157
Views
27
CrossRef citations to date
0
Altmetric
Review

Improving metabolic stability of cancer chemoprotective polyphenols

, &
Pages 379-388 | Published online: 31 May 2007

Bibliography

  • MIDDLETON EJ, KANDASWAMI C, THEOHARIDES TC: The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol. Rev. (2000) 52:673-751.
  • WILLIAMS RJ, SPENCER JPE, RICE-EVANS C: Flavonoids: antioxidants and signalling molecules? Free Radic. Biol. Med. (2004) 36:838-849.
  • DOOSTDAR H, BURKE MD, MAYER RT: Bioflavonoids: selective substrates and inhibitors for cytochrome P450 CYP1A and CYP1B1. Toxicology (2000) 144:31-38.
  • GUENGERICH FP, CHUN Y-J, KIM D et al.: Cytochrome P450 1B1: a target for inhibition in anticarcinogenesis strategies. Mut. Res. (2003) 523-524:173-182.
  • WEN X, WALLE T: Preferential induction of CYP1B1 by benzo[a]pyrene in human oral epithelial cells: Impact on DNA adduct formation and prevention by polyphenols. Carcinogenesis (2005) 26:1774-1781.
  • WEN X, WALLE UK, WALLE T: 5,7-Dimethoxyflavone down-regulates CYP1A1 expression and benzo[a]pyrene-induced DNA binding in Hep G2 cells. Carcinogenesis (2005) 26:803-809.
  • CIOLINO HP, DASCHNER PJ, YEH GC: Dietary flavonols quercetin and kaempferol are ligands of the aryl hydrocarbon receptor that affect CYP1A1 transcription differentially. Biochem. J. (1999) 340:715-722.
  • TSUJI PA, WALLE T: Inhibition of benzo[a]pyrene-activating enzymes and DNA-binding in human bronchial epithelial BEAS-2B cells by methoxylated flavonoids. Carcinogenesis (2006) 27:1579-1585.
  • GALIJATOVIC A, OTAKE Y, WALLE UK et al.: Induction of UDP-glucuronosyltransferase UGT1A1 by the flavonoid chrysin in Caco-2 cells - Potential role in carcinogen bioinactivation. Pharm. Res. (2001) 18:374-379.
  • GROSS-STEINMEYER K, STAPLETON PL, LIU F et al.: Phytochemical-induced changes in gene expression of carcinogen-metabolizing enzymes in cultured human primary hepatocytes. Xenobiotica (2004) 34:619-613.
  • CHOU FP, CHU YC, HSU JD et al.: Specific induction of glutathione S-transferase GSTM2 subunit expression by epigallocatechin gallate in rat liver. Biochem. Pharmacol. (2000) 60:643-650.
  • FANG J, XIA C, CAO Z et al.: Apigenin inhibits VEGF and HIF-1 expression via PI3K/AKT/p70S6K1 and HDM2/p53 pathways. FASEB J. (2005) 19:342-353.
  • CHOI H, CHUN Y-S, KIM S-W et al.: Curcumin inhibits hypoxia-inducible factor-1 by degrading aryl hydrocarbon receptor nuclear translocator: a mechanism of tumor growth inhibition. Mol. Pharmacol. (2006) 70:1664-1671.
  • HOU Z, SANG S, YOU H et al.: Mechanism of action of (-)-epigallocatechin-3-gallate: auto-oxidation-dependent inactivation of epidermal growth factor receptor and direct effects on growth inhibition in human esophageal cancer KYSE 150 cells. Cancer Res. (2005) 65:8049-8056.
  • LU J, PAPP LV, FANG J et al.: Inhibition of mammalian thioredoxin reductase by some flavonoids: implications for myricetin and quercetin anticancer activity. Cancer Res. (2006) 66:4410-4418.
  • HAGHIAC M, WALLE T: Quercetin induces necrosis and apoptosis in the SCC-9 oral cancer cells. Nutr. Cancer (2005) 53:220-231.
  • ERMAKOVA SP, KANG BS, CHOI BY et al.: (-)-Epigallocatechin gallate overcomes resistance to etoposide-induced cell death by targeting the molecular chaperone glucose-regulated protein 78. Cancer Res. (2006) 66:9260-9268.
  • DAY AJ, DUPONT MS, RIDLEY S et al.: Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver β-glucosidase activity. FEBS Lett. (1998) 436:71-75.
  • DAY AJ, CAÑADA FJ, DIAZ JC et al.: Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett. (2000) 468:166-170.
  • GRAEFE EU, WITTIG J, MUELLER S et al.: Pharmacokinetics and bioavailability of quercetin glycosides in humans. J. Clin. Pharmacol. (2001) 41:492-499.
  • WALLE T: Absorption and metabolism of flavonoids. Free Rad. Biol. Med. (2004) 36:829-837.
  • WALLE T, BROWNING AM, STEED LS et al.: Flavonoid glucosides are hydrolyzed and thus activated in the oral cavity in humans. J. Nutr. (2005) 135:48-52.
  • MANACH C, DONOVAN JL: Pharmacokinetics and metabolism of dietary flavonoids in humans. Free Rad. Res. (2004) 38:771-785.
  • WILLIAMSON G, MANACH C: Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am. J. Clin. Nutr. (2005) 81:243S-255S.
  • WALLE T, OTAKE Y, BRUBAKER JA et al.: Disposition and metabolism of the flavonoid chrysin in normal volunteers. Br. J. Clin. Pharmacol. (2001) 51:143-146.
  • GOLDBERG DM, YAN J, SOLEAS GJ: Absorption of three wine-related polyphenols in three different matrices by healthy subjects. Clin. Biochem. (2003) 36:79-87.
  • WALLE T, HSIEH F, DELEGGE MH et al.: High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos. (2004) 32:1377-1382.
  • WALLE T, WALLE UK, HALUSHKA PV: Carbon dioxide is the major metabolite of quercetin in humans. J. Nutr. (2001) 131:2648-2652.
  • CHOW HHS, CAI Y, ALBERTS DS et al.: Phase I pharmacokinetic study of tea polyphenols following single-dose administration of epigallocatechin gallate and polyphenol E. Cancer Epidemiol. Biomarkers Prev. (2001) 10:53-58.
  • WARDEN BA, SMITH LS, BEECHER GR et al.: Catechins are bioavailable in men and women drinking black tea throughout the day. J. Nutr. (2001) 131:1731-1737.
  • HONG J, LAMBERT JD, LEE S-H et al.: Involvement of multidrug resistance-associated proteins in regulating cellular levels of (-)-epigallocatechin-3-gallate and its methyl metabolites. Biochem. Biophys. Res. Commun. (2003) 310:222-227.
  • VAIDYANATHAN JB, WALLE T: Cellular uptake and efflux of the tea flavonoid (-)-epicatechin-3-gallate in the human intestinal cell line Caco-2. J. Pharmacol. Expt. Ther. (2003) 307:745-752.
  • WALTON MC, MCGHIE TK, REYNOLDS GW et al.: The flavonol quercetin-3-glucoside inhibits cyanidin-3-glucoside absorption in vitro. J. Agric. Food Chem. (2006) 54:4913-4920.
  • DUARTE SILVA I, RODRIGUES AS, GASPAR J et al.: Metabolism of galangin by rat cytochromes P450: relevance to the genotoxicity of galangin. Mutation Res. (1997) 393:247-257.
  • NIELSEN SE, BREINHOLT V, JUSTESEN U et al.: In vitro biotransformation of flavonoids by rat liver microsomes. Xenobiotica (1998) 28:389-401.
  • OTAKE Y, WALLE T: Oxidation of the flavonoids galangin and kaempferide by human liver microsomes and CYP1A1, CYP1A2, and CYP2C9. Drug Metab. Dispos. (2002) 30:103-105.
  • OTAKE Y, HSIEH F, WALLE T: Glucuronidation versus oxidation of the flavonoid galangin by human liver microsomes and hepatocytes. Drug Metab. Dispos. (2002) 30:576-581.
  • HU M, KRAUSZ K, CHEN J et al.: Identification of CYP1A2 as the main isoform for the phase I hydroxylated metabolism of genistein and a prodrug converting enzyme of methylated isoflavones. Drug Metab. Dispos. (2003) 31:924-931.
  • BREINHOLT VM, RASMUSSEN SE, BRØSEN K et al.: In vitro metabolism of genistein and tangeretin byl human and murine cytochrome P450s. Pharmacol. Toxicol. (2003) 93:14-22.
  • SOARS MG, RILEY RJ, FINDLAY KAB et al.: Evidence for significant differences in microsomal drug glucuronidation by canine and human liver and kidney. Drug Metab. Dispos. (2001) 29:121-126.
  • WEN X, WALLE T: Methylated flavonoids have greatly improved intestinal absorption and metabolic stability. Drug Metab. Dispos. (2006) 34:1786-1792.
  • LAPPIN G, ROWLAND M, GARNER RC: The use of isotopes in the determination of absolute bioavailability of drugs in humans. Expert Opin. Drug Metab. Toxicol. (2006) 2:419-427.
  • CHEN X, YIN OQP, ZUO Z et al.: Pharmacokinetics and modeling of quercetin and metabolites. Pharm. Res. (2005) 22:892-901.
  • HOU YC, CHAO PDL, HO HJ et al.: Profound difference in pharmacokinetics between morin and its isomer quercetin in rats. J. Pharm. Pharmacol. (2003) 55:199-203.
  • MANACH C, TEXIER O, MORAND C et al.: Comparison of the bioavailability of quercetin and catechin in rats. Free Rad. Biol. Med. (1999) 27:1259-1266.
  • CHUNG HJ, CHOI YH, CHOI HD et al.: Pharmacokinetics of DA-6034, an agent for inflammatory bowel disease, in rats and dogs: Contribution of intestinal first-pass effect to low bioavailability in rats. Eur. J. Pharm. Sci. (2006) 27:363-374.
  • MOON YJ, SAGAWA K, FREDERICK K et al.: Pharmacokinetics and bioavailability of the isoflavone biochanin A in rats. AAPS J. (2006) 8:E433-E442.
  • CHEN J, WANG S, JIA X et al.: Disposition of flavonoids via recycling: comparison of intestinal versus hepatic disposition. Drug Metab. Dispos. (2005) 33:1777-1784.
  • ZHANG L, LIN G, CHANG Q et al.: Role of intestinal first-pass metabolism of baicalein in its absorption process. Pharm. Res. (2005) 22:1050-1058.
  • STEENSMA A, FAASSEN-PETERS MAW, NOTEBORN HPJM et al.: Bioavailability of genistein and its glycoside genistin as measured in the portal vein of freely moving unanesthetized rats. J. Agric. Food Chem. (2006) 54:8006-8012.
  • CAO X, GIBBS ST, FANG L et al.: Why is it challenging to predict intestinal drug absorption and oral bioavailability in human using rat model. Pharm. Res. (2006) 23:1675-1680.
  • MASIMIREMBWA CM, BREDBERG U, ANDERSSON TB: Metabolic stability for drug discovery and development: pharmacokinetic and biochemical challenges. Clin. Pharmacokinet. (2003) 42:515-528.
  • PELKONEN O, RAUNIO H: In vitro screening of drug metabolism during drug development: can we trust the predictions? Expert Opin. Drug Metab. Toxicol. (2005) 1:49-59.
  • WEN X, WALLE T: Methylation protects dietary flavonoids from rapid hepatic metabolism. Xenobiotica (2006) 36:387-397.
  • WALLE T, WALGREN RA, WALLE UK et al.: Understanding the bioavailability of flavonoids through studies in Caco-2 cells. In: Flavonoids in Health and Disease. Rice-Evans CA, Packer L (Eds), Marcel Dekker, Inc., New York, USA (2003):349-361.
  • ZHAI S, SAUSVILLE EA, SENDEROWICZ AM et al.: Clinical pharmacology and pharmacogenetics of flavopiridol 1-h i.v. infusion in patients with refractory neoplasms. Anti-Cancer Drugs (2003) 14:125-135.
  • CHOUEIRI TK, MEKHAIL T, HUTSON TE et al.: Phase I trial of phenoxodiol delivered by continuous intravenous infusion in patients with solid cancer. Ann. Oncol. (2006) 17:860-865.
  • CHEN C-L, LEVINE A, RAO A et al.: Clinical pharmacokinetics of the CD19 receptor-directed tyrosine kinase inhibitor B43-genistein in patients with B-lineage lymphoid malignancies. J. Clin. Pharmacol. (1999) 39:1248-1255.
  • MULHOLLAND PJ, FERRY DR, ANDERSON D et al.: Pre-clinical and clinical study of QC12, a water-soluble, pro-drug of quercetin. Ann. Oncol. (2001) 12:245-248.
  • NIELSEN ILF, CHEE WSS, POULSEN L et al.: Bioavailability is improved by enzymatic modification of the citrus flavonoid hesperidin in humans: a randomized, double-blind, crossover trial. J. Nutr. (2006) 136:404-408.
  • KALE R, SARAF M, JUVEKAR A et al.: Decreased B16F10 melanoma growth and impaired tumour vascularization in BDF1 mice with quercetin–cyclodextrin binary system. J. Pharm. Pharmacol. (2006) 58l:1351-1358.
  • YUAN ZP, CHEN LJ, FAN LY et al.: Liposomal quercetin efficiently suppresses growth of solid tumors in murine models. Clin. Cancer Res. (2006) 12:3193-3199.
  • SHOBA G, JOY D, JOSEPH T et al.: Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. (1998) 64:353-356.
  • LAMBERT JD, HONG J, KIM DH et al.: Piperine enhances the bioavailability of the tea polyphenol (-)-epigallocatechin-3-gallate in mice. J. Nutr. (2004) 134:1948-1952.
  • CAO F, GUO J-X, PING Q-N et al.: Prodrugs of scutellarin: ethyl, benzyl and N,N-diethylglycolamide ester synthesis, physicochemical properties, intestinal metabolism and oral bioavailability in the rats. Eur. J. Pharm. Sci. (2006) 29:385-393.
  • LANDIS-PIWOWAR KR, KUHN DJ, WAN SB et al.: Evaluation of proteasome-inhibitory and apoptosis-inducing properties of novel (-)-EGCG analogs and their prodrugs. Int. J. Mol. Med. (2005) 15:735-742.
  • LAMBERT JD, SANG S, HONG J et al.: Peracetylation as a means of enhancing in vitro bioactivity and bioavailability of epigallocatechin-3-gallate. Drug Metab. Dispos. (2006) 34:2111-2116.
  • MURAKAMI A, KOSHIMIZU K, OHIGASHHI H et al.: Characteristic rat tissue accumulation of nobiletin, a chemopreventive polymethoxyflavonoid, in comparison with luteolin. Biofactors (2002) 16:73-82.
  • YI W, AKOH CC, FISCHER J et al.: Absorption of anthocyanins from blueberry extracts by Caco-2 human intestinal cells. J. Agric. Food Chem. (2006) 54:5651-5658.
  • RAD M, HÜMPEL M, SCHAEFER O et al.: Pharmacokinetics and systemic endocrine effects of the phyto-oestrogen 8-prenylnaringenin after single oral doses to postmenopausal women. Br. J. Clin. Pharmacol. (2006) 62:288-296.
  • PETTIT GR, GREALESH MP, JUNG MK et al.: Antineoplastic agents. 465. Structural modification of resveratrol: sodium resverastatin phosphate. J. Med. Chem. (2002) 45:2534-2542.
  • RILEY RJ, MCGINNITY DF, AUSTIN RP: A unified model for predicting human hepatic, metabolic clearance from in vitro intrinsic clearance data in hepatocytes and microsomes. Drug Metab. Dispos. (2005) 33:1304-1311.
  • ARTURSSON P, KARLSSON J: Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem. Biophys. Res. Commun. (1991) 175:880-885.
  • WALLE UK, GALIJATOVIC A, WALLE T: Transport of the flavonoid chrysin and its conjugated metabolites by the human intestinal cell line Caco-2. Biochem. Pharmacol. (1999) 58:431-438.
  • MANTHEY JA, GUTHRIE N: Antiproliferative activities of citrus flavonoids against six human cancer cell lines. J. Agric. Food Chem. (2002) 50:5837-5843.
  • POUGET C, LAUTHIER F, SIMON A et al.: Flavonoids: structural requirements for antiproliferative activity on breast cancer cells. Bioorg. Med. Chem. Lett. (2001) 11:3095-3097.
  • WALLE T, TA N, KAWAMORI T et al.: Cancer chemopreventive properties of orally bioavailable flavonoids – methylated versus unmethylated flavones. Biochem. Pharmacol. (2007) 73(9):1288-1296.
  • TA N, WALLE T: Aromatase inhibition by bioavailable methylated flavones. J. Steroid Biochem. Mol. Biol. (2007) (In Press).
  • VAN ZANDEN JJ, WORTELBOER HM, BIJLSMA S et al.: Quantitative structure activity relationship studies on the flavonoid mediated inhibition of multidrug resistance proteins 1 and 2. Biochem. Pharmacol. (2005) 69:699-708.
  • SPENCER JPE: Metabolism of tea flavonoids in the gastrointestinal tract. J. Nutr. (2003) 133:3255S-3261S.
  • WALLE T, VINCENT TS, WALLE UK: Evidence of covalent binding of the dietary flavonoid quercetin to DNA and protein in human intestinal and hepatic cells. Biochem. Pharmacol. (2003) 65:1603-1610.
  • WILLIAMSON G, BARRON D, SHIMOI K et al.: In vitro biological properties of flavonoid conjugates found in vivo. Free Rad. Res. (2005) 39:457-469.
  • SPENCER JPE, ABD EL MOHSEN MM, RICE-EVANS C: Cellular uptake and metabolism of flavonoids and their metabolites: implications for their bioactivity. Arch. Biochem. Biophys. (2004) 423:148-161.
  • YANG J-H, HSIA T-C, KUO H-M et al.: Inhibition of lung cancer cell growth by quercetin glucuronides via G2/M arrest and induction of apoptosis. Drug Metab. Dispos. (2006) 34:296-304.
  • NGUYEN DT, HERNANDEZ-MONTES E, VAUZOUR D et al.: The intracellular genistein metabolite 5,7,3′,4′-tetrahydroxyisoflavone mediates G2-M cell cycle arrest in cancer cells via modulation of the p38 signaling pathway. Free Rad. Biol. Med. (2006) 41:1225-1239.
  • TOBIN PJ, BEALE P, NONEY L et al.: A pilot study on the safety of combining chrysin, a non-absorbable inducer of UGT1A1, and irinotecan (CPT-11) to treat metastatic colorectal cancer. Cancer Chemother. Pharmacol. (2006) 57:309-316.
  • MASEREJIAN NN, GIOVANNUCCI E, ROSNER B et al.: Prospective study of fruits and vegetables and risk of oral premalignant lesions in men. Am. J. Epidemiol. (2006) 164:556-566.
  • BOULTON DW, WALLE UK, WALLE T: Extensive binding of the bioflavonoid quercetin to human plasma proteins. J. Pharm. Pharmacol. (1998) 50:243-249.
  • BELGUENDOUZ L, FRÉMONT L, GOZZELINO M-T: Interaction of transresveratrol with plasma lipoproteins. Biochem. Pharmacol. (1998) 55:811-816.
  • JANISCH KM, WILLIAMSON G, NEEDS P et al.: Properties of quercetin conjugates: modulation of LDL oxidation and binding to human serum albumin. Free Rad. Res. (2004) 38:877-884.
  • ZHU BT, EZELL EL, LIEHR JG: Catechol-O-methyltransferase-catalyzed rapid O-methylation of mutagenic flavonoids. Metabolic inactivation as a possible reason for their lack of carcinogenicity in vivo. J. Biol. Chem. (1994) 269:292-299.
  • LU H, MENG X, YANG CS: Enzymology of methylation of tea catechins and inhibition of catechol-O-methyltransferase by (-)-epigallocatechin gallate. Drug Metab. Dispos. (2003) 31:572-579.
  • WU AH, TSENG C-C, VAN DEN BERG D et al.: Tea intake, COMT genotype, and breast cancer in Asian-American women. Cancer Res. (2003) 63:7526-7529.
  • CSANÁDY GA, OBERSTE-FRIELINGHAUS HR, SEMDER B et al.: Distribution and unspecific protein binding of the xenoestrogens bisphenol A and daidzein. Arch. Toxicol. (2002) 76:299-305.
  • TSUJI PA, WINN RN, WALLE T: Accumulation and metabolism of the anticancer flavonoid 5,7-dimethoxyflavone compared to its unmethylated analog chrysin in the Atlantic killifish. Chem. Biol. Interact. (2006) 164:85-92.
  • CLARKE SE, JEFFREY P: Utility of metabolic stability screening: comparison of in vitro and in vivo clearance. Xenobiotica (2001) 31:591-598.
  • MOHUTSKY MA, CHIEN JY, RING BJ et al.: Predictions of the in vivo clearance of drugs from rate of loss using human liver microsomes for phase I and phase II biotransformations. Pharmaceut. Res. (2006) 23:654-662.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.