53
Views
4
CrossRef citations to date
0
Altmetric
Reviews

An update on hybrid drugs in cardiovascular drug research

Pages 1397-1408 | Published online: 01 Dec 2008

Bibliography

  • Morphy R, Kay C, Rankovic Z. From magic bullets to designed multiple ligands. Drug Discov Today 2004;9:641-51
  • Ruzicka M, Leenen FHH. Monotherapy versus combination therapy as first line treatment of uncomplicated arterial hypertension. Drugs 2001;61:943-54
  • Morphy R, Rankovic Z. Designed multiple ligands. An emerging drug discovery paradigm. J Med Chem 2005;48:6523-43
  • Frantz S. Drug discovery: playing dirty. Nature 2005;437:942-3
  • Morphy R, Rankovic Z. The physicochemical challenges of designing multiple ligands. J Med Chem 2006;49:4961-70
  • Campbell DJ, Alexiou T, Xiao HD, et al. Effect of reduced angiotensin-converting enzyme gene expression and angiotensin-converting enzyme inhibition on angiotensin and bradykinin peptide levels in mice. Hypertension 2004;43:854-9
  • Kirimura K, Takai S, Jin D, et al. Role of chymase-dependent angiotensin II formation in regulating blood pressure in spontaneously hypertensive rats. Hypertens Res 2005;28:457-64
  • Santos RA, Campagnole-Santos MJ, Andrade SP. Angiotensin-(1-7): an update. Regul Pept 2000;91:45-62
  • Paula RD, Lima CV, Khosla MC, et al. Angiotensin-(1-7) potentiates the hypotensive effect of bradykinin in conscious rats. Hypertension 1995;26:1154-9
  • Oliveira MA, Fortes ZB, Santos RA, et al. Synergistic effect of angiotensin-(1-7) on bradykinin arteriolar dilation in vivo Peptides 1999;20:1195-201
  • Ueda S, Masumori-Maemoto S, Wada A, et al. Angiotensin(1-7) potentiates bradykinin-induced vasodilatation in man. J Hypertens 2001;19:2001-9
  • Carey RM, Siragy HM. Newly recognized components of the renin-angiotensin system: potential roles in cardiovascular and renal regulation. Endocr Rev 2003;24:261-71
  • Santos RA, Ferreira AJ. Angiotensin-(1-7) and the renin-angiotensin system. Curr Opin Nephrol Hypertens 2007;16:122-8
  • Johnston CI, Hodsman PG, Kohzuki M, et al. Interaction between atrial natriuretic peptide and the renin angiotensin aldosterone system. Endogenous antagonists. Am J Med 1989;87:S24-8
  • Edwards BS, Zimmerman RS, Schwab TR, et al. Atrial stretch, not pressure, is the principal determinant controlling the acute release of atrial natriuretic factor. Circ Res 1988;62:191-5
  • Lang RE, Tholken H, Ganten D, et al. Atrial natriuretic factor-a circulating hormone stimulated by volume loading. Nature 1985;314:264-6
  • Levin ER, Gardner DG, Samson WK. Natriuretic peptides. N Engl J Med 1998;339:321-8
  • Ruskoaho H. Atrial natriuretic peptide: synthesis, release, and metabolism. Pharmacol Rev 1992;44:479-602
  • Janssen WM, De Zeeuw D, Van Der Hem GK, et al. Antihypertensive effect of a 5-day infusion of atrial natriuretic factor in humans. Hypertension 1989;13:640-6
  • Burnett JC, Jr, Kao PC, Hu DC, et al. Atrial natriuretic peptide elevation in congestive heart failure in the human. Science 1986;231:1145-7
  • Erdos EG, Skidgel RA. Neutral endopeptidase 24.11 (enkephalinase) and related regulators of peptide hormones. Faseb J 1989;3:145-51
  • Stephenson SL, Kenny AJ. The hydrolysis of alpha-human atrial natriuretic peptide by pig kidney microvillar membranes is initiated by endopeptidase-24.11. Biochem J 1987;243:183-7
  • Lang CC, Motwani JG, Coutie WJ, et al. Clearance of brain natriuretic peptide in patients with chronic heart failure: indirect evidence for a neutral endopeptidase mechanism but against an atrial natriuretic peptide clearance receptor mechanism. Clin Sci 1992;82:619-23
  • Kenny AJ, Bourne A, Ingram J. Hydrolysis of human and pig brain natriuretic peptides, urodilatin, C-type natriuretic peptide and some C-receptor ligands by endopeptidase-24.11. Biochem J 1993;291:83-8
  • Skidgel RA, Engelbrecht S, Johnson AR, et al. Hydrolysis of substance p and neurotensin by converting enzyme and neutral endopeptidase. Peptides 1984;5:769-76
  • Ferro CJ, Spratt JC, Haynes WG, et al. Inhibition of neutral endopeptidase causes vasoconstriction of human resistance vessels in vivo. Circulation 1998;97:2323-30
  • Bevan EG, Connell JM, Doyle J, et al. Candoxatril, a neutral endopeptidase inhibitor: efficacy and tolerability in essential hypertension. J Hypertens 1992;10:607-13
  • Ando S, Rahman MA, Butler GC, et al. Comparison of candoxatril and atrial natriuretic factor in healthy men. Effects on hemodynamics, sympathetic activity, heart rate variability, and endothelin. Hypertension 1995;26:1160-6
  • Worthley MI, Corti R, Worthley SG. Vasopeptidase inhibitors: will they have a role in clinical practice? Br J Clin Pharmacol 2004;57:27-36
  • Inoue A, Yanagisawa M, Kimura S, et al. The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci USA 1989;86:2863-7
  • Masaki T, Vane JR, Vanhoutte PM. International Union of Pharmacology nomenclature of endothelin receptors. Pharmacol Rev 1994;46:137-42
  • Dasgupta F, Mukherjee AK, Gangadhar N. Endothelin receptor antagonists-an overview. Curr Med Chem 2002;9:549-75
  • Gros C, Noel N, Souque A, et al. Mixed inhibitors of angiotensin-converting enzyme (EC 3.4.15.1) and enkephalinase (EC 3.4.24.11): rational design, properties, and potential cardiovascular applications of glycopril and alatriopril. Proc Natl Acad Sci USA 1991;88:4210-4
  • Delaney NG, Barrish JC, Neubeck R, et al. Mercaptoacyl dipeptides as dual inhibitors of angiotensin-converting enzyme and neutral endopeptidase. Preliminary structure-activity studies. Bioorg Med Chem Lett 1994;4:1783-8
  • De Lombaert S, Ghai RD, Jeng AY, et al. Pharmacological profile of a non-peptidic dual inhibitor of neutral endopeptidase 24.11 and endothelin-converting enzyme. Biochem Biophys Res Commun 1994;204:407-12
  • De Lombaert S, Blanchard L, Tan J, et al. Non-peptidic inhibitors of neutral endopeptidase 24.11 1. Discovery and optimization of potency. Bioorg Med Chem Lett 1995;5:145-50
  • De Lombaert S, Ghai RD, Jeng AY, et al. Pharmacological profile of a non-peptidic dual inhibitor of neutral endopeptidase 24.11 and endothelin-converting enzyme. Biochem Biophys Res Commun 1994;204:407-12
  • Trapani AJ, Beil ME, Bruseo CW, et al. Effects of the ECE/NEP inhibitor CGS 34225 on the big ET-1-induced pressor response and plasma atrial natriuretic peptide concentration in conscious rats. Clin Sci 2002;103:S102-6
  • Burrell LM, Droogh J, Man In't Veld O, et al. Antihypertensive and antihypertrophic effects of omapatrilat in SHR. Am J Hypertens 2000;13:1110-6
  • Xu J, Carretero OA, Liu YH, et al. Dual inhibition of ACE and NEP provides greater cardioprotection in mice with heart failure. J Card Failure 2004;10:83-9
  • Ye VZC, Hodge G, Yong JLC, et al. Vasopeptidase inhibition reverses myocardial vasoactive intestinal peptide depletion and decreases fibrosis in salt sensitive hypertension. Eur J Pharmacol 2004;485:235-42
  • Mifsud SA, Burrell LM, Kubota E, et al. Cardiorenal protective effects of vasopeptidase inhibition with omapatrilat in hypertensive transgenic (mREN-2)27 rats. Clin Exp Hypertens 2004;26:69-80
  • Van Veldhuisen DJ, Van Gilst WH. Vasopeptidase inhibition in heart failure. Lancet 2000;356:1526
  • Kostis JB, Packer M, Black HR, et al. Omapatrilat and enalapril in patients with hypertension: the Omapatrilat Cardiovascular Treatment vs. Enalapril (OCTAVE) trial. Am J Hypertens 2004;17:103-11
  • Rouleau JL, Pfeffer MA, Stewart DJ, et al. Comparison of vasopeptidase inhibitor, omapatrilat, and lisinopril on exercise tolerance and morbidity in patients with heart failure: IMPRESS randomised trial. Lancet 2000;356:615-20
  • Solomon SD, Skali H, Bourgoun M, et al. Effect of angiotensin-converting enzyme or vasopeptidase inhibition on ventricular size and function in patients with heart failure: the Omapatrilat Versus Enalapril Randomized Trial of Utility in Reducing Events (OVERTURE) echocardiographic study. Am Heart J 2005;150:257-62
  • Packer M, Califf RM, Konstam MA, et al. Comparison of omapatrilat and enalapril in patients with chronic heart failure: the Omapatrilat Versus Enalapril Randomized Trial of Utility in Reducing Events (OVERTURE). Circulation 2002;106:920-6
  • Sulpizio AC, Pullen MA, Edwards RM, et al. Mechanism of vasopeptidase inhibitor-induced plasma extravasation: comparison of omapatrilat and the novel neutral endopeptidase 24.11/angiotensin-converting enzyme inhibitor GW796406. J Pharmacol Exp Ther 2005;315:1306-13
  • Trapani AJ, Beil ME, Bruseo CW, et al. CGS 35601 and its Orally Active Prodrug CGS 37808 as Triple Inhibitors of Endothelin-converting Enzyme-1, Neutral Endopeptidase 24.11, and Angiotensin-converting Enzyme. J Cardiovasc Pharmacol 2004;44:S211-5
  • Battistini B, Daull P, Jeng AY. CGS 35601, a triple inhibitor of angiotensin converting enzyme, neutral endopeptidase and endothelin converting enzyme. Cardiovasc Drug Rev 2005;23:317-30
  • Murugesan N, Tellew JE, Gu Z, et al. Discovery of N-isoxazolyl biphenylsulfonamides as potent dual angiotensin II and endothelin A receptor antagonists. J Med Chem 2002;45:3829-35
  • Murugesan N, Gu Z, Fadnis L, et al. Dual angiotensin II and endothelin A receptor antagonists: synthesis of 2'-substituted N-3-isoxazolyl biphenylsulfonamides with improved potency and pharmacokinetics. J Med Chem 2005;48:171-9
  • Kowala MC, Murugesan N, Tellew J, et al. Novel dual action AT1 and ETA receptor antagonists reduce blood pressure in experimental hypertension. J Pharmacol Exp Ther 2004;309:275-84
  • Gavras I, Gavras H. Effects of eprosartan versus enalapril in hypertensive patients on the renin-angiotensin-aldosterone system and safety parameters: results from a 26-week, double-blind, multicentre study. Eprosartan Multinational Study Group. Curr Med Res Opin 1999;15:15-24
  • Grossman E, Peleg E, Carroll J, et al. Hemodynamic and humoral effects of the angiotensin II antagonist losartan in essential hypertension. Am J Hypertens 1994;7:1041-4
  • Bauer IH, Reams GP, Wu Z, et al. Effects of losartan on the renin-angiotensin-aldosterone axis in essential hypertension. J Hum Hypertens 1995;9:237-43
  • Ichikawa S, Takayama Y. Long-term effects of olmesartan, an Ang II receptor antagonist, on blood pressure and the renin-angiotensin-aldosterone system in hypertensive patients. Hypertens Res 2001;24:641-6
  • Ishiyama Y, Gallagher PE, Averill DB, et al. Upregulation of angiotensin-converting enzyme 2 after myocardial infarction by blockade of angiotensin II receptors. Hypertension 2004;43:970-6
  • Agata J, Ura N, Yoshida H, et al. Olmesartan is an angiotensin II receptor blocker with an inhibitory effect on angiotensin-converting enzyme. Hypertens Res 2006;29:865-74
  • Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980;288:373-6
  • Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987;327:524-6
  • Ignarro LJ, Buga GM, Wood KS, et al. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 1987;8:9265-9
  • Myers PR, Minor RLJR, Guerra RJR, et al. Vasorelaxant properties of the endothelium-derived relaxing factor more closely resemble S-nitrosocysteine than nitric oxide. Nature 1990;345:161-3
  • Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988;333:664-6
  • Pohl U, Busse R, Kuon E, et al. Pulsatile perfusion stimulates the release of endothelial autacoids. J Appl Cardiol 1986;1:215-35
  • Rubanyi GM, Romero JC, Vanhoutte PM. Flow-induced release of endothelium-derived relaxing factor. Am J Physiol 1986;250:H1145-9
  • Rapoport RM, Draznin MB, Murad F. Endothelium-dependent relaxation in rat aorta may be mediated through cyclic GMP-dependent protein phosphorylation. Nature 1983;306:174-6
  • Alonso D, Radomski MW. Nitric oxide, platelet function, myocardial infarction and reperfusion therapies. Heart Fail Rev 2003;8:47-54
  • Bolotina VM, Najibi S, Palacino JJ, et al. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 1994;368:850-3
  • Vanhoutte PM. Endothelium and control of vascular function. State of the Art lecture. Hypertension 1989;13:658-67
  • Mombouli JV, Vanhoutte PM. Endothelial dysfunction: from physiology to therapy. J Mol Cell Cardiol 1999;31:61-74
  • Vanhoutte PM, Boulanger CM. Function of the endothelium in arterial hypertension. Rev Prat 1995;45:2513-8
  • Radomski MW, Palmer RM, Moncada S. An L-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc Natl Acad Sci USA 1990;87:5193-7
  • Azuma H, Ishikawa M, Sekizaki S. Endothelium-dependent inhibition of platelet aggregation. Br J Pharmacol 1986;88:411-5
  • Furlong B, Henderson AH, Lewis MJ, et al. Endothelium-derived relaxing factor inhibits in vitro platelet aggregation. Br J Pharmacol 1987;90:687-92
  • Radomski MW, Palmer RM, Moncada S. Comparative pharmacology of endothelium-derived relaxing factor, nitric oxide and prostacyclin in platelets. Br J Pharmacol 1987;92:181-7
  • Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993;362:801-9
  • Hannan RL, Kourembanas S, Flanders KC, et al. Endothelial cells synthesize basic fibroblast growth factor and transforming growth factor beta. Growth Factors 1988;1:7-17
  • Schulz R, Kelm M, Heusch G. Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc Res 2004;61:402-13
  • Qin Q, Yang XM, Cui L, et al. Exogenous NO triggers preconditioning via a cGMP- and mitoKATP-dependent mechanism. Am J Physiol 2004;287:H712-8
  • Martelli A, Breschi MC, Calderone V. Pharmacodynamic hybrids coupling established cardiovascular mechanisms of action with additional nitric oxide re leasing properties. Curr Pharm Des 2008; In press
  • Ongini E, Impagnatiello F, Bonazzi A, et al. Nitric oxide (NO)-releasing statin derivatives, a class of drugs showing enhanced antiproliferative and antiinflammatory properties. Proc Natl Acad Sci USA 2004;101:8497-502
  • Rossiello MR, Momi S, Caracchini R, et al. A novel nitric oxide-releasing statin derivative exerts an antiplatelet/antithrombotic activity and inhibits tissue factor expression. J Thromb Haemost 2005;3:2554-62
  • Emanueli C, Monopoli A, Kraenkel N, et al. Nitropravastatin stimulates reparative neovascularisation and improves recovery from limb ischaemia in type-1 diabetic mice. Br J Pharmacol 2007;150:873-82
  • Momi S, Impagnatiello F, Guzzetta M, et al. NCX 6560, a nitric oxide-releasing derivative of atorvastatin, inhibits cholesterol biosynthesis and shows anti-inflammatory and anti-thrombotic properties. Eur J Pharmacol 2007;570:115-24
  • Jia L, Young X, Guo W. Physicochemistry, pharmacokinetics, and pharmacodynamics of S-nitrosocaptopril crystals, a new nitric oxide donor. J Pharm Sci 1999;88:981-6
  • Loscalzo J, Smick D, Andon N, et al. S-nitrosocaptopril. I. Molecular characterization and effects on the vasculature and on platelets. J Pharmacol Exp Ther 1989;249:726-9
  • Shaffer JE, Lee F, Thomson S, et al. The hemodynamic effects of S-nitrosocaptopril in anesthetized dogs. J Pharmacol Exp Ther 1991;256:704-9
  • Tsui DYY, Gambino A, Wanstall JC. S-nitrosocaptopril: in vitro characterization of pulmonary vascular effects in rats. Br J Pharmacol 2003;138:855-64
  • Jia L, Pei R, Lin M, et al. Acute and subacute toxicity and efficacy of S-nitrosylated captopril, an ACE inhibitor possessing nitric oxide activities. Food Chem Tox 2001;39:1135-43
  • Iwanaga Y, Gu Y, Dieterle T, et al. A nitric oxide-releasing derivative of enalapril, NCX 899, prevents progressive cardiac dysfunction and remodeling in hamsters with heart failure. FASEB J 2004;18:587-8
  • Breschi MC, Calderone V, Digiacomo M, et al. NO-sartans: a new class of pharmacodynamic hybrids as cardiovascular drugs. J Med Chem 2004;47:5597-600
  • Breschi MC, Calderone V, Digiacomo M, et al. New NO-releasing pharmacodynamic hybrids of losartan and its active metabolite: design, synthesis, and biopharmacological properties. J Med Chem 2006;49:2628-39
  • Li YQ, Ji H, Zhang YH, et al. WB1106, a novel nitric oxide-releasing derivative of telmisartan, inhibits hypertension and improves glucose metabolism in rats. Eur J Pharmacol 2007;577:100-8
  • Balsamo A, Calderone V, Rapposelli S. New emerging prospects in the pharmacotherapy of hypertension. Cardiovasc Haematol Agents Med Chem 2008;6:1-19
  • Calderone V, Digiacomo M, Martelli A, et al. Evaluation of the NO-releasing properties of NO-donor linkers. J Pharm Pharmacol 2008;60:189-5
  • Li H, Liu X, Cui H, et al. Characterization of the mechanism of cytochrome P450 reductase-cytochrome P450-mediated nitric oxide and nitrosothiol generation from organic nitrates. J Biol Chem 2006;281:12546-54
  • Minamiyama Y, Takemura S, Akiyama T, et al. Isoforms of cytochrome P450 on organic nitrate-derived nitric oxide release in human heart vessels. FEBS Lett 1999;452:165-9
  • Minamiyama Y, Takemura S, Imaoka S, et al. Cytochrome P450 is responsible for nitric oxide generation from NO-aspirin and other organic nitrates. Drug Metab Pharmacokinet 2007;22:15-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.