800
Views
81
CrossRef citations to date
0
Altmetric
Review

Intestinal UGTs as potential modifiers of pharmacokinetics and biological responses to drugs and xenobiotics

Pages 93-107 | Published online: 01 Feb 2007

Bibliography

  • GONG QH, CHO JW, HUANG T et al.: Thirteen UDP glucuronosyltransferase genes are encoded at the human UGT1 gene complex locus. Pharmacogenetics (2001) 11(4):357-368.
  • MACKENZIE PI, WALTER BOCK K, BURCHELL B et al.: Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenet. Genomics (2005) 15(10):677-685.
  • HANNINEN O, LINDSTROM-SEPPA P, PELKONEN K: Role of gut in xenobiotic metabolism. Arch. Toxicol. (1987) 60(1-3):34-36.
  • RADOMINSKA-PANDYA A, LITTLE JM, PANDYA JT et al.: UDP-glucuronosyltransferases in human intestinal mucosa. Biochim. Biophys. Acta (1998) 1394(2-3):199-208.
  • STRASSBURG CP, NGUYEN N, MANNS MP, TUKEY RH: UDP-glucuronosyltransferase activity in human liver and colon. Gastroenterology (1999) 116(1):149-160.
  • POND SM, TOZER TN: First-pass elimination. Basic concepts and clinical consequences. Clin. Pharmacokinet. (1984) 9(1):1-25.
  • DOHERTY MM, PANG KS: First-pass effect: significance of the intestine for absorption and metabolism. Drug Chem. Toxicol. (1997) 20(4):329-344.
  • DEL VILLAR E, SANCHEZ E, TEPHLY TR: Morphine metabolism. II. Studies on morphine glucuronyltransferase activity in intestinal microsomes of rats. Drug Metab. Dispos. (1974) 2(4):370-374.
  • IWAMOTO K, KLAASSEN CD: First-pass effect of morphine in rats. J. Pharmacol. Exp. Ther. (1977) 200(1):236-244.
  • DAHLSTROM BE, PAALZOW LK: Pharmacokinetic interpretation of the enterohepatic recirculation and first-pass elimination of morphine in the rat. J. Pharmacokinet. Biopharm. (1978) 6(6):505-519.
  • MISTRY M, HOUSTON JB: Glucuronidation in vitro and in vivo. Comparison of intestinal and hepatic conjugation of morphine, naloxone, and buprenorphine. Drug Metab. Dispos. (1987) 15(5):710-717.
  • ABDALLAH C, BESNER JG, DU SOUICH P: Presystemic elimination of morphine in anesthetized rabbits. Contribution of the intestine, liver, and lungs. Drug Metab. Dispos. (1995) 23(5):584-589.
  • VAN HEEK M, FARLEY C, COMPTON DS et al.: Comparison of the activity and disposition of the novel cholesterol absorption inhibitor, SCH-58235, and its glucuronide, SCH-60663. Br. J. Pharmacol. (2000) 129(8):1748-1754.
  • KUHNLE G, SPENCER JP, CHOWRIMOOTOO G et al.: Resveratrol is absorbed in the small intestine as resveratrol glucuronide. Biochem. Biophys. Res. Commun. (2000) 272(1):212-217.
  • KUHNLE G, SPENCER JP, SCHROETER H et al.: Epicatechin and catechin are O-methylated and glucuronidated in the small intestine. Biochem. Biophys. Res. Commun. (2000) 277(2):507-512.
  • GRAF BA, MULLEN W, CALDWELL ST et al.: Disposition and metabolism of [2-14C]quercetin-4′-glucoside in rats. Drug Metab. Dispos. (2005) 33(7):1036-1043.
  • PANG KS, YUEN V, FAYZ S, TE KOPPELE JM, MULDER GJ: Absorption and metabolism of acetaminophen by the in situ perfused rat small intestine preparation. Drug Metab. Dispos. (1986) 14(1):102-111.
  • DOHERTY MM, PANG KS: Route-dependent metabolism of morphine in the vascularly perfused rat small intestine preparation. Pharm. Res. (2000) 17(3):291-298.
  • CHEN J, WANG S, JIA X et al.: Disposition of flavonoids via recycling: comparison of intestinal versus hepatic disposition. Drug Metab. Dispos. (2005) 33(12):1777-1784.
  • CHEN J, LIN H, HU M: Metabolism of flavonoids via enteric recycling: role of intestinal disposition. J. Pharmacol. Exp. Ther. (2003) 304(3):1228-1235.
  • CRESPY V, MORAND C, BESSON C et al.: The splanchnic metabolism of flavonoids highly differed according to the nature of the compound. Am. J. Physiol. Gastrointest. Liver Physiol. (2003) 284(6):G980-G988.
  • CRESPY V, MORAND C, BESSON C et al.: Comparison of the intestinal absorption of quercetin, phloretin and their glucosides in rats. J. Nutr. (2001) 131(8):2109-2114.
  • DONOVAN JL, CRESPY V, MANACH C et al.: Catechin is metabolized by both the small intestine and liver of rats. J. Nutr. (2001) 131(6):1753-1757.
  • ANDLAUER W, KOLB J, FURST P: Isoflavones from tofu are absorbed and metabolized in the isolated rat small intestine. J. Nutr. (2000) 130(12):3021-3027.
  • BODENHAM A, QUINN K, PARK GR: Extrahepatic morphine metabolism in man during the anhepatic phase of orthotopic liver transplantation. Br. J. Anaesth. (1989) 63(4):380-384.
  • TAKIZAWA D, SATO E, HIRAOKA H et al.: Changes in apparent systemic clearance of propofol during transplantation of living related donor liver. Br. J. Anaesth. (2005) 95(5):643-647.
  • FISHER MB, VANDENBRANDEN M, FINDLAY K et al.: Tissue distribution and interindividual variation in human UDP-glucuronosyltransferase activity: relationship between UGT1A1 promoter genotype and variability in a liver bank. Pharmacogenetics (2000) 10(8):727-739.
  • COURT MH, KRISHNASWAMY S, HAO Q et al.: Evaluation of 3′-azido-3′-deoxythymidine, morphine, and codeine as probe substrates for UDP-glucuronosyltransferase 2B7 (UGT2B7) in human liver microsomes: specificity and influence of the UGT2B7*2 polymorphism. Drug Metab. Dispos. (2003) 31(9):1125-1133.
  • CZERNIK PJ, LITTLE JM, BARONE GW, RAUFMAN JP, RADOMINSKA-PANDYA A: Glucuronidation of estrogens and retinoic acid and expression of UDP-glucuronosyltransferase 2B7 in human intestinal mucosa. Drug Metab. Dispos. (2000) 28(10):1210-1216.
  • SABOLOVIC N, HEYDEL JM, LI X et al.: Carboxyl nonsteroidal anti-inflammatory drugs are efficiently glucuronidated by microsomes of the human gastrointestinal tract. Biochim. Biophys. Acta (2004) 1675(1-3):120-129.
  • PRITCHARD M, FOURNEL-GIGLEUX S, SIEST G, MACKENZIE P, MAGDALOU J: A recombinant phenobarbital-inducible rat liver UDP-glucuronosyltransferase (UDP-glucuronosyltransferase 2B1) stably expressed in V79 cells catalyzes the glucuronidation of morphine, phenols, and carboxylic acids. Mol. Pharmacol. (1994) 45(1):42-50.
  • SHELBY MK, CHERRINGTON NJ, VANSELL NR, KLAASSEN CD: Tissue mRNA expression of the rat UDP-glucuronosyltransferase gene family. Drug Metab. Dispos. (2003) 31(3):326-333.
  • SCHELINE RR: Metabolism of foreign compounds by gastrointestinal microorganisms. Pharmacol. Rev. (1973) 25(4):451-523.
  • BULLINGHAM RE, NICHOLLS AJ, KAMM BR: Clinical pharmacokinetics of mycophenolate mofetil. Clin. Pharmacokinet. (1998) 34(6):429-455.
  • KOSOGLOU T, STATKEVICH P, JOHNSON-LEVONAS AO et al.: Ezetimibe: a review of its metabolism, pharmacokinetics and drug interactions. Clin. Pharmacokinet. (2005) 44(5):467-494.
  • KEMP DC, FAN PW, STEVENS JC: Characterization of raloxifene glucuronidation in vitro: contribution of intestinal metabolism to presystemic clearance. Drug Metab. Dispos. (2002) 30(6):694-700.
  • KUYPERS DR, NAESENS M, VERMEIRE S, VANRENTERGHEM Y: The impact of uridine diphosphate-glucuronosyltransferase 1A9 (UGT1A9) gene promoter region single-nucleotide polymorphisms T-275A and C-2152T on early mycophenolic acid dose-interval exposure in de novo renal allograft recipients. Clin. Pharmacol. Ther. (2005) 78(4):351-361.
  • GIRARD H, COURT MH, BERNARD O et al.: Identification of common polymorphisms in the promoter of the UGT1A9 gene: evidence that UGT1A9 protein and activity levels are strongly genetically controlled in the liver. Pharmacogenetics (2004) 14(8):501-515.
  • BERNARD O, GUILLEMETTE C: The main role of UGT1A9 in the hepatic metabolism of mycophenolic acid and the effects of naturally occurring variants. Drug Metab. Dispos. (2004) 32(8):775-778.
  • SOARS MG, BURCHELL B, RILEY RJ: In vitro analysis of human drug glucuronidation and prediction of in vivo metabolic clearance. J. Pharmacol. Exp. Ther. (2002) 301(1):382-390.
  • HOUSTON JB: Utility of in vitro drug metabolism data in predicting in vivo metabolic clearance. Biochem. Pharmacol. (1994) 47(9):1469-1479.
  • OBACH RS: Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: An examination of in vitro half-life approach and nonspecific binding to microsomes. Drug Metab. Dispos. (1999) 27(11):1350-1359.
  • OBACH RS: Nonspecific binding to microsomes: impact on scale-up of in vitro intrinsic clearance to hepatic clearance as assessed through examination of warfarin, imipramine, and propranolol. Drug Metab. Dispos. (1997) 25(12):1359-1369.
  • GHOSAL A, HAPANGAMA N, YUAN Y et al.: Identification of human UDP-glucuronosyltransferase enzyme(s) responsible for the glucuronidation of ezetimibe (Zetia). Drug Metab. Dispos. (2004) 32(3):314-320.
  • BOASE S, MINERS JO: In vitro–in vivo correlations for drugs eliminated by glucuronidation: investigations with the model substrate zidovudine. Br. J. Clin. Pharmacol. (2002) 54(5):493-503.
  • ENGTRAKUL JJ, FOTI RS, STRELEVITZ TJ, FISHER MB: Altered AZT (3′-azido-3′-deoxythymidine) glucuronidation kinetics in liver microsomes as an explanation for underprediction of in vivo clearance: comparison to hepatocytes and effect of incubation environment. Drug Metab. Dispos. (2005) 33(11):1621-1627.
  • FISHER MB, CAMPANALE K, ACKERMANN BL, VANDENBRANDEN M, WRIGHTON SA: In vitro glucuronidation using human liver microsomes and the pore-forming peptide alamethicin. Drug Metab. Dispos. (2000) 28(5):560-566.
  • COURT MH, DUAN SX, VON MOLTKE LL et al.: Interindividual variability in acetaminophen glucuronidation by human liver microsomes: identification of relevant acetaminophen UDP-glucuronosyltransferase isoforms. J. Pharmacol. Exp. Ther. (2001) 299(3):998-1006.
  • SOARS MG, RING BJ, WRIGHTON SA: The effect of incubation conditions on the enzyme kinetics of udp-glucuronosyltransferases. Drug Metab. Dispos. (2003) 31(6):762-767.
  • TAKAMI A, MOCHIZUKI K, OKUMURA H et al.: Mycophenolate mofetil is effective and well tolerated in the treatment of refractory acute and chronic graft-versus-host disease. Int. J. Hematol. (2006) 83(1):80-85.
  • YANG XX, HU ZP, CHAN SY et al.: Pharmacokinetic mechanisms for reduced toxicity of irinotecan by coadministered thalidomide. Curr. Drug Metab. (2006) 7(4):431-455.
  • NEERMAN MF, BOOTHE DM: A possible mechanism of gastrointestinal toxicity posed by mycophenolic acid. Pharmacol. Res. (2003) 47(6):523-526.
  • FRANKLIN TJ, JACOBS V, BRUNEAU P, PLE P: Glucuronidation by human colorectal adenocarcinoma cells as a mechanism of resistance to mycophenolic acid. Adv. Enzyme Regul. (1995) 35:91-100.
  • FRANKLIN TJ, JACOBS V, JONES G, PLE P, BRUNEAU P: Glucuronidation associated with intrinsic resistance to mycophenolic acid in human colorectal carcinoma cells. Cancer Res. (1996) 56(5):984-987.
  • CUMMINGS J, ETHELL BT, JARDINE L et al.: Glucuronidation as a mechanism of intrinsic drug resistance in human colon cancer: reversal of resistance by food additives. Cancer Res. (2003) 63(23):8443-8450.
  • CUMMINGS J, ZELCER N, ALLEN JD et al.: Glucuronidation as a mechanism of intrinsic drug resistance in colon cancer cells: contribution of drug transport proteins. Biochem. Pharmacol. (2004) 67(1):31-39.
  • CUMMINGS J, ETHELL BT, JARDINE L, BURCHELL B: Glucuronidation of SN-38 and NU/ICRF 505 in human colon cancer and adjacent normal colon. AntiCancer Res. (2006) 26(3B):2189-2196.
  • TALLMAN MN, MILES K, KESSLER F et al.: The contribution of intestinal UDP-glucuronosyltrasferases in modulating SN-38 induced gastrointestinal toxicity in rats. J. Pharmacol. Exp. Ther. (2007) 320(1):29-37.
  • MILES K, KESSLER F, WEBB L, SMITH PC, RITTER JK: Adenovirus-mediated gene therapy to restore expression and functionality of multiple UDP-glucuronosyltransferase 1A enzymes in Gunn rat liver. J. Pharmacol. Exp. Ther. (2006) 318(3):1240-1247.
  • PETERS WH, NAGENGAST FM, VAN TONGEREN JH: Glutathione S-transferase, cytochrome P450, and uridine 5′-diphosphate- glucuronosyltransferase in human small intestine and liver. Gastroenterology (1989) 96(3):783-789.
  • MATERN S, MATERN H, FARTHMANN EH, GEROK W: Hepatic and extrahepatic glucuronidation of bile acids in man. Characterization of bile acid uridine 5'-diphosphate-glucuronosyltransferase in hepatic, renal, and intestinal microsomes. J. Clin. Invest. (1984) 74(2):402-410.
  • BOWALGAHA K, MINERS JO: The glucuronidation of mycophenolic acid by human liver, kidney and jejunum microsomes. Br. J. Clin. Pharmacol. (2001) 52(5):605-609.
  • CHOUINARD S, TESSIER M, VERNOUILLET G et al.: Inactivation of the pure antiestrogen fulvestrant and other synthetic estrogen molecules by UDP-glucuronosyltransferase 1A enzymes expressed in breast tissue. Mol. Pharmacol. (2006) 69(3):908-920.
  • MILES KK, KESSLER F, SMITH PC, RITTER JK: Characterization of rat intestinal microsomal UDP-glucuronosyltransferase activity towards mycophenolic acid. Drug Metab. Dispos. (2006) 34(9):1632-1639.
  • SABOLOVIC N, HUMBERT AC, RADOMINSKA-PANDYA A, MAGDALOU J: Resveratrol is efficiently glucuronidated by UDP-glucuronosyltransferases in the human gastrointestinal tract and in Caco-2 cells. Biopharm. Drug Dispos. (2006) 27(4):181-189.
  • STRASSBURG CP, KNEIP S, TOPP J et al.: Polymorphic gene regulation and interindividual variation of UDP-glucuronosyltransferase activity in human small intestine. J. Biol. Chem. (2000) 275(46):36164-36171.
  • STRASSBURG CP, STRASSBURG A, NGUYEN N et al.: Regulation and function of family 1 and family 2 UDP-glucuronosyltransferase genes (UGT1A, UGT2B) in human oesophagus. Biochem. J. (1999) 338(Pt 2):489-498.
  • STRASSBURG CP, MANNS MP, TUKEY RH: Expression of the UDP-glucuronosyltransferase 1A locus in human colon. Identification and characterization of the novel extrahepatic UGT1A8. J. Biol. Chem. (1998) 273(15):8719-8726.
  • STRASSBURG CP, NGUYEN N, MANNS MP, TUKEY RH: Polymorphic expression of the UDP-glucuronosyltransferase UGT1A gene locus in human gastric epithelium. Mol. Pharmacol. (1998) 54(4):647-654.
  • CHENG Z, RADOMINSKA-PANDYA A, TEPHLY TR: Cloning and expression of human UDP-glucuronosyltransferase (UGT) 1A8. Arch. Biochem. Biophys. (1998) 356(2):301-305.
  • MCDONNELL WM, HITOMI E, ASKARI FK: Identification of bilirubin UDP-GTs in the human alimentary tract in accordance with the gut as a putative metabolic organ. Biochem. Pharmacol. (1996) 51(4):483-488.
  • MOJARRABI B, MACKENZIE PI: Characterization of two UDP glucuronosyltransferases that are predominantly expressed in human colon. Biochem. Biophys. Res. Commun. (1998) 247(3):704-709.
  • PAINE MF, FISHER MB: Immunochemical identification of UGT isoforms in human small bowel and in Caco-2 cell monolayers. Biochem. Biophys. Res. Commun. (2000) 273(3):1053-1057.
  • KRISHNASWAMY S, DUAN SX, VON MOLTKE LL, GREENBLATT DJ, COURT MH: Validation of serotonin (5-hydroxtryptamine) as an in vitro substrate probe for human UDP-glucuronosyltransferase (UGT) 1A6. Drug Metab. Dispos. (2003) 31(1):133-139.
  • COURT MH: Isoform-selective probe substrates for in vitro studies of human UDP-glucuronosyltransferases. Methods Enzymol. (2005) 400:104-116.
  • UCHAIPICHAT V, MACKENZIE PI, ELLIOT DJ, MINERS JO: Selectivity of substrate (trifluoperazine) and inhibitor (amitriptyline, androsterone, canrenoic acid, hecogenin, phenylbutazone, quinidine, quinine, and sulfinpyrazone) "probes" for human udp-glucuronosyltransferases. Drug Metab. Dispos. (2006) 34(3):449-456.
  • INNOCENTI F, UNDEVIA SD, IYER L et al.: Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J. Clin. Oncol. (2004) 22(8):1382-1388.
  • IYER L, DAS S, JANISCH L et al.: UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenomics J. (2002) 2(1):43-47.
  • GREGORY PA, GARDNER-STEPHEN DA, ROGERS A, MICHAEL MZ, MACKENZIE PI: The caudal-related homeodomain protein Cdx2 and hepatocyte nuclear factor 1alpha cooperatively regulate the UDP-glucuronosyltransferase 2B7 gene promoter. Pharmacogenet. Genomics (2006) 16(7):527-536.
  • GREGORY PA, LEWINSKY RH, GARDNER-STEPHEN DA, MACKENZIE PI: Regulation of UDP glucuronosyltransferases in the gastrointestinal tract. Toxicol. Appl. Pharmacol. (2004) 199(3):354-363.
  • GREGORY PA, LEWINSKY RH, GARDNER-STEPHEN DA, MACKENZIE PI: Coordinate regulation of the human UDP-glucuronosyltransferase 1A8, 1A9, and 1A10 genes by hepatocyte nuclear factor 1alpha and the caudal-related homeodomain protein 2. Mol. Pharmacol. (2004) 65(4):953-963.
  • VAN DER LOGT EM, ROELOFS HM, VAN LIESHOUT EM, NAGENGAST FM, PETERS WH: Effects of dietary anticarcinogens and nonsteroidal anti-inflammatory drugs on rat gastrointestinal UDP-glucuronosyltransferases. AntiCancer Res. (2004) 24(2B):843-849.
  • WALLE UK, WALLE T: Induction of human UDP-glucuronosyltransferase UGT1A1 by flavonoids-structural requirements. Drug Metab. Dispos. (2002) 30(5):564-569.
  • GALIJATOVIC A, OTAKE Y, WALLE UK, WALLE T: Induction of UDP-glucuronosyltransferase UGT1A1 by the flavonoid chrysin in Caco-2 cells – potential role in carcinogen bioinactivation. Pharm. Res. (2001) 18(3):374-379.
  • BASU NK, KOLE L, OWENS IS: Evidence for phosphorylation requirement for human bilirubin UDP-glucuronosyltransferase (UGT1A1) activity. Biochem. Biophys. Res. Commun. (2003) 303(1):98-104.
  • BASU NK, KOVAROVA M, GARZA A et al.: Phosphorylation of a UDP-glucuronosyltransferase regulates substrate specificity. Proc. Natl. Acad. Sci. USA (2005) 102(18):6285-6290.
  • VREE TB, VAN DONGEN RT, KOOPMAN-KIMENAI PM: Codeine analgesia is due to codeine-6-glucuronide, not morphine. Int. J. Clin. Pract. (2000) 54(6):395-398.
  • QUIDING H, ANDERSON P, BONDESSON U, BOREUS LO, HYNNING PA: Plasma concentrations of codeine and its metabolite, morphine, after single and repeated oral administration. Eur. J. Clin. Pharmacol. (1986) 30(6):673-677.
  • AMMON S, VON RICHTER O, HOFMANN U et al.: In vitro interaction of codeine and diclofenac. Drug Metab. Dispos. (2000) 28(10):1149-1152.
  • BALIKOVA M, MARESOVA V, HABRDOVA V: Evaluation of urinary dihydrocodeine excretion in human by gas chromatography-mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. (2001) 752(1):179-186.
  • ROWELL FJ, SEYMOUR RA, RAWLINS MD: Pharmacokinetics of intravenous and oral dihydrocodeine and its acid metabolites. Eur. J. Clin. Pharmacol. (1983) 25(3):419-424.
  • KIRKWOOD LC, NATION RL, SOMOGYI AA: Glucuronidation of dihydrocodeine by human liver microsomes and the effect of inhibitors. Clin. Exp. Pharmacol. Physiol. (1998) 25(3-4):266-270.
  • VOZEH S, SCHMIDLIN O, TAESCHNER W: Pharmacokinetic drug data. Clin. Pharmacokinet. (1988) 15(4):254-282.
  • CHIOU WL, ROBBIE G, CHUNG SM, WU TC, MA C: Correlation of plasma clearance of 54 extensively metabolized drugs between humans and rats: mean allometric coefficient of 0.66. Pharm. Res. (1998) 15(9):1474-1479.
  • GREEN MD, KING CD, MOJARRABI B, MACKENZIE PI, TEPHLY TR: Glucuronidation of amines and other xenobiotics catalyzed by expressed human UDP-glucuronosyltransferase 1A3. Drug Metab. Dispos. (1998) 26(6):507-512.
  • STONE AN, MACKENZIE PI, GALETIN A, HOUSTON JB, MINERS JO: Isoform selectivity and kinetics of morphine 3- and 6-glucuronidation by human udp-glucuronosyltransferases: evidence for atypical glucuronidation kinetics by UGT2B7. Drug Metab. Dispos. (2003) 31(9):1086-1089.
  • GLARE PA, WALSH TD: Clinical pharmacokinetics of morphine. Ther. Drug Monit. (1991) 13(1):1-23.
  • SCHNEIDER G, COASSOLO P, LAVE T: Combining in vitro and in vivo pharmacokinetic data for prediction of hepatic drug clearance in humans by artificial neural networks and multivariate statistical techniques. J. Med. Chem. (1999) 42(25):5072-5076.
  • DI MARCO A, D'ANTONI M, ATTACCALITE S, CAROTENUTO P, LAUFER R: Determination of drug glucuronidation and UDP-glucuronosyltransferase selectivity using a 96-well radiometric assay. Drug Metab. Dispos. (2005) 33(6):812-819.
  • HANDE KR, WEDLUND PJ, NOONE RM et al.: Pharmacokinetics of high-dose etoposide (VP-16-213) administered to cancer patients. Cancer Res. (1984) 44(1):379-382.
  • D'INCALCI M, ROSSI C, ZUCCHETTI M et al.: Pharmacokinetics of etoposide in patients with abnormal renal and hepatic function. Cancer Res. (1986) 46(5):2566-2571.
  • WATANABE Y, NAKAJIMA M, OHASHI N, KUME T, YOKOI T: Glucuronidation of etoposide in human liver microsomes is specifically catalyzed by UDP-glucuronosyltransferase 1A1. Drug Metab. Dispos. (2003) 31(5):589-595.
  • HANDE KR, KROZELY MG, GRECO FA, HAINSWORTH JD, JOHNSON DH: Bioavailability of low-dose oral etoposide. J. Clin. Oncol. (1993) 11(2):374-377.
  • STEN T, QVISEN S, UUTELA P et al.: Prominent but reverse stereoselectivity in propranolol glucuronidation by human UDP-glucuronosyltransferases 1A9 and 1A10. Drug Metab. Dispos. (2006) 34(9):1488-1494.
  • BLUM MR, LIAO SH, GOOD SS, DE MIRANDA P: Pharmacokinetics and bioavailability of zidovudine in humans. Am. J. Med. (1988) 85(2A):189-194.
  • GOOD SS, KOBLE CS, CROUCH R et al.: Isolation and characterization of an ether glucuronide of zidovudine, a major metabolite in monkeys and humans. Drug Metab. Dispos. (1990) 18(3):321-326.
  • AMEER B, GREENBLATT DJ: Acetaminophen. Ann. Intern. Med. (1977) 87(2):202-209.
  • SIMARD C, TURGEON J: The pharmacokinetics of ezetimibe. Can. J. Clin. Pharmacol. (2003) 10(Suppl A):13A-20A.
  • BROCKS DR, JAMALI F: Etodolac clinical pharmacokinetics. Clin. Pharmacokinet. (1994) 26(4):259-274.
  • BENET LZ: Pharmacokinetics of sustained-release etodolac. Rheumatol. Int. (1993) 13(2 Suppl):S3-S5.
  • ISHIZAKI T, SASAKI T, SUGANUMA T et al.: Pharmacokinetics of ketoprofen following single oral, intramuscular and rectal doses and after repeated oral administration. Eur. J. Clin. Pharmacol. (1980) 18(5):407-414.
  • BERNARD O, TOJCIC J, JOURNAULT K, PERUSSE L, GUILLEMETTE C: Influence of nonsynonymous polymorphisms of UGT1A8 and UGT2B7 metabolizing enzymes on the formation of phenolic and acyl glucuronides of mycophenolic acid. Drug Metab. Dispos. (2006) 34(9):1539-1545.
  • WENZEL E, SOMOZA V: Metabolism and bioavailability of trans-resveratrol. Mol. Nutr. Food Res. (2005) 49(5):472-481.
  • BRILL SS, FURIMSKY AM, HO MN et al.: Glucuronidation of trans-resveratrol by human liver and intestinal microsomes and UGT isoforms. J. Pharm. Pharmacol. (2006) 58(4):469-479.
  • WALLE T, HSIEH F, DELEGGE MH, OATIS JE Jr, WALLE UK: High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos. (2004) 32(12):1377-1382.
  • BOERSMA MG, VAN DER WOUDE H, BOGAARDS J et al.: Regioselectivity of phase II metabolism of luteolin and quercetin by UDP-glucuronosyl transferases. Chem. Res. Toxicol. (2002) 15(5):662-670.
  • BASU NK, CIOTTI M, HWANG MS et al.: Differential and special properties of the major human UGT1-encoded gastrointestinal UDP-glucuronosyltransferases enhance potential to control chemical uptake. J. Biol. Chem. (2004) 279(2):1429-1441.
  • MOJARRABI B, BUTLER R, MACKENZIE PI: cDNA cloning and characterization of the human UDP glucuronosyltransferase, UGT1A3. Biochem. Biophys. Res. Commun. (1996) 225(3):785-790.
  • TUKEY RH, STRASSBURG CP: Genetic multiplicity of the human UDP-glucuronosyltransferases and regulation in the gastrointestinal tract. Mol. Pharmacol. (2001) 59(3):405-414.
  • TURGEON D, CARRIER JS, LEVESQUE E, HUM DW, BELANGER A: Relative enzymatic activity, protein stability, and tissue distribution of human steroid-metabolizing UGT2B subfamily members. Endocrinology (2001) 142(2):778-787.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.