283
Views
61
CrossRef citations to date
0
Altmetric
Reviews

Computational prediction of drug binding and rationalisation of selectivity towards cytochromes P450

, &
Pages 513-527 | Published online: 18 May 2008

Bibliography

  • Cytochrome P450 home page. David Nelson. Available from: http://drnelson.utmem.edu/CytochromeP450.html [Last accessed 7 April 2008]
  • de Groot MJ, Kirton SB, Sutcliffe MJ. In silico methods for predicting ligand binding determinants of cytochromes P450. Curr Top Med Chem 2004;4:1803-24
  • Denisov IG, Makris TM, Sligar SG, et al. Structure and chemistry of cytochrome P450. Chem Rev 2005;105:2253-77
  • Lamb DC, Waterman MR, Kelly SL, et al. Cytochromes P450 and drug discovery. Curr Opin Biotech 2007;18:504-12
  • Baranczewski P, Stanczak A, Sundberg K, et al. Introduction to in vitro estimation of metabolic stability and drug interactions of new chemical entities in drug discovery and development. Pharmacol Rep 2006;58:453-72
  • Guengerich FP. Human P450s. In: Ortiz de Montellano PR, editor, Cytochrome P450: structure, mechanism and biochemistry. 3rd edition. New York: Kluwer Academic/Plenum Publishers; 2005;377-530
  • Guengerich FP. Cytochrome P450 and chemical toxicology. Chem Res Toxicol 2008;21:70-83
  • Williams JA, Hyland R, Jones BC, et al. Drug–drug interactions for UDP-glucoronosyltransferase substrates: A pharmacokinetic explanation for typically observed low exposure (AUC1/AUC) ratios. Drug Metab Dispos 2004;32:1201-8
  • Zlokarnik G, Grootenhuis PDJ, Watson JB. High throughput P450 inhibition screens in early drug discovery. Drug Discov Today 2005;10:1443-50
  • Huang S-M, Lesko LJ. Drug–drug, drug–dietary supplement, and drug–citrus fruit and other food interactions: What have we learned? J Clin Pharmacol 2004;44:559-69
  • Guengerich FP, MacDonald JS. Applying mechanisms of chemical toxicity to predict drug safety. Chem Res Toxicol 2007;20:344-69
  • Chohan KK, Paine SW, Mistry J, et al. A rapid computational filter for cytochrome P450 1A2 inhibition potential of compound libraries. J Med Chem 2005;48:5154-61
  • Schuster D, Steindl TM, Langer T. Predicting drug metabolism induction in silico. Curr Top Med Chem 2006;6:1627-40
  • Hansch C, Mekapati SB, Kurup A, et al. QSAR of cytochrome P450. Drug Metab Rev 2004;36:105-56
  • Mestres J. Structure conservation in cytochrome P450. Proteins 2005;58:596-609
  • Protein Data Bank. Research Collaboratory for Structural Bioinformatics (RCSB). Available from: www.rcsb.org/ [Last accessed 7 April 2008]
  • Guengerich FP. A malleable catalyst dominates the metabolism of drugs. Proc Natl Acad Sci USA 2006;103:13565-6
  • Rowland P, Blaney FE, Smyth MG, et al. Crystal structure of human cytochrome P450 2D6. J Biol Chem 2006;281:7614-22
  • Ekroos M, Sjögren T. Structural basis for ligand promiscuity in cytochrome P450 3A4. Proc Natl Acad Sci USA 2006;103:13682-7
  • Williams PA, Cosme J, Ward A, et al. Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature 2003;424:464-8
  • Guengerich FP. Mechanisms of cytochrome P450 substrate oxidation: minireview. J Biochem Mol Toxicol 2007;21:163-8
  • Isin EM, Guengerich FP. Kinetics and thermodynamics of ligand binding by cytochrome P450 3A4. J Biol Chem 2006;281:9127-36
  • Guengerich FP. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol 2001;14:611-50
  • Groenhof AR, Ehlers AW, Lammertsma K. Proton assisted oxygen-oxygen bond splitting in cytochrome P450. J Am Chem Soc 2007;129:6204-9
  • Shaik S, Cohen S, de Visser SP, et al. The ‘Rebound controversy’: an overview and theoretical modeling of the rebound step in C-H hydroxylation by cytochrome P450. Eur J Inorg Chem 2004;2:207-26
  • Audergon C, Iyer KR, Jones JP, et al. Experimental and theoretical study of the effect of active-site constrained substrate motion on the magnitude of the observed intramolecular isotope effect for the P450 101 catalyzed benzylic hydroxylation of isomeric xylenes and 4,4′-dimethylbiphenyl. J Am Chem Soc 1999;121:41-7
  • Feenstra KA, Starikov EB, Urlacher VB, et al. Combining substrate dynamics, binding statistics, and energy barriers to rationalize regioselective hydroxylation of octane and lauric acid by CYP102A1 and mutants. Protein Sci 2007;16:420-31
  • Leach AR. Molecular modelling: principles and applications. 2nd edition. Harlow, UK: Pearson Education EMA; 2001
  • Cramer RD, Patterson DE, Bunce JD. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 1988;110:5959-67
  • Witten IH, Frank E. Data mining: practical machine learning tools and techniques. San Francisco: Morgan Kaufmann; 2005
  • Huey R, Morris GM, Olson AJ, et al. A semiempirical free energy force field with charge-based desolvation. J Comp Chem 2007;28:1145-52
  • Halgren TA, Murphy RB, Friesner RA, et al. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 2004;47:1750-9
  • Eldridge MD, Murray CW, Auton TR, et al. Empirical scoring functions. I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J Comput Aided Mol Design 1997;11:425-45
  • Murray CW, Auton TR, Eldridge MD. Empirical scoring functions. II. The testing of an empirical scoring function for the prediction of ligand-receptor binding affinities and the use of bayesian regression to improve the quality of the model. J Comput Aided Mol Design 1998;12:503-19
  • Wang R, Lai L, Wang S. Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput Aided Mol Design 2002;16:11-26
  • Friesner RA, Murphy RB, Repasky MP, et al. Extra precision Glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 2006;49:6177-96
  • de Graaf C, Pospisil P, Pos W, et al. Binding mode prediction of cytochrome P450 and thymidine kinase protein-ligand complexes by consideration of water and rescoring in automated docking. J Med Chem 2005;48:2308-18
  • Verdonk ML, Chessari G, Cole JC, et al. Modeling water molecules in protein-ligand docking using GOLD. J Med Chem 2005;48:6504-15
  • Roberts BC, Mancera RL. Ligand-protein docking with water molecules. J Chem Inf Model 2008;48:397-408
  • Ferrara P, Gohlke H, Price DJ, et al. Assessing scoring functions for protein-ligand interactions. J Med Chem 2004;47:3032-47
  • Warren GL, Andrews CW, Capelli A-M, et al. Critical assessment of docking programs and scoring functions. J Med Chem 2006;49:5912-31
  • Beveridge DL, DiCapua FM. Free energy via molecular simulation: applications to chemical and biomolecular systems. Ann Rev Biophys Chem 1989;18:431-92
  • Helms V, Wade RC. Computational alchemy to calculate absolute protein-ligand binding free energy. J Am Chem Soc 1998;120:2710-3
  • Åqvist J, Medina C, Samuelsson JE. A new method for predicting binding affinity in computer-aided drug design. Protein Eng 1994;7:385-91
  • Kollman PA, Massova I, Reyes C, et al. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 2000;33:889-97
  • Oostenbrink C, van Gunsteren WF. Free energies of binding of polychlorinated biphenyls to the estrogen receptor from a single simulation. Proteins 2004;54:237-46
  • Terfloth L, Bienfait B, Gasteiger J. Ligand-based models for the isoform specificity of cytochrome P450 3A4, 2D6, and 2C9 substrates. J Chem Inf Model 2007;47:1688-701
  • Sheridan RP, Korzekwa KR, Torres RA, et al. Empirical regioselectivity models for human cytochromes P450 3A4, 2D6, and 2C9. J Med Chem 2007;50:3173-84
  • Korolev D, Balakin KV, Nikolsky Y, et al. Modeling of human cytochrome P450-mediated drug metabolism using unsupervised machine learning approach. J Med Chem 2003;46:3631-43
  • Fox T, Kriegl JM. Machine learning techniques for in silico modeling of drug metabolism. Curr Top Med Chem 2006;6:1579-91
  • de Graaf C, Oostenbrink C, Keizers PHJ, et al. Catalytic site prediction in virtual screening of cytochrome P450 2D6 substrates by consideration of water and rescoring in automated docking. J Med Chem 2006;49:2417-30
  • Zhou D, Afzelius L, Grimm SW, et al. Comparison of methods for the prediction of the metabolic sites for CYP3A4-mediated metabolic reactions. Drug Metab Dispos 2006;34:976-83
  • Ahlström MM, Ridderström M, Zamora I, et al. CYP2C9 structure-metabolism relationships: optimizing the metabolic stability of COX-2 inhibitors. J Med Chem 2007;50:4444-52
  • Flanagan JU, Marechal J-D, Ward R, et al. Phe120 contributes to the regiospecificity of cytochrome P450 2D6: mutation leads to the formation of a novel dextromethorphan metabolite. Biochem J 2004;380:353-60
  • Cruciani G, Carosati E, De Boeck B, et al. Metasite: Understanding metabolism in human cytochromes from the perspective of the chemist. J Med Chem 2005;48:6970-9
  • Afzelius L, Hasselgren Arnby C, Broo A, et al. State-of-the-art tools for computational site of metabolism predictions: Comparative analysis, mechanistical insights, and future applications. Drug Metab Rev 2007;39:61-86
  • de Graaf C, Vermeulen NPE, Feenstra KA. Cytochrome P450 in silico: an integrative modeling approach. J Med Chem 2005;48:2725-55
  • Chohan KK, Paine SW, Waters NJ. Quantitative structure activity relationships in drug metabolism. Curr Top Med Chem 2006;6:1569-78
  • Ekins S, Bravi G, Binkley S, et al. Three- and – four-dimensional quantitative structure activity relationship (3D/4D-QSAR) analyses of CYP2C9 inhibitors. Drug Metab Dispos 2000;28:994-1002
  • Korhonen LE, Rahnasto M, Mähönen NJ, et al. Predictive three-dimensional quantitative structure-activity relationship of cytochrome P450 1A2 inhibitors. J Med Chem 2005;48:3808-15
  • Gleeson MP, Davis AM, Chohan KK, et al. Generation of in silico cytochrome P450 1A2, 2C9, 2C19, 2D6, and 3A4 inhibition QSAR models. J Comput Aided Mol Design 2007;21:559-73
  • Moon T, Chi MH, Kim D-H, et al. Quantitative structure-activity relationships (QSAR) study of flavonoid derivatives for inhibition of cytochrome P450 1A2. Quant Struct Act Relat 2000;19:257-63
  • Locuson CW II, Rock DA, Jones JP. Quantitative binding models for CYP2C9 based on benzbromarone analogues. Biochemistry 2004;43:6948-58
  • Afzelius L, Masimirembwa CM, Karlen A, et al. Discriminant and quantitative PLS analysis of competitive CYP2C9 inhibitors versus non-inhibitors using alignment independent GRIND descriptors. J Comput Aided Mol Design 2002;16:443-58
  • Afzelius L, Zamora I, Ridderström M, et al. Competitive CYP2C9 inhibitors: enzyme inhibition studies, protein homology modeling, and three-dimensional quantitative structure-activity relationship analysis. Mol Pharmacol 2001;59:909-19
  • Afzelius L, Zamora I, Masimirembwa CM, et al. Conformer- and alignment-independent model for predicting structurally diverse competitive CYP2C9 inhibitors. J Med Chem 2004;47:907-14
  • Rao S, Aoyama R, Schrag M, et al. A refined 3-dimensional QSAR of cytochrome P450 2C9: computational predictions of drug interactions. J Med Chem 2000;43:2789-96
  • Crivori P, Poggesi I. Predictive model for identifying potential CYP2D6 inhibitors. Pharmacol Toxicol 2005;96:251-3
  • Vaz RJ, Nayeem A, Santone K, et al. A 3D-QSAR model for CYP2D6 inhibition in the aryloxypropanolamine series. Bioorg Med Chem 2005;15:3816-20
  • Snyder R, Sangar R, Wang J, et al. Three-dimensional quantitative structure activity relationship for Cyp2d6 substrates. Quant Struct Act Relat 2002;21:357-68
  • Haji-Momenian S, Rieger JM, MacDonald TL, et al. Comparative molecular field analysis and QSAR on substrates binding to cytochrome P450 2D6. Bioorg Med Chem 2003;11:5545-54
  • Ekins S, Bravi G, Binkley S, et al. Three- and four-dimensional quantitative structure activity relationship analyses of cytochrome P-450 3A4 inhibitors. J Pharmcol Exp Ther 1999;290:429-38
  • Kriegl JM, Eriksson L, Arnhold T, et al. Multivariate modeling of cytocrome P450 3A4 inhibition. Eur J Pharm Sci 2005;24:451-63
  • Mao B, Gozalbes R, Barbosa F, et al. QSAR modeling of in vitro inhibition of cytochrome P450 3A4. J Chem Inf Model 2006;46:2125-34
  • Wanchana S, Yamashita F, Hashida M. QSAR analysis of the inhibition of recombinant CYP 3A4 activity by structurally diverse compounds using a genetic algorithm-combined partial least squares method. Pharm Res 2003;20:1401-8
  • Zuegge J, Fechner U, Roche O, et al. A fast virtual screening screening filter for cytochrome P450 3A4 inhibition liability of compound libraries. Quant Struct Act Relat 2002;21:249-56
  • Schuster D, Laggner C, Steindl TM, et al. Development and validation of an in silico P450 profiler based on pharmacophore models. Curr Drug Discov Tech 2006;3:1-48
  • Lewis DFV, Jacobs MN, Dickins M. Compound lipophilicity for substrate binding to human P450s in drug metabolism. Drug Discov Today 2004;9:530-7
  • Lewis DFV, Lake BG, Dickins M. Quantitative structure-activity relationships (QSARs) in inhibitors of various cytochromes P450: the importance of compound lipophilicity. J Enzyme Inhib Med Chem 2007;22:1-6
  • Arimoto R. Computational models for predicting interactions with cytochrome P450 enzyme. Curr Top Med Chem 2006;6:1609-18
  • Yap CW, Xue Y, Li ZR, et al. Application of support vector machines to in silico prediction of cytochrome P450 enzyme substrates and inhibitors. Curr Top Med Chem 2006;6:1593-607
  • Zhou D, Liu R, Otmani SA, et al. Rapid classification of CYP3A4 inhibition potential using support vector machine approach. Lett Drug Des Disc 2007;4:192-200
  • Arimoto R, Prasad M-A, Gifford EM. Development of CYP3A4 inhibition models: comparisons of machine-learning techniques and molecular descriptors. J Biomol Screen 2005;10:197-205
  • Burton J, Ijjaali I, Barberan O, et al. Recursive partitioning for the prediction of cytochromes P450 2D6 and 1A2 inhibition: importance of the quality of the dataset. J Med Chem 2006;49:6231-40
  • Susnow RG, Dixon SL. Use of robust classification techniques for the prediction of human cytochrome P450 2D6 inhibition. J Chem Inf Comput Sci 2003;43:1308-15
  • Kriegl JM, Arnhold T, Beck B, et al. A support vector machine approach to classify human cytochrome P450 3A4 inhibitors. J Comput Aided Mol Design 2005;19:189-201
  • Jensen BF, Vind C, Padkjar SB, et al. In silico prediction of cytochrome P450 2D6 and 3A4 inhibition using Gaussian kernel weighted k-nearest neighbor and extended connectivity fingerprints, including structural fragment analysis of inhibitors versus noninhibitors. J Med Chem 2007;50:501-11
  • Merkwirth C, Mauser H, Schulz-Gasch T, et al. Ensemble methods for classification in cheminformatics. J Chem Inf Comput Sci 2004;44:1971-8
  • Hudelson MG, Ketkar NS, Holder LB, et al. High confidence predictions of drug–drug interactions: predicting affinities for cytochrome P450 2C9 with multiple computational methods. J Med Chem 2008;51:648-54
  • Bazeley PS, Prithivi S, Struble CA, et al. Synergistic use of compound properties and docking scores in neural network modeling of CYP2D6 binding: predicting affinity and conformational sampling. J Chem Inf Model 2006;46:2698-708
  • Fukunishi Y, Hojo S, Nakamura H. An efficient in silico screening method based on protein-compound affinity matrix and its application to the design of a focused library for cytochrome P450 (CYP) ligands. J Chem Inf Model 2006;46:2610-22
  • Lill MA, Dobler M, Vedani A. Prediction of small-molecule binding to cytochrome P450 3A4: flexible docking combined with multidimensional QSAR. Chem Med Chem 2006;1:73-81
  • Kirton SB, Murray CW, Verdonk ML, et al. Prediction of binding modes for ligands in the cytochromes P450 and other heme-containing proteins. Proteins 2005;58:836-44
  • McLaughlin LA, Paine MJI, Kemp CA, et al. Why is quinidine an inhibitor of cytochrome p4540 2D6? The role of key active-site residues in quinidine binding. J Biol Chem 2005;280:38617-24
  • Ito Y, Kondo H, Goldfarb PS, et al. Analysis of CYP2D6 substrate interactions by computational methods. J Mol Graph Model 2008;26:947-56
  • Kjellander B, Masimirembwa CM, Zamora I. Exploration of enzyme-ligand interactions in CYP2D6 & 3A4 homology models and crystal structures using a novel computational approach. J Chem Inf Model 2007;47:1234-47
  • Prasad JC, Goldstone JV, Camacho CJ, et al. Ensemble modeling of substrate binding to cytochromes P450: analysis of catalytic differences between CYP1A orthologs. Biochemistry 2007;46:2640-54
  • de Graaf C, Oostenbrink C, Keizers PHJ, et al. Molecular modeling-guided site-directed mutagenesis of cytochrome P450 2D6. Curr Drug Metab 2007;8:59-77
  • Kemp CA, Flanagan JU, van Eldik AJ, et al. Validation of model of cytochrome P450 2D6: an in silico tool for predicting metabolism and inhibition. J Med Chem 2004;47:5340-6
  • Yu J, Paine MJI, Marechal J-D, et al. In silico prediction of drug binding to CYP2D6: Identification of a new metabolite of metaclopramide. Drug Metab Dispos 2006;34:1386-92
  • Marechal J-D, Yu J, Brown S, et al. In silico and in vitro screening for inhibition of cytochrome P450 CYP3A4 by comedications commonly used by patients with cancer. Drug Metab Dispos 2006;34:534-8
  • Keseru GM. A virtual high throughput screen for high affinity cytochrome P450cam substrates. Implications for in silico prediction of drug metabolism. J Comput Aided Mol Design 2001;15:649-57
  • Locuson CW, Gannett PM, Ayscue R, et al. Use of simple docking methods to screen a virtual library for heteroactivators of cytochrome P450 2C9. J Med Chem 2007;50:1158-65
  • Seifert A, Tatzel S, Schmid RD, et al. Multiple molecular dynamics simulations of human P450 monooxygenase CYP2C9: the molecular basis of substrate binding and regioselectivity toward warfarin. Proteins 2006;64:147-55
  • Keizers PHJ, de Graaf C, de Kanter FJJ, et al. Metabolic regio- and stereoselectivity of cytochrome P450 2D6 towards 3,4-methylenedioxy-n-alkylamphetamines: in silico predictions and experimental validation. J Med Chem 2005;48:6117-27
  • Park J-Y, Harris D. Construction and assessment of models of CYP2E1: Predictions of metabolism from docking, molecular dynamics, and density functional theoretical calculations. J Med Chem 2003;46:1645-60
  • Park H, Lee S, Suh J. Structural and dynamical basis of broad substrate specificity, catalytic mechanism, and inhibition of cytochrome P450 3A4. J Am Chem Soc 2005;127:13634-42
  • Stortelder A, Keizers PHJ, Oostenbrink C, et al. Binding of 7-methoxy-4-(aminomethyl)-coumarin to wild-type and W128F mutant cytochrome P450 2D6 studied by time-resolved fluorescence spectroscopy. Biochem J 2006;393:635-43
  • de Graaf C, Oostenbrink C, Keizers PHJ, et al. Free energies of binding of R- and S-propranolol to wild-type and F483A mutant cytochrome P450 2D6 from molecular dynamics simulations. Eur Biophys J 2007;36:589-99
  • Almlöf M, Bransdal BO, Åqvist J. Binding affinity prediction with different force fields: examination of the linear interaction energy method. J Comput Chem 2004;25:1242-54
  • Paulsen MD, Ornstein RL. Binding free energy calculations for P450cam-substrate complexes. Protein Eng 1996;9:567-71
  • Harris DL, Park J-Y, Gruenke L, et al. Theoretical study of the ligand-CYP2B4 complexes: Effect of structure on binding free energies and heme spin state. Proteins 2004;55:895-914
  • Szklarz GD, Paulsen MD. Molecular modeling of cytochrome P450 1A1: enzyme-substrate interactions and substrate binding affinities. J Biomol Struct Dyn 2002;20:155-62
  • Spatzenegger M, Liu H, Wang Q, et al. Analysis of differential substrate selectivities of CYP2B6 and CYP2E1 by site-directed mutagenesis and molecular modeling. J Pharmcol Exp Ther 2003;304:477-87
  • Sansen S, Hsu M-H, Stout CD, et al. Structural insight in to the altered substrate specificity of human cytochrome P450 2A6 mutants. Arch Biochem Biophys 2007;464:197-206
  • Ridderström M, Zamora I, Fjellström O, et al. Analysis of selective regions in the active sites of human cytochrome P450, 2C8, 2C9, 2C18, and 2C19 homology models using grid/cpca. J Med Chem 2001;44:4072-81
  • De Rienzo F, Fanelli F, Menziani MC, et al. Theoretical investigation of substrate specificity for cytochromes P450 IA2, P450 IID6 and P450 IIIA4. J Comput Aided Mol Design 2000;14:93-116
  • Lewis DFV. Essential requirements for substrate binding affinity and selectivity toward human CYP2 family enzymes. Arch Biochem Biophys 2003;409:32-44
  • Lewis DFV. On the recognition of mammalian microsomal cytochrome P450 substrates and their characteristics. Towards the prediction of human P450 substrate specificity and metabolism. Biochem Pharmacol 2000;60:293-306
  • Vedani A, Dobler M, Lill MA. In silico prediction of harmful effects triggered by drugs and chemicals. Toxicol Appl Pharmacol 2005;207:S398-407
  • Friesner RA, Banks JL, Murphy RB, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 2004;47:1739-49
  • Ferrari AM, Wei BQ, Costantino L, et al. Soft docking and multiple receptor conformations in virtual screening. J Med Chem 2004;47:5076-8
  • Bertz RJ, Granneman GR. Use of in vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions. Clin Pharmacokinet 1997;32:210-58
  • Wester MR, Yano JK, Schoch GA, et al. The structure of human cytochrome P450 2C9 complexed with flurbiprofen at 2.0-Å resolution. J Biol Chem 2004;279:35630-7
  • Williams PA, Cosme J, Matak Vincovic D, et al. Crystal structure of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science 2004;305:683-6
  • Yano JK, Wester MR, Schoch GA, et al. The structure of human microsomal cytochrome P450 3A4 determined with x-ray crystallography to 2.05-Å resolution. J Biol Chem 2004;279:38091-4
  • Sansen S, Yano JK, Reynald RL, et al. Adaptations for the oxidation of polycyclic aromatic hydrocarbons exhibited by the structure of human P450 1A2. J Biol Chem 2007;282:14348-55

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.