genomics. 2010;4:402–405.
  • Singh O, Chan JY, Lin K, et al. SLC22A1-ABCB1 haplotype profiles predict imatinib pharmacokinetics in Asian patients with chronic myeloid leukemia. PLoS One. 2012;7:e51771. DOI:10.1371/journal.pone.0051771.
  • Goswami S, Gong L, Giacomini K, et al. PharmGKB summary: very important pharmacogene information for SLC22A1. Pharmacogenet Genomics. 2014;24:324–328. DOI:10.1097/FPC.0000000000000048.
  • Shu Y, Sheardown SA, Brown C, et al. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest. 2007;117:1422–1431. DOI:10.1172/JCI30558.
  • Aquilante CL, Niemi M, Gong L, et al. PharmGKB summary: very important pharmacogene information for cytochrome P450, family 2, subfamily C, polypeptide 8. Pharmacogenet Genomics. 2013;23:721–728. DOI:10.1097/FPC.0b013e3283653b27.
  • Saito Y, Katori N, Soyama A, et al. CYP2C8 haplotype structures and their influence on pharmacokinetics of paclitaxel in a Japanese population. Pharmacogenet Genomics. 2007;17:461–471. DOI:10.1097/FPC.0b013e32805b72c1.
  • Lamba J, Hebert JM, Schuetz EG, et al. PharmGKB summary: very important pharmacogene information for CYP3A5. Pharmacogenet Genomics. 2012;22:555–558. DOI:10.1097/FPC.0b013e328351d47f.
  • Kuehl P, Zhang J, Lin Y, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet. 2001;27:383–391. DOI:10.1038/86882.
  • Saeki M, Saito Y, Nakamura T, et al. Single nucleotide polymorphisms and haplotype frequencies of CYP3A5 in a Japanese population. Hum Mutat. 2003;21:653. DOI:10.1002/humu.9147.
  • Balram C, Zhou Q, Cheung YB, et al. CYP3A5*3 and *6 single nucleotide polymorphisms in three distinct Asian populations. Eur J Clin Pharmacol. 2003;59:123–126. DOI:10.1007/s00228-003-0594-2.
  • Kai Y, Hamada A, Sasaki J, et al. Abstract 5459: Association of CYP1A1 and CYP3A5 polymorphisms with pharmacokinetics of erlotinib in patients with non-small cell lung cancer. 102nd Annual Meeting American Association for Cancer Research; vol. 71, p. Abstract nr 5459. DOI:10.1158/1538-7445.AM2011-5459.
  • Goh BC, Lee SC, Wang LZ, et al. Explaining interindividual variability of docetaxel pharmacokinetics and pharmacodynamics in Asians through phenotyping and genotyping strategies. J Clin Oncol. 2002;20:3683–3690. DOI:10.1200/JCO.2002.01.025.

* This study in Asians was among the first to provide clinical proof-of-concept that phenotyping strategies could be used in place of genetic testing, where genotyping fails to identify predictive biomarkers of drug disposition.

  • Iyer L, Das S, Janisch L, et al. UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenomics J. 2002;2:43–47.
  • Hsieh T-Y, Shiu T-Y, Huang S-M, et al. Molecular pathogenesis of Gilbert’s syndrome: decreased TATA-binding protein binding affinity of UGT1A1 gene promoter. Pharmacogenet Genomics. 2007;17:229–236. DOI:10.1097/FPC.0b013e328012d0da.
  • Barbarino JM, Haidar CE, Klein TE, et al. PharmGKB summary: very important pharmacogene information for UGT1A1. Pharmacogenet Genomics. 2014;24:177–183. DOI:10.1097/FPC.0000000000000024.
  • Sung C, Lee PL, Tan LL, et al. Pharmacogenetic risk for adverse reactions to irinotecan in the major ethnic populations of Singapore: regulatory evaluation by the health sciences authority. Drug Saf. 2011;34:1167–1175. DOI:10.2165/11594440-000000000-00000.
  • Premawardhena A, Fisher CA, Liu YT. et al. The global distribution of length polymorphisms of the promoters of the glucuronosyltransferase 1 gene (UGT1A1): hematologic and evolutionary implications. Blood Cells Mol Dis. 2003;31:98–101.
  • Wang L-Z, Ramírez J, Yeo W, et al. Glucuronidation by UGT1A1 is the dominant pathway of the metabolic disposition of belinostat in liver cancer patients. PLoS One. 2013;8:e54522. DOI:10.1371/journal.pone.0054522.
  • Han J-Y, Lim H-S, Shin ES, et al. Comprehensive analysis of UGT1A polymorphisms predictive for pharmacokinetics and treatment outcome in patients with non-small-cell lung cancer treated with irinotecan and cisplatin. J Clin Oncol. 2006;24:2237–2244. DOI:10.1200/JCO.2005.03.0239.

** This is an important study which reinforces the established practice of genotyping UGT1A1*6, but also identifies UGT1A9*22 as a potentially relevant allele in East Asian populations.

  • Yamanaka H, Nakajima M, Katoh M, et al. A novel polymorphism in the promoter region of human UGT1A9 gene (UGT1A9*22) and its effects on the transcriptional activity. Pharmacogenetics. 2004;14:329–332.
  • Yuan H-Y, Chen -J-J, Lee MTM, et al. A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity. Hum Mol Genet. 2005;14:1745–1751. DOI:10.1093/hmg/ddi180.
  • Sandanaraj E, Lal S, Selvarajan V, et al. PXR pharmacogenetics: association of haplotypes with hepatic CYP3A4 and ABCB1 messenger RNA expression and doxorubicin clearance in Asian breast cancer patients. Clin Cancer Res. 2008;14:7116–7126. DOI:10.1158/1078-0432.CCR-08-0411.
  • Tham L-S, Holford NHG, Hor S-Y, et al. Lack of association of single-nucleotide polymorphisms in pregnane X receptor, hepatic nuclear factor 4alpha, and constitutive androstane receptor with docetaxel pharmacokinetics. Clin Cancer Res. 2007;13:7126–7132. DOI:10.1158/1078-0432.CCR-07-1276.
  • Tirona RG, Kim RB. Nuclear receptors and drug disposition gene regulation. J Pharm Sci. 2005;94:1169–1186. DOI:10.1002/jps.20324.
  • Tsuchiya Y, Nakajima M, Takagi S, et al. MicroRNA regulates the expression of human cytochrome P450 1B1. Cancer Res. 2006;66:9090–9098. DOI:10.1158/0008-5472.CAN-06-1403.
  • Edwards SL, Beesley J, French JD, et al. Beyond GWASs: illuminating the dark road from association to function. Am J Hum Genet. 2013;93:779–797. DOI:10.1016/j.ajhg.2013.10.012.
  • Bernstein BE, Birney E, Dunham I, et al. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74. DOI:10.1038/nature11247.
  • Syn NLX, Lee S-C, Brunham LR, et al. Pharmacogenetic versus clinical dosing of warfarin in individuals of Chinese and African-American ancestry: assessment using data simulation. Pharmacogenet Genomics. 2015;25:491–500. DOI:10.1097/FPC.0000000000000165.
  • Thomas DC, Witte JS. Point: population stratification: a problem for case-control studies of candidate-gene associations? Cancer Epidemiol Biomarkers Prev. 2002;11:505–512.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.