60
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Invertebrate and fungal model organisms: emerging platforms for drug discovery

&
Pages 1383-1395 | Published online: 01 Dec 2008

Bibliography

  • Lewi PJ, Smith A. Successful pharmaceutical discovery: Paul Janssen's concept of drug research. R D Manag 2007;37(4):355-62
  • Fishman MC, Porter JA. Pharmaceuticals: a new grammar for drug discovery. Nature 2005;437(7058):491-3
  • Lansbury PT Jr. Back to the future: the ‘old-fashioned’ way to new medications for neurodegeneration. Nat Med 2004;(10 Suppl):S51-7
  • DiMasi JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of drug development costs. J Health Econ 2003;22(2):151-85
  • Butcher EC. Can cell systems biology rescue drug discovery? Nat Rev 2005;4(6):461-7
  • Hariharan IK, Haber DA. Yeast, flies, worms, and fish in the study of human disease. N Engl J Med 2003;348(24):2457-63
  • Armour CD, Lum PY. From drug to protein: using yeast genetics for high-throughput target discovery. Curr Opin Chem Biol 2005;9(1):20-24
  • Luesch H. Towards high-throughput characterization of small molecule mechanisms of action. Mol Biosyst 2006;2(12):609-20
  • Bharucha N, Kumar A. Yeast genomics and drug target identification. Comb Chem High Throughput Scree 2007;10(8):618-34
  • Cooper AA, Gitler AD, Cashikar A, et al. Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson's models. Science 2006;313(5785):324-8
  • Outeiro TF, Kontopoulos E, Altmann SM, et al. Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson's disease. Science 2007;317(5837):516-9
  • Huang J, Zhu H, Haggarty SJ, et al. Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips. Proc Natl Acad Sci USA 2004;101(47):16594-9
  • Floto RA, Sarkar S, Perlstein EO, et al. Small molecule enhancers of rapamycin-induced TOR inhibition promote autophagy, reduce toxicity in Huntington's disease models and enhance killing of mycobacteria by macrophages. Autophagy 2007;3(6):620-2
  • Sarkar S, Perlstein EO, Imarisio S, et al. Small molecules enhance autophagy and reduce toxicity in Huntington's disease models. Nat Chem Biol 2007;3(6):331-8
  • Lum PY, Armour CD, Stepaniants SB, et al. Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 2004;116(1):121-37
  • Giaever G, Flaherty P, Kumm J, et al. Chemogenomic profiling: identifying the functional interactions of small molecules in yeast. Proc Natl Acad Sci USA 2004;101(3):793-8
  • Baetz K, McHardy L, Gable K, et al. Yeast genome-wide drug-induced haploinsufficiency screen to determine drug mode of action. Proc Natl Acad Sci USA 2004;101(13):4525-30
  • Han M, Sternberg PW. let-60, a gene that specifies cell fates during C. elegans vulval induction, encodes a ras protein. Cell 1990;63(5):921-31
  • Hengartner MO, Horvitz HR. C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 1994;76(4):665-76
  • Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 1997;277(5328):942-6
  • Levitan D, Greenwald I. Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer's disease gene. Nature 1995;377(6547):351-4
  • Fraser AG, Kamath RS, Zipperlen P, et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 2000;408(6810):325-30
  • Kamath RS, Fraser AG, Dong Y, et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 2003;421(6920):231-7
  • Timmons L, Fire A. Specific interference by ingested dsRNA. Nature 1998;395(6705):854
  • Kennedy S, Wang D, Ruvkun G. A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans. Nature 2004;427(6975):645-9
  • Simmer F, Tijsterman M, Parrish S, et al. Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi. Curr Biol 2002;12(15):1317-9
  • Wang D, Kennedy S, Conte D Jr, et al. Somatic misexpression of germline P granules and enhanced RNA interference in retinoblastoma pathway mutants. Nature 2005;436(7050):593-7
  • Rual JF, Ceron J, Koreth J, et al. Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res 2004;14(10B):2162-8
  • Available from: www.geneservice.co.uk
  • Available from: www.openbiosystems.com
  • Ashrafi K, Chang FY, Watts JL, et al. Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 2003;421(6920):268-72
  • Hamilton B, Dong Y, Shindo M, et al. A systematic RNAi screen for longevity genes in C. elegans. Genes Dev 2005;19(13):1544-55
  • van Haaften G, Romeijn R, Pothof J, et al. Identification of conserved pathways of DNA-damage response and radiation protection by genome-wide RNAi. Curr Biol 2006;16(13):1344-50
  • Vashlishan AB, Madison JM, Dybbs M, et al. An RNAi screen identifies genes that regulate GABA synapses. Neuron 2008;58(3):346-61
  • Rand JB, Johnson CD. Genetic Pharmacology: Interactions between Drugs and Gene Products in Caenorhabditis elegans. In: Epstein HF, Shakes DC, editors, Caenorhabditis elegans: Mod Biol Anal Organ San Diego 1995:187-204 Academic Press
  • Mitchell PH, Bull K, Glautier S, et al. The concentration-dependent effects of ethanol on Caenorhabditis elegans behaviour. Pharmacogenomics J 2007;7(6):411-7
  • Lindblom TH, Dodd AK. Xenobiotic detoxification in the nematode Caenorhabditis elegans. J Exp Zoolog A Comp Exp Biol 2006;305(9):720-30
  • Kwok TC, Ricker N, Fraser R, et al. A small-molecule screen in C. elegans yields a new calcium channel antagonist. Nature 2006;441(7089):91-5
  • Petrascheck M, Ye X, Buck LB. An antidepressant that extends lifespan in adult Caenorhabditis elegans. Nature 2007;450(7169):553-6
  • Broeks A, Janssen HW, Calafat J, Plasterk RH. A P-glycoprotein protects Caenorhabditis elegans against natural toxins. EMBO J 1995;14(9):1858-66
  • Cronin CJ, Mendel JE, Mukhtar S, et al. An automated system for measuring parameters of nematode sinusoidal movement. BMC Genet 2005;6(1):5
  • Lindblom TH, Pierce GJ, Sluder AE. A C. elegans orphan nuclear receptor contributes to xenobiotic resistance. Curr Biol 2001;11(11):864-8
  • Burns AR, Kwok TC, Howard A, et al. High-throughput screening of small molecules for bioactivity and target identification in Caenorhabditis elegans. Nature protocols 2006;1(4):1906-14
  • Pulak R. Techniques for analysis, sorting, and dispensing of C. elegans on the COPAS flow-sorting system. Methods Mol Biol (Clifton N J) 2006;351:275-86
  • Huang KM, Cosman P, Schafer WR. Automated detection and analysis of foraging behavior in Caenorhabditis elegans. J Neurosci Methods 2008;171(1):153-64
  • Karbowski J, Schindelman G, Cronin CJ, et al. Systems level circuit model of C. elegans undulatory locomotion: mathematical modeling and molecular genetics. J Comput Neurosci 2008;24(3):253-76
  • Hihi AK, Beauchamp MC, Branicky R, et al. Evolutionary conservation of drug action on lipoprotein metabolism-related targets. J Lipid Res 2008;49(1):74-83
  • Fitzgerald K, Tertyshnikova S, Moore L, et al. Chemical genetics reveals an RGS/G-protein role in the action of a compound. PLoS Genet 2006;2(4):e57
  • Guest M, Bull K, Walker RJ, et al. The calcium-activated potassium channel, SLO-1, is required for the action of the novel cyclo-octadepsipeptide anthelmintic, emodepside, in Caenorhabditis elegans. Int J Parasitol 2007;37(14):1577-88
  • Kaminsky R, Ducray P, Jung M, et al. A new class of anthelmintics effective against drug-resistant nematodes. Nature 2008;452(7184):176-80
  • Willson J, Amliwala K, Davis A, et al. Latrotoxin receptor signaling engages the UNC-13-dependent vesicle-priming pathway in C. elegans. Curr Biol 2004;14(15):1374-9
  • Adams MD, Celniker SE, Holt RA, et al. The genome sequence of Drosophila melanogaster. Science 2000;287(5461):2185-95
  • Rubin GM, Yandell MD, Wortman JR, et al. Comparative genomics of the eukaryotes. Science 2000;287(5461):2204-15
  • Nichols CD. Drosophila melanogaster neurobiology, neuropharmacology, and how the fly can inform central nervous system drug discovery. Pharmacol Ther 2006;112(3):677-700
  • Bilen J, Bonini NM. Drosophila as a model for human neurodegenerative disease. Annu Rev Genet 2005;39:153-71
  • Bonini NM, Fortini ME. Human neurodegenerative disease modeling using Drosophila. Annu Rev Neurosci 2003;26:627-56
  • Iijima K, Chiang HC, Hearn SA, et al. Abeta42 mutants with different aggregation profiles induce distinct pathologies in Drosophila. PLoS One 2008;3(2):e1703
  • Cao W, Song HJ, Gangi T, et al. Identification of novel genes that modify phenotypes induced by Alzheimer's beta-amyloid overexpression in Drosophila. Genetics 2008;178(3):1457-71
  • Ubhi KK, Shaibah H, Newman TA, et al. A comparison of the neuronal dysfunction caused by Drosophila tau and human tau in a Drosophila model of tauopathies. Invert Neurosci 2007;7(3):165-71
  • Crowther DC, Page R, Rival T, et al. Using a Drosophila model of Alzheimer's disease. SEB Exp Bio Ser 2008;60:57-77
  • Fulga TA, Elson-Schwab I, Khurana V, et al. Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat Cell Biol 2007;9(2):139-48
  • Bjorklund M, Taipale M, Varjosalo M, et al. Identification of pathways regulating cell size and cell-cycle progression by RNAi. Nature 2006;439(7079):1009-13
  • Bai J, Binari R, Ni JQ, et al. Perrimon N. RNA interference screening in Drosophila primary cells for genes involved in muscle assembly and maintenance. Development (Cambridge, England) 2008;135(8):1439-49
  • Availble from: http://www.shigen.nig.ac.jp/fly/nigfly/index.jsp
  • Available from: http://flybase.org/
  • Manev H, Dimitrijevic N, Dzitoyeva S. Techniques: fruit flies as models for neuropharmacological research. Trends Pharmacol Sci 2003;24(1):41-3
  • Agosto J, Choi JC, Parisky KM, et al. Modulation of GABAA receptor desensitization uncouples sleep onset and maintenance in Drosophila. Nat Neurosci 2008;11(3):354-9
  • Song J, Tanouye MA. From bench to drug: human seizure modeling using Drosophila. Prog Neurobiol 2008;84(2):182-91
  • Lee J, Wu CF. Electroconvulsive seizure behavior in Drosophila: analysis of the physiological repertoire underlying a stereotyped action pattern in bang-sensitive mutants. J Neurosci 2002;22(24):11065-79
  • Kuebler D, Tanouye M. Anticonvulsant valproate reduces seizure-susceptibility in mutant Drosophila. Brain Res 2002;958(1):36-42
  • Reynolds ER, Stauffer EA, Feeney L, et al. Treatment with the antiepileptic drugs phenytoin and gabapentin ameliorates seizure and paralysis of Drosophila bang-sensitive mutants. J Neurobiol 2004;58(4):503-13
  • Stilwell GE, Saraswati S, Littleton JT, Chouinard SW. Development of a Drosophila seizure model for in vivo high-throughput drug screening. Euro J Neurosci 2006;24(8):2211-22
  • Restifo LL. Mental retardation genes in drosophila: New approaches to understanding and treating developmental brain disorders. Ment Retard Dev Disabil Res Rev 2005;11(4):286-94
  • McBride SM, Choi CH, Wang Y, et al. Pharmacological rescue of synaptic plasticity, courtship behavior, and mushroom body defects in a Drosophila model of fragile X syndrome. Neuron 2005;45(5):753-64
  • Bassell GJ, Gross C. Reducing glutamate signaling pays off in fragile X. Nat Med 2008;14(3):249-50
  • Dolen G, Osterweil E, Rao BS, et al. Correction of fragile X syndrome in mice. Neuron 2007;56(6):955-62
  • Muddashetty RS, Kelic S, Gross C, et al. Dysregulated metabotropic glutamate receptor-dependent translation of AMPA receptor and postsynaptic density-95 mRNAs at synapses in a mouse model of fragile X syndrome. J Neurosci 2007;27(20):5338-48
  • Perrimon N, Friedman A, Mathey-Prevot B, Eggert US. Drug-target identification in Drosophila cells: combining high-throughout RNAi and small-molecule screens. Drug Discov Today 2007;12(1-2):28-33
  • Ramadan N, Flockhart I, Booker M, et al. Design and implementation of high-throughput RNAi screens in cultured Drosophila cells. Nature protocols 2007;2(9):2245-64
  • Friedman A, Perrimon N. Genetic screening for signal transduction in the era of network biology. Cell 2007;128(2):225-31
  • Eggert US, Kiger AA, Richter C, et al. Parallel chemical genetic and genome-wide RNAi screens identify cytokinesis inhibitors and targets. PLoS Biol 2004;2(12):e379
  • Millar NS, Denholm I. Nicotinic acetylcholine receptors: targets for commercially important insecticides. Invert Neurosci 2007;7(1):53-66
  • Orr N, Watson GB, Gustafson GD, et al. Novel assays utilizing nicotinic acetylcholine receptor subunits 2006; In PCT Int Appl CODEN: PIXXD2 WO2006091672 A2 20060831, p. 102
  • Buszczak M, Paterno S, Lighthouse D, et al. The carnegie protein trap library: a versatile tool for Drosophila developmental studies. Genetics 2007;175(3):1505-31
  • Quinones-Coello AT, Petrella LN, Ayers K, et al. Exploring strategies for protein trapping in Drosophila. Genetics 2007;175(3):1089-104
  • Kellogg RA, Chebira A, Goyal PA, et al. Towards an image analysis toolbox for high-throughput Drosophila embryo RNAi screens. Arlington, VA.; Proc IEEE Intl Symp Biomed Imaging 2007. p. 288-91
  • Zappe S, Fish M, Scott MP, Solgaard O. Automated MEMS-based Drosophila embryo injection system for high-throughput RNAi screens. Lab Chip 2006;6(8):1012-19
  • St Johnston D. The art and design of genetic screens: Drosophila melanogaster. Nat Rev Genet 2002;3(3):176-88
  • Antoshechkin I, Sternberg PW. The versatile worm: genetic and genomic resources for Caenorhabditis elegans research. Nat Rev Genet 2007;8(7):518-32
  • Heinicke S, Livstone MS, Lu C, et al. The Princeton Protein Orthology Database (P-POD): a comparative genomics analysis tool for biologists. PLoS ONE 2007;2(1):e766
  • O'Brien KP, Westerlund I, Sonnhammer EL. OrthoDisease: a database of human disease orthologs. Hum Mutat 2004;24(2):112-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.