313
Views
36
CrossRef citations to date
0
Altmetric
Review

The impact of CYP allelic variation on antidepressant metabolism: a review

, &
Pages 21-31 | Published online: 01 Feb 2007

Bibliography

  • WILKINSON G: Pharmacokinetics: the dynamic of drug absorption, distribution, and elimination. In: Goodman and Gilman’s the pharmacological basis of therapeutics. Hardman J et al. (Eds), McGraw-Hill, New York, USA (2001).
  • HAMPTON T: Researchers draft guidelines for clinical use of pharmacogenomics. JAMA (2006) 296(12):1453-1454.
  • PURICH D, ALLISON R: The Enzyme Reference: A comprehensive guide to enzyme nomenclature, reactions, and methods. Academic Press, San Diego, CA, USA (2002).
  • KIMURA S, UMENO M, SKODA R, MEYER U, GONZALEZ F: The human debrisoquine 4-hydroxylase (CYP2D) locus: sequence and identification of the polymorphic CYP2D6 gene, a related gene, and pseudogene. Am. J. Hum. Genet. (1989) 45(6):889-904.
  • CORNELIUS M, EL-SOHEMY A, KABAGAMBE E, CAMPOS H: Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA (2006) 295(10):1135.
  • LUNDQVIST E, JOHANSSON I, INGELMAN-SUNDBERG M: Genetic mechanisms for duplication and multiduplication of the CYP2D6 gene and methods for detection of duplicated CYP2D6 genes. Gene (1999) 226:327-338.
  • CHIDA M, ARIYOSHI N, YOKOI T et al.: New allelic arrangement CYP2D6*36x2 found in a Japanese poor metabolizer of debrisoquine. Pharmacogenetics (2002) 12:659-662.
  • NAKAJIMA M, YOKOI T, MIZUTANI M et al.: Phenotyping of CYP1A2 in Japanese population by analysis of caffeine urinary metabolites: absence of mutation prescribing the phenotype in the CYP1A2 gene. Cancer Epidemiol. Biomarkers Prev. (1994) 3:413-421.
  • YOKOI T, SAWADA M, KAMATAKI T: Polymorphic drug metabolism: studies with recombinant Chinese hamster cells and analyses in human populations. Pharmacogenetics (1995) 5:S65-S69.
  • SHIRLEY K, HON Y, PENZAK S et al.: Correlation of cytochrome P450 (CYP) 1A2 activity using caffeine phenotyping and olanzapine disposition in healthy volunteers. Neuropsychopharmacology (2003) 28:961-966.
  • LANDI M, SINHA R, LANG N, KADLUBAR F: Human cytochrome P4501A2 (Chapter 16). In: Metabolic polymorphisms and susceptibility to cancer. Ryder W (Ed.), IARC Scientific Publications, Lyon, France (1999):173-195.
  • LEEMANN T, TRANSON C, DAYER P: Cytochrome P450TB (CYP2C): A major monooxygenase catalyzing declofenac 4′-hydroxylation in human liver. Life Sci. (1993) 52(1):29-34.
  • BLAISDELL J, MOHRENWEISER H, JACKSON J et al.: Identification and functional characterization of new potentially defective alleles of human CYP2C19. Pharmacogenetics (2002) 12(9):703-711.
  • LEE C, PIEPER J, FRYE R et al.: Tolbutamide, flurbiprofen, and losartan as probes of CYP2C9 activity in humans. J. Clin. Pharmacol. (2003) 43:84-91.
  • CHANG M, DAHL M, TYBRING G, GOTHARSON E, BERTILISSON L: Use of omeprazole as a probe drug for CYP2C19 phenotype in Swedish Caucasians: comparison with S-mephenytoin hydroxylation phenotype and CYP2C19 genotype. Pharmacogenetics (1995) 5:358-363.
  • BERTILSSON L, DAHL ML, TYBRING G: Pharmacogenetics of antidepressants: clinical aspects. Acta Psychiatr. Scand. Suppl. (1997) 391:14-21.
  • DAHL M-L, VOORTMAN G, ELWIN C-E et al.: In vitro and in vivo studies on the disposition of mirtazapine in humans. Clin. Drug Investig. (1997) 13(1):37-46.
  • GREENBLATT D, VON MOLTKE L, HARMATZ J, SHADER R: Human cytochromes mediating sertraline biotransformation: seeking attribution. J. Clin. Psychopharmacol. (1999) 19(9):489-493.
  • GAIKOVITCH EA, CASCORBI I, MROZIKIEWICZ PM et al.: Polymorphisms of drug-metabolizing enzymes CYP2C9, CYP2C19, CYP2D6, CYP1A1, NAT2 and of P-glycoprotein in a Russian population. Eur. J. Clin. Pharmacol. (2003) 59:303-312.
  • PAVANELLO S, PULLIERO A, LUPI S, GREGORIO P, CLONFERO E: Influence of the genetic polymorphism in the 5′-noncoding region of the CYP1A2 gene on CYP1A2 phenotype and urinary mutagenicity in smokers. Mutat. Res. (2005) 587:59-66.
  • SACHSE C, BROCKMOLLER J, BAUER S, ROOTS I: Functional significance of a C–A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br. J. Clin. Pharmacol. (1999) 47:445-449.
  • GASCHE Y, DAALI Y, FATHI M et al.: Codeine intoxication associated with ultrarapid CYP2D6 metabolism. N. Engl. J. Med. (2004) 351(27):2827-2831.
  • STEIMER W, ZOPF K, VON AMELUNXEN S et al.: Allele-specific change of concentration and functional gene dose for the prediction of steady-state serum concentrations of amitriptyline and nortriptyline in CYP2C19 and CY2D6 extensive and intermediate metabolizers. Clin. Chem. (2004) 50(9):1623-1633.
  • GRASMADER K, VERWOHLT PL, DRAGICEVIC A et al.: Impact of polymorphisms of cytochrome-P450 isoenzymes 2C9, 2C19 and 2D6 on plasma concentrations and clinical effects of antidepressants in a naturalistic clinical setting. Eur. J. Clin. Pharmacol. (2004) 60(5):329-336.
  • KRAFT J, SLAGER S, MCGRATH P, HAMILTON S: Sequence analysis of the serotonin transporter and associations with antidepressant response. Biol. Psychiatry (2005) 58(5):374-381.
  • MALHOTRA A, MURPHY GJ, KENNEDY J: Pharmacogenetics of psychotropic drug response. Am. J. Psychiatry (2004) 161(5):780-796.
  • MCMAHON FJ, BUERVENICH S, CHARNEY D et al.: Variation in the gene encoding the serotonin 2A receptor is associated with outcome of antidepressant treatment. Am. J. Hum. Genet. (2006) 78:804-814.
  • KIRCHHEINER J, BROSEN K, DAHL M et al.: CYP2D6 and CYP2C19 genotype-based dose recommendations for antidepressants: a first step towards subpopulation-specific dosages. Acta Psychiatr. Scand. (2001) 104:173-192.
  • KIRCHHEINER J, NICKCHEN K, BAUER M et al.: Pharmacogenomics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol. Psychiatry (2004) 9:442-473.
  • MRAZEK D, O'KANE D, SNYDER K, BLACK J: Pharmacogenomic assessment of patients with side effects to antidepressant medications. Biol. Psychiatry (2004) 55(8S):40S.
  • MRAZEK D, O'KANE D, SNYDER K, BLACK J: A three-gene pharmacogenomic model for antidepressant response. Biol. Psychiatry (2005) 57(8S):167S.
  • JIANG Z-P, SHU Y, CHEN X-P et al.: The role of CYP2C19 in amitriptyline N-demethylation in Chinese subjects. Eur. J. Clin. Pharmacol. (2002) 58:109-113.
  • SHIMODA L, YASUDA S, MORITA S et al.: Significance of monitoring plasma levels of amitriptyline, and its hydroxylated and desmethylated metabolites in prediction of the clinical outcome of depressive states. Psychiatry Clin. Neurosci. (1997) 51(1):35-41.
  • VENKATAKRISHNAN K, GREENBLATT D, VON MOLTKE L et al.: Five distrinct human cytochromes mediate amitriptyline N-demethylation in vitro: dominance of CYP 2C19 and 3A4. J. Pharmacol. (1998) 38:112-121.
  • VENKATAKRISHNAN K, SCHMIDER J, HARMATZ JS et al.: Relative contribution of CYP3A to amitryiptyline clearance in humans: in vitro and in vivo studies. Drug Metab. (2001) 41:1043-1054.
  • HESSE LM, VENKATAKRISHNAN K, COURT MH et al.: CYP2B6 mediates the in vitro hydroxylation of bupropion: potential drug interactions with other antidepressants. Drug Metab. Dispos. (2000) 28(10):1176-1183.
  • DAVISS WB, PEREL J, RUDOLPH GR et al.: Steady-state pharmacokinetics of bupropion SR in juvenile patients. Am. Acad. Child Adolesc. Psychiatry (2005) 44(4):349-357.
  • KIRCHHEINER J, KLEIN C, MEINEKE I et al.: Bupropion and 4-OH-bupropion pharmacokinetics in relation to genetic polymorphisms in CYP2B6. Pharmacogenetics (2003) 13(10):619-626.
  • SCHROEDER DH: Metabolism and kinetics of bupropion. J. Clin. Psychiatry (1983) 44(5 Pt 2):79-81.
  • FAUCETTE SR, HAWKE RL, LECLUYSE EL et al.: Validation of bupropion hydroxylation as a selective marker of human cytochrome P450 2B6 catalytic activity. Drug Metab. Dispos. (2000) 28(10):1222-1230.
  • VON MOLTKE LL, GREENBLATT DJ, GIANCARLO GM et al.: Citalopram and desmethylcitalopram in vitro: human cytochromes mediating transformation, and cytochrome inhibitory effects. Biol. Psychiatry (1999) 46:839-849.
  • HIEMKE C, HARTTER S: Pharmacokinetics of selective serotonin reuptake inhibitors. Pharmacol. Ther. (2000) 85(1):11-28.
  • SINDRUP SH, BROSEN K, HANSEN MGJ et al.: Pharmacokinetics of citalopram in relation to the sparteine and the mephenytoin oxidation polymorphisms. Ther. Drug Monit. (1993) 15:11-17.
  • VON MOLTKE LL, GREENBLATT DJ, GIANCARLO GM et al.: Escitalopram (S-citalopram) and its metabolites in vitro: cytochromes mediating biotransformation, inhibitory effects, and comparison to R-citalopram. Drug Metab. Dispos. (2001) 29(8):1102-1109.
  • SPINA E, GITTO C, AVENOSO A et al.: Relationship between plasma desipramine levels, CYP2D6 phenotype and clinical response to desipramine: a prospective study. Eur. J. Clin. Pharmacol. (1997) 51:395-398.
  • BROSEN K, GRAM LF, KLYSNER R, BECH P: Steady-state levels of imipramine and its metabolites significance of dose-dependent kinetics. Eur. J. Clin. Pharmacol. (1986) 30:43-49.
  • SHIMODA K, MORITA S, HIROKANE G et al.: Metabolism of desipramine in Japanese psychiatric patients: the impact of CYP2D6 genotyping on the hydroxylation of desipramine. Pharm. Tox. (2000) 86:245-249.
  • KIRCHHEINER J, MEINEKE I, MÜLLER G, ROOTS I, BROCKMÖLLER J: Contributions of CYP2D6, CYP2C9 and CYP2C19 to the biotransformation of E- and Z-doxepin in healthy volunteers. Pharmacogenetics (2002) 12(7):571-580.
  • LANTZ RJ, GILLESPIE TA, RASH TJ et al.: Metabolism, excretion, and pharmacokinetics of duloxetine in healthy human subjects. Drug Metab. Dispos. (2003) 31(9):1142-1150.
  • SKINNER MH, KUAN HY, PAN A et al.: Duloxetine is both an inhibitor and a substrate of cytochrome P4502D6 in healthy volunteers. Clin. Pharmacol. Ther. (2003) 73(3):170-177.
  • FJORDSIDE L, JEPPESEN U, EAP CB et al.: The stereoselective metabolism of fluoxetine in poor and extensive metabolizers of sparteine. Pharmacogenetics (1999) 9:55-60.
  • HAMELIN BA, TURGEON J, VALLEE F et al.: The disposition of fluoxetine but not sertraline is altered in poor metabolizers of debrisoquin. Clin. Pharmacol. Ther. (1996) 60(5):512-521.
  • EAP C, BONDOLFI G, ZULLINO D et al.: Concentrations of the enantiomers of fluoxetine and norfluoxetine after multiple doses of fluoxetine in cytochrome P4502D6 poor and extensive metabolizers. J. Clin. Psychopharmacol. (2001) 21(3):330-334.
  • MARGOLIS J, O'DONNELL J, MANKOWSKI D, EKINS S, OBACH R: (R)-, (S)-, and racemic fluoxetine N-demethylation by human cytochrome P450 enzymes. Drug Metab. Dispos. (2000) 28:1187-1191.
  • WESTENBERG H, SANDNER C: Tolerability and safety of fluvoxamine and other antidepressants. Int. J. Clin. Pract. (2006) 60(4):482-491.
  • KOYAMA E, TANAKA T, CHIBA K et al.: Steady-state plasma concentrations of imipramine and desipramine in relation to S-mephenytoin 4′-hydroxylation status in japanese depressive patients. J. Clin. Psychopharmacol. (1996) 16(4):286-293.
  • SPINA E, SCORDO M, D'ARRIGO C: Metabolic drug interactions with new psychotropic agents. Fundam. Clin. Phamracol. (2003) 17:517-538.
  • GREENE DS, BARBHAIYA RH: Clinical pharmacokinetics of nefazodone. Clin. Pharmacokinet. (1997) 33(4):260-275.
  • VENKATAKRISHNAN K, VON MOLTKE LL, GREENBLATT D: Nortriptyline E-10-hydroxylation in vitro is mediated by human CYP2D6 (high affinity) and CYP3A4 (low affinity): implications for interactions with enzyme-inducing drugs. Drug Metab. (1999) 39:567-577.
  • CACCIA S: Metabolism of the newer antidepressants: an overview of the pharmacological and pharmacokinetic implications. Clin. Pharmacokinet. (1998) 34(4):281-302.
  • WIENKERS L, ALLIEVI C, HAUER M, WYNALDA M: Cytochrome P-450-mediated metabolism of the individual enantiomers of the antidepressant agent reboxetine in human liver microsomes. Drug Metab. Dispos. (1999) 27:1334-1340.
  • OBACH RS, COX LM, TREMAINE LM: Sertraline is metabolized by multiple cytochrome P450 enzymes, monoamine oxidases, and glucuronyl transferases in human: an in vitro study. Drug Metab. Dispos. (2005) 33:262-270.
  • ROTZINGER S, FANG J, BAKER GB: Trazodone is metabolized to m-chlorophenylpiperazine by CYP3A4 from human sources. Drug Metab. Dispos. (1998) 26(6):572-575.
  • ZALMA A, VON MOLTKE LL, GRANDA B et al.: In vitro metabolism of trazodone by CYP3A: inhibition by ketoconazole and human immunodeficiency viral protease inhibitors. Biol. Psychiatry (2000) 47:655-661.
  • KIRCHHEINER J, SASSE J, MEINEKE I, ROOTS I, BROCKMÖLLER J: Trimipramine pharmacokinetics after intravenous and oral administration in carriers of CYP2D6 genotypes predicting poor, extensive and ultrahigh activity. Pharmacogenetics (2003) 13(12):721-728.
  • EAP C, BENDER S, GASTPAR M et al.: Steady state plasma levels of the enantiomers of trimipramine and of its metabolites in CYP2D6-, CYP2C9-, and CYP3A4/5-phenotyped patients. Ther. Drug Monit. (2000) 22:209-214.
  • EAP CB, LESSARD E, BAUMANN P et al.: Role of CYP2D6 in the stereoselective disposition of venlafaxine in humans. Pharmacogenetics (2003) 13(1):39-47.
  • FOGELMAN SM, SCHMIDER J, VENKATAKRISHNAN K et al.: O- and N-demethylation of venlafaxine in vitro by human liver microsomes and by microsomes from cDNA-transfected cells: effect of metabolic inhibitors and SSRI antidepressants. Neuropsychopharmacology (1999) 20(5):480-490.
  • OWEN JR, NEMEROFF CB: New antidepressants and the cytochrome P450 system: focus on venlafaxine, nefazodone, and mirtazapine. Depress Anxiety (1998) 7(Suppl. 1):24-32.
  • FUKUDA T, NISHIDA Y, ZHOU Q et al.: The impact of the CYP2D6 and CYP2C19 genotypes on venlafaxine pharmacokinetics in a Japanese population. Eur. J. Clin. Pharmacol. (2000) 56(2):175-180.
  • ERESHEFSKY L, DUGAN D: Review of the pharmacokinetics, pharmacogenetics, and drug interaction potential of antidepressants: focus on venlafaxine. Depress Anxiety (2000) 12(Suppl. 1):30-44.
  • POLLOCK BG, SWEET R, KIRSHNER M, REYNOLDS CF III: Bupropion plasma levels and CYP2D6 phenotype. Ther. Drug Monit. (1996) 18(5):581-585.

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.