679
Views
90
CrossRef citations to date
0
Altmetric
Reviews

Small-molecule inhibitors binding to protein kinase. Part II: the novel pharmacophore approach of type II and type III inhibition

, PhD, , PhD, , PhD, , PhD & , PhD
Pages 1427-1449 | Published online: 01 Dec 2008

Bibliography

  • Levinson NM, Kuchment O, Shen K, et al. A Src-like inactive conformation in the Abl tyrosine kinase domain. PLoS Biol 2006;4(5):753-67
  • Hubbard SR, Wei L, Ellis L, Hendrickson WA. Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 1994;372(6508):746-54
  • Capdeville R, Buchdunger E, Zimmermann J, Matter A. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat Rev Drug Discov 2002;1:493-502
  • Zimmermann J, Buchdunger E, Mett H, et al. Potent and selective inhibitors of the Abl-kinase: phenylaminopyrimidine (PAP) derivatives. Bioorg Med Chem Lett 1997;7(2):187-92
  • Tuveson DA, Willis NA, Jacks T, et al. STI571 inactivation of the gastrointestinal stromal tumor c-KIT oncoprotein: biological and clinical implications. Oncogene 2001;20(36):5054-8
  • Schindler T, Bornmann W, Pellicena P, et al. Structural mechanism for STI-571 inhibition of Abelson tyrosine kinase. Science 2000;289:1938-42
  • Ongusaha PP, Kim JI, Fang L, et al. p53 induction and activation of DDR1 kinase counteract p53-meidated apoptosis and influence p53 regulation through a positive feedback loop. EMBO J 2003;22(6):1289-301
  • Vogel WF, Abdulhussein R, Ford CE. Sensing extracellular matrix: an update on discoidin domain receptor function. Cell Signal 2006;18:1108-16
  • Nagar B, Bornmann WG, Pellicena P, et al. Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571). Cancer Res 2002;62(15):4236-43
  • Mol CD, Dougan DR, Schneider TR, et al. Structural basis for the autoinhibition and STI-571 inhibition of c-Kit tyrosine kinase. J Biol Chem 2004;279(30):31655-63
  • Regan J, Breitfelder S, Cirillo P, et al. Pyrazole urea-based inhibitors of p38 MAP kinase: from lead compound to clinical candidate. J Med Chem 2002;45(14):2994-3008
  • Pargellis C, Tong L, Churchill L, et al. Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site. Nat Struct Biol 2002;9(4):268-72
  • Lowinger TB, Riedl B, Dumas J, Smith RA. Design and discovery of small molecules targeting raf-1 kinase. Curr Pharm Design 2002;8(25):2269-78
  • Wilhelm S, Carter C, Lynch M, et al. Discovery and development of Sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov 2006;5:835-44
  • Wan PTC, Garnett MJ, Roe SM, et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 2004;116:855-67
  • Cowan-Jacob SW, Fendrich G, Floersheimer A, et al. Structural biology contributions to the discovery of drugs to treat chronic myelogenous leukaemia. Acta Crystallogr Sect D Biol Crystallogr 2007;D63:80-93
  • Thaimattam R, Daga P, Rajjak SA, et al. 3D-QSAR CoMFA, CoMSIA studies on substituted ureas as Raf-1 kinase inhibitors and its confirmation with structure-based studies. Bioorg Med Chem 2004;12:6415-25
  • Gill AL, Frederickson M, Cleasby A, et al. Identification of novel p38a MAP kinase inhibitors using fragment-based lead generation. J Med Chem 2005;48(2):414-26
  • Congreve MS, Murray CW, Carr RAE, Rees DC. Fragment-based lead discovery. Annu Rep Med Chem 2007;42:431-48
  • Gadea BB, Ruderman JV. Aurora kinase inhibitor ZM447439 blocks chromosome-induced spindle assembly, the completion of chromosome condensation, and the establishment of the spindle integrity checkpoint in Xenopus egg extracts. Mol Biol Cell 2005;16(3):1305-18
  • Ditchfield C, Johnson VL, Tighe A, et al. Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J Cell Biol 2003;161(2):267-80
  • Heron NM, Anderson M, Blowers DP, et al. SAR and inhibitor complex structure determination of a novel class of potent and specific Aurora kinase inhibitors. Bioorg Med Chem Lett 2006;16:1320-3
  • AstraZeneca UK Ltd. Crystal structure of human Aurora A kinase catalytic domain complexed with ATP analog and inhibitor and applications to structure-based drug design. WO03031606; 2003
  • AstraZeneca UK Ltd. Preparation of 4-anilinoquinazolines and 4-anilinoquinolines as inhibitors of cytokine mediated disease. WO00020402; 2000
  • Cumming JG, Mckenzie CL, Bowden SG, et al. Novel, potent and selective anilinoquinazoline and anilinopyrimidine inhibitors of p38 MAP kinase. Bioorg Med Chem Lett 2004;14(21):5389-94
  • Sullivan JE, Holdgate GA, Campbell D, et al. Prevention of MKK6-dependent activation by binding to p38α MAP kinase. Biochemistry 2005;44(50):16475-90
  • Weisberg E, Manley PW, Breitenstein W, et al. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 2005;7:127-41
  • Carter TA, Wodicka LM, Shah NP, et al. Inhibition of drug-resistant mutants of ABL, KIT, and EGF receptor kinases. Proc Natl Acad Sci USA 2005;102(31):11011-6
  • Horio T, Hamasaki T, Inoue T, et al. Structural factors contributing to the Abl/Lyn dual inhibitory activity of 3-substituted benzamide derivatives. Bioorg Med Chem Lett 2007;17:2712-7
  • Okram B, Nagle A, Adrian FJ, et al. A general strategy for creating “inactive-conformation” Abl inhibitors. Chem Biol 2006;13:779-86
  • Wisniewski D, Lambek CL, Liu C, et al. Characterization of potent inhibitors of the Bcr-Abl and the c-kit receptor tyrosine kinases. Cancer Res 2002;62(15):4244-55
  • Goldberg DR, Hao MH, Qian KC, et al. Discovery and optimization of p38 inhibitors via computer-assisted drug design. J Med Chem 2007;50(17):4016-26
  • Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 2007;6:273-86
  • Dumas J, Dixon JA. VEGF receptor kinase inhibitors: phthalazines, anthranilamides and related structures. Exp Opin Ther Pat 2005;15(6):647-58
  • Manley PW, Bold G, Brueggen J, et al. Advances in the structural biology, design and clinical development of VEGF-R kinase inhibitors for the treatment of angiogenesis. Biochim Biophys Acta 2004;1697(1-2):17-27
  • Hasegawa M, Nishigaki N, Washio Y, et al. Discovery of novel benzimidazoles as potent inhibitors of TIE-2 and VEGFR-2 tyrosine kinase receptors. J Med Chem 2007;50(18):4453-70
  • Miyazaki Y, Matsunaga S, Tang J, et al. Novel 4-amino-furo[2,3-d]pyrimidines as Tie-2 and VEGFR2 dual inhibitors. Bioorg Med Chem Lett 2005;15(9):2203-7
  • Cee VJ, Albrecht BK, Geuns-Meyer S, et al. Alkynylpyrimidine amide derivatives as potent, selective, and orally active inhibitors of Tie-2 kinase. J Med Chem 2007;50:627-40
  • Hodous BL, Geuns-Meyer SD, Hughes PE, et al. Evolution of a highly selective and potent 2-(pyridin-2-yl)-1,3,5-triazine Tie-2 kinase inhibitor. J Med Chem 2007;50:611-26
  • Amgen, Inc. USA. Preparation of heteroaryl substituted naphthalenes as inhibitors of Lck, VEGFR and/or HGF related activity. US05070891; 2005
  • Weiss M, Bajpaj M, Bauer D, et al. Discovery, synthesis and optimization of a new class of potent KDR inhibitors: Naphthoylamides. AACR Annual Meeting; 2006; Washington DC, USA
  • Harris PA, Cheung M, Iii RNH, et al. Discovery and evaluation of 2-anilino-5-aryloxazoles as a novel class of VEGFR2 kinase inhibitors. J Med Chem 2005;48:1610-9
  • Vogtherr M, Saxena K, Hoelder S, et al. NMR characterization of kinase p38 dynamics in free and ligand-bound forms. Angew Chem Int Ed Engl 2006;45:993-7
  • Potashman MH, Bready J, Coxon A, et al. Design, synthesis, and evaluation of orally active benzimidazoles and benzoxazoles as vascular endothelial growth factor-2 receptor tyrosine kinase inhibitors. J Med Chem 2007;50(18):4351-73
  • Polverino A, Coxon A, Starnes C, et al. AMG 706, an oral, multikinase inhibitor that selectively targets vascular endothelial growth factor, platelet-derived growth factor, and kit receptors, potently inhibits angiogenesis and induces regression in tumor xenografts. Cancer Res 2006;66(17):8715-21
  • Dimauro EF, Newcomb J, Nunes JJ, et al. Discovery of aminoquinazolines as potent, orally bioavailable inhibitors of Lck: Synthesis, SAR, and in vivo anti-inflammatory activity. J Med Chem 2006;49(19):5671-86
  • Fabian MA, Iii WHB, Treiber DK, et al. A small molecule–kinase interaction map for clinical kinase inhibitors. Nat Biotechnol 2005;23(3):329-36
  • Karaman MW, Herrgard S, Treiber DK, et al. A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 2008;26(1):127-32
  • Wood ER, Truesdale AT, Mc Donald OB, et al. A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res 2004;64:6652-9
  • Stamos J, Sliwkowski MX, Eigenbrot C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J Biol Chem 2002;277(48):46265-72
  • Basf AG. Method of identifying inhibitors of receptor tyrosine kinase Tie-2 for regulation of neovascularization. WO01072778; 2001
  • Burchat A, Borhani DW, Calderwood DJ, et al. Discovery of A-770041, a src-family selective orally active lck inhibitor that prevents organ allograft rejection. Bioorg Med Chem Lett 2006;16:118-22
  • Borhani DW, Calderwood DJ, Friedman MM, et al. A-420983: a potent, orally active inhibitor of lck with efficacy in a model of transplant rejection. Bioorg Med Chem Lett 2004;14:2613-6
  • Burchat AF, Calderwood DJ, Friedman MM, et al. Pyrazolo[3,4-d]pyrimidines containing an extended 3-substituent as potent inhibitors of Lck – a selectivity insight. Bioorg Med Chem Lett 2002;12:1687-90
  • Calderwood DJ, Johnston DN, Munschauer R, Rafferty P. Pyrrolo[2,3-d]pyrimidines containing diverse N-7 substituents as potent inhibitors of Lck. Bioorg Med Chem Lett 2002;12:1683-6
  • Regan J, Pargellis CA, Cirillo PF, et al. The kinetics of binding to p38 MAP kinase by analogues of BIRB 796. Bioorg Med Chem Lett 2003;13:3101-4
  • Atwell S, Adams JM, Badger J, et al. A novel mode of Gleevec binding is revealed by the structure of spleen tyrosine kinase. J Biol Chem 2004;279(53):55827-32
  • Cowan-Jacob SW, Fendrich G, Manley PW, et al. The crystal structure of a c-Src complex in an active conformation suggests possible steps in c-Src activation. Structure 2005;13(6):861-71
  • Kiselyov A, Balakin KV, Tkachenko SE, Savchuk NP. Recent progress in development of non-ATP competitive small-molecule inhibitors of protein kinases. Mini Rev Med Chem 2006;6:711-7
  • Gumireddy K, Baker SJ, Cosenza SC, et al. A non-ATP-competitive inhibitor of BCR-ABL overrides imatinib resistance. Proc Natl Acad Sci USA 2005;102(6):1992-7
  • Davidson W, Frego L, Peet GW, et al. Discovery and characterization of a substrate selective p38α inhibitor. Biochemistry 2004;43(37):11658-71
  • Ohren JF, Chen H, Pavlovsky A, et al. Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nat Struct Mol Biol 2004;11(12):1192-7
  • Sebolt-Leopold JS, Dudley DT, Herrera R, et al. Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo Nat Med 1999;5(7):810-6
  • Spicer JA, Rewcastle GW, Kaufman MD, et al. 4-Anilino-5-carboxamido-2-pyridone derivatives as noncompetitive inhibitors of mitogen-activated protein kinase kinase. J Med Chem 2007;50:5090-102
  • Davies BR, Logie A, Mckay JS, et al. AZD6244 (ARRY-142886), a potent inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 kinases: mechanism of action in vivo, pharmacokinetic/pharmacodynamic relationship, and potential for combination in preclinical models. Mol Cancer Ther 2007;6:2209-19
  • Adrian FJ, Ding Q, Sim T, et al. Allosteric inhibitors of Bcr-abl–dependent cell proliferation. Nat Chem Biol 2006;2(2):95-102
  • Hantschel O, Nagar B, Guettler S, et al. A myristoyl/phosphotyrosine switch regulates c-Abl. Cell 2003;112(6):845-57
  • Nagar B, Hantschel O, Young MA, et al. Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell 2003;112(6):859-71
  • Lindsley CW, Zhao Z, Leister WH, et al. Allosteric Akt (PKB) inhibitors: discovery and SAR of isozyme selective inhibitors. Bioorg Med Chem Lett 2005;15:761-4
  • Zhao Z, Robinson RG, Barnett SF, et al. Development of potent, allosteric dual Akt1 and Akt2 inhibitors with improved physical properties and cell activity. Bioorg Med Chem Lett 2008;18:49-53
  • Martelli AM, Tazzari PL, Evangelisti C, et al. Targeting for phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin module for acute myelogenous leukemia therapy: From bench to bedside. Curr Med Chem 2007;14:2009-23
  • Liu Y, Gray NS. Rational design of inhibitors that bind to inactive kinase conformations. Nat Chem Biol 2006;2(7):358-64
  • Angell RM, Angell TD, Bamborough P, et al. Biphenyl amide p38 kinase inhibitors 4: DFG-in and DFG-out binding modes. Bioorg Med Chem Lett 2008;18:4433-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.