360
Views
29
CrossRef citations to date
0
Altmetric
Reviews

Animal models of renal dysfunction: acute kidney injury

, &
Pages 629-641 | Published online: 06 May 2009

Bibliography

  • Rosen S, Peters CA, Chevalier RL, et al. The kidney in congenital ureteropelvic junction obstruction: a spectrum from normal to nephrectomy. J Urol 2008;179:1257-63
  • El Kossi MM, Haylor JL, Johnson TS, et al. Stem cell factor in a rat model of serum nephrotoxic nephritis. Nephron Exp Nephrol 2008;108:e1-10
  • Weidemann A, Bernhardt WM, Klanke B, et al. HIF activation protects from acute kidney injury. J Am Soc Nephrol 2008;19:486-94
  • Tanaka T, Kojima I, Ohse T, et al. Hypoxia-inducible factor modulates tubular cell survival in cisplatin nephrotoxicity. Am J Physiol 2005;289:F1123-33
  • Rabb H. Immune modulation of acute kidney injury. J Am Soc nephrol 2006;17:604-6
  • Zager RA. “Subclinical” gentamicin nephrotoxicity: a potential risk factor for exaggerated endotoxin-driven TNF-α production. Am J Physiol 2007;293:F43-49
  • Arany I, Safirstein RL. Cisplatin nephrotoxicity. Semin Nephrol 2003;23:460-4
  • Vanholder R, Sever MS, Erek E, et al. Rhabdomyolysis. J Am Soc Nephrol 2000;11:1553-61
  • Rosenberger C, Rosen S, Heyman SN. Renal parenchymal oxygenation and hypoxia adaptation in acute kidney injury. Clin Exp Pharmacol Physiol 2006;33:980-8
  • Heyman SN, Rosen S, Rosenberger C. Renal parenchymal hypoxia, hypoxia adaptation and the pathogenesis of radiocontrast nephropathy. Clin J Am Soc Nephrol 2008;3:288-96
  • Hassoun HT, Grigoryev DN, Lie ML, et al. Ischemic acute kidney injury induces a distant organ functional and genomic response distinguishable from bilateral nephrectomy. Am J Physiol 2007;293:F30-40
  • De Broe ME, Porter GA. Clinical nephrotoxins. Renal injury from drugs and chemicals. 3rd ed. Springer/Kluwer Acad Pub, 2009
  • Ronco C, Bellomo R, Kellum J. Critical Care Nephrology. 2nd Ed, Springer/Kluwer Acad Pub 2009
  • Molitoris BA. Transitioning to therapy in ischemic acute renal failure. J Am Soc Nephrol 2003;14:265-7
  • Rosen S, Heyman SN. Difficulties in understanding human “acute tubular necrosis”: limited data and flawed animal models. Kidney Int 2001;60:1220-4
  • Bywaters EGL, Dible JH. The renal lesion of traumatic anuria. J Pathol Bacteriol 1942;54:111-20
  • Lucke B. Lower nephron nephrosis. Milit Surg 1946;99:371-96
  • Oliver J, McDowell M, Tracy A. The pathogenesis of acute renal failure associated with traumatic and toxic injury, renal ischemia, nephrotoxic damage and ischemuric episode. J Clin Invest 1951;30:1307-51
  • Rosen S, Stillman IE. Acute tubular necrosis is a syndrome of physiologic and pathologic dissociation. J Am Soc nephrol 2008;19:871-5
  • Solez K, Morel-Maroger L, Sraer JD. The morphology of “acute tubular necrosis” in man: analysis of 57 renal biopsies and a comparison with the glycerol model. Medicine 1979;58:362-76
  • Olsen TS, Hansen HE. Ultrastructure of medullary tubules in ischemic acute tubular necrosis and acute interstitial nephritis in man. APMIS 1990;98:1139-48
  • Brezis M, Rosen S. Hypoxia of the renal medulla: its implications for disease. N Engl J Med 1995;332:647-55
  • Epstein FH. Oxygen and renal metabolism. Kidney Int 1997;51:381-5
  • Mishra J, Dent C, Tarabishi R, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 2005;365:1231-8
  • Hirsch R, Dent C, Pfriem H, et al. NGAL is an early predictive biomarker of contrast-induced nephropathy in children. Pediatr Nephrol 2007;22:2089-95
  • Nickolas TL, O'Rourke MJ, Yang J, et al. Sensitivity and specificity of a single emergency department measurement of urinary neutrophil gelatinase-associated lipocalin for diagnosing acute kidney injury. Ann Intern Med 2008;148:810-9
  • Parikh CR, Devarajan P. New biomarkers of acute kidney injury. Crit Care Med 2008;36(Suppl):S159-65
  • Nielsen JB, Andersen HR, Andersen O, et al. Mercuric chloride-induced kidney damage in mice: time course and effect of dose. J Toxicol Environ Health 1991;34:469-83
  • Cheng CW, Rifai A, Ka SM, et al. Calcium-binding proteins annexin A2 and S100A6 are sensors of tubular injury and recovery in acute renal failure. Kidney Int 2005;68:2694-703
  • Zager RA, Johnson AC, Naito M, et al. K. Maleate nephrotoxicity: mechanisms of injury and correlates with ischemic/hypoxic tubular cell death. Am J Physiol 2008;294:F187-97
  • Porter GA, Bennett WM, Gilbert DN. Unrevealing aminoglycoside nephrotoxicity using animal models. J Clin Pharmacol 1983;23:445-52
  • Morin NJ, Laurent G, Nonclercq D, et al. Epidermal growth factor accelerates renal tissue repair in a model of gentamicin nephrotoxicity in rats. Am J Physiol 1992;263:F806-11
  • Heyman SN, Stillman LE, Brezis M, et al. Chronic amphotericin nephropathy: morphometric, electron microscopic and functional studies. J Am Soc Nephrol 1993;4:69-80
  • Stillman IE, Brezis M, Greenfeld Z, et al. Cyclosporine nephropathy: morphometric analysis of the medullary thick limb. Am J Kid Dis 1992;10:162-7
  • Rosenberger C, Goldfarb M, Shina A, et al. Evidence for sustained renal hypoxia and transient hypoxia adaptation in experimental rhabdomyolysis-induced acute kidney injury. Nephrol Dial Transpl 2008;23:1135-43
  • Heyman SN, Rosen S, Fuchs S, et al. Myoglobinuric acute renal failure in the rat: a role for medullary hypoperfusion, hypoxia and tubular obstruction. J Am Soc Nephrol 1996;7:1066-74
  • de Rougemont D, Oeschger A, Konrad L, et al. Gentamicin-induced acute renal failure in the rat. Effect of dehydration, DOCA-saline and furosemide. Nephron 1981;29:176-84
  • Geerkens JF, Branch RA. The influence of sodium status and furosemide on canine acute amphotericin B nephrotoxicity. J Pharm Exp Ther 1980;214:306-11
  • Vaamonde CA, Bier RT, Gouvea W, et al. Effect of duration of diabetes on the protection observed in the diabetic rat against gentamicin-induced acute renal failure. Miner Electrolyte Metab 1984;10:209-16
  • Zager RA. Studies of mechanisms and protective maneuvers in myoglobinuric acute renal injury. Lab Invest 1989;60:619-29
  • Zager RA, Prior RB. Gentamicin and gram-negative bacteremia. A synergism for the development of experimental nephrotoxic acute renal failure. J Clin Invest 1986;78:196-204
  • Zager RA. A focus of tissue necrosis increases renal susceptibility to gentamicin administration. Kidney Int 1988;33:84-90
  • Evans RG, Gardiner BS, Smith BW, et al. Intrarenal oxygenation: unique challangesand the biophysicalbasis of homeostasis. Am J Physiol 2008;295:F1259-70
  • Boussekey N, Chiche A, Faure K, et al. A pilot randomized study comparing high and low volume hemofiltration on vasopressor use in septic shock. Intensive Care Med 2008;34:1646-53
  • Bobadilla NA, Gamba G. New insights into the pathophysiology of cyclosporine nephrotoxicity: a role of aldosterone. Am J Physiol 2007;293:F2-9
  • Langenberg C, Bellomo R, May C, et al. Renal blood flow in sepsis. Crit Care 2005;9:R363-74
  • Brezis M, Rosen S, Silva P, et al. Polyene toxicity in renal medulla: injury mediated by transport. Science 1984;224:66-8
  • Fortescue EB, Bates DW, Chertow GM. Predicting acute renal failure after coronary bypass surgery: cross-validation of two risk-stratification algorithms. Kidney Int 2000;57:2594-602
  • Zager RA, Baltes LA. Progressive renal insufficiency induces increasing protection against ischemic acute renal failure. J Lab Clin Med 1984;103:511-23
  • Glaubermann B, Trump BF. Studies on the pathogenesis of ischemic cell injury: III. morphological changes of the proximal pars recta tubule (P3) of the rat kidney made ischemic in vivo. Virchows Arch (B) 1975;19:303-23
  • Shanley PF, Rosen MD, Brezis M, et al. Topography of focal proximal tubular necrosis after ischemia with reflow in the rat kidney. Am J Pathol 1986;122:462-8
  • Molitoris BA, Sandoval RM. Intravital multiphoton microscopy of dynamic renal processes. Am J Physiol 2005;288:F1084-89
  • Basile DP, Danohoe D, Roethe K, et al. Renal ischemic injury results in permanent damage to peritubular capillaries and influences long term function. Am J Physiol 2001;281:F887-99
  • Goldfarb M, Rosenberger C, Abassi Z, et al. Acute-on-chronic renal failure in the rat: functional compensation and hypoxia tolerance. Am J Nephrol 2006;26:22-33
  • Fine LG, Norman JT. Chronic hypoxia as a mechanism of progression of chronic kidney diseases: from hypothesis to novel therapeutics. Kidney Int 2008;74:867-72
  • Zager RA. Partial aortic ligation: a hypoperfusion model of ischemic acute renal failure and a comparison with renal artery occlusion. J Lab Clin Med 1987;110(4):396-405
  • Sharfuddin AA, Sandoval RM, Berg DT, et al. Soluble thrombomodulin protects ischemic kidneys. J Am Soc Nephrol 2009;20:524-34
  • Burne-Taney MJ, Kofler J, Yokota N, et al. Acute renal failure after whole body ischemia is characterized by inflammation and T cell-mediated injury. Am J Physiol 2003;285:F87-94
  • Efrati S, Berman S, Ben Aharon G, et al. Application of normobaric hyperoxia therapy for amelioration of haemorrhagic shock-induced acute renal failure. Nephrol Dial Transplant 2008;23:2213-22
  • Koch M, Broecker V, Heratizadeh A, et al. Induction of chronic renal allograft injury by injection of a monoclonal antibody against a donor MHC Ib molecule in a nude rat model. Transpl Immunol 2008;19:187-91
  • Cook CH, Bickerstaff AA, Wang JJ, et al. Spontaneous renal allograft acceptance associated with “regulatory” dendritic cells and IDO. J Immunol 2008;180:3103-12
  • Rosenberger C, Khamaisi M, Abassi Z, et al. Adaptation to hypoxia in the diabetic rat kidney. Kidney Int 2008;73:34-42
  • Rosenberg C, Goldfarb M, Khamaisi M, et al. Acute kidney injury in the diabetic rat: studies in the isolated perfused and intact kidney. Am J Nephrol 2008;28:831-9
  • Brezis M, Rosen S, Silva P, et al. Transport activity modifies thick ascending limb damage in the isolated perfused kidney. Kidney Int 1984;25:65-72
  • Rosenberger C, Rosen S, Shina A, et al. Activation of hypoxia inducible factors (HIF) ameliorates hypoxic distal tubular injury in the isolated perfused rat kidney. Nephrol Dial Transplant 2008;23:3472-8
  • Heyman SN, Brezis M, Reubinoff CA, et al. Acute renal failure with selective medullary injury in the rat. J Clin Invest 1988;82:401-12
  • Miyaji T, Hu X, Yuen PS, et al. Ethyl pyruvate decreases sepsis induced acute renal failure and multiple organ damage in aged mice. Kidney Int 2003;64:1620-31
  • Heyman SN, Rosen S, Darmon D, et al. Endotoxin-induced renal failure: I. a role for altered renal microcirculation. Exp Nephrol 2000;8:266-74
  • Heyman SN, Rosen S, Darmon D, et al. Endotoxin-induced renal failure: II. a role for tubular hypoxic damage. Exp Nephrol 2000;8:275-82
  • Naito M, Bomsztyk K, Zager RA. Endotoxin mediates recruitment of RNA polymerase II to target genes in acute renal failure. Am Soc Nephrol 2008;19:1321-30
  • Di Giantomasso D, May CN, Bellomo R. Vital organ blood flow during hyperdynamic sepsis. Chest 2003;124:1053-9
  • Bosscha K, Nieuwenhuijs VB, Gooszen AW, et al. A standardized and reproducible model of intraabdominal infection and abscess formation in rats. Eur J Surg 2000;166:963-7
  • Wichterman KA, Baue AE, Chaudry IH. Sepsis and septic shock- a review of laboratory models and a proposal. J Surg Res 1980;29:189-201
  • Dear JW, Kobayashi H, Jo SK, et al. Dendrimer-enhanced MRI as a diagnostic and prognostic biomarker of sepsis-induced acute renal failure in aged mice. Kidney Int 2005;67:2159-67
  • Melican K, Boekel J, Mansson LE, et al. Bacterial infection-mediated mucosal signalling induces local renal ischaemia as a defence against sepsis. Cell Microbiol 2008;10:1987-98
  • Damianovich M, Ziv I, Heyman SN, et al. ApoSense: a novel technology for imaging of cell death in acute renal tubular necrosis. Eur J Nucl Med Mol Im 2006;33:281-91
  • Dear JW, Yasuda H, Hu X, et al. Sepsis-induced organ failure is mediated by different pathways in the kidney and liver: acute renal failure is dependent on MyD88 but not renal cell apoptosis. Kidney Int 2006;69:832-6
  • Harvig B, Engberg A, Ericsson JLE. Effects of cold ischemia on the preserved and transplanted rat kidney: Structural changes of the proximal tubule. Virchows Arch B Cell Pathol 1980;34:153-71
  • Harvig B, Engbert A, Ericsson JLE. Effects of cold ischemia on the preserved and transplanted rat kidney: structural changes of the loop of Henle, distal tubule and collecting duct. Virchows Arch B Cell Pathol 1980;34:173-92
  • Heyman SN, Brezis M, Epstein FH, et al. Early renal medullary hypoxic injury from radiocontrast and indomethacin. Kidney Int 1991;40:632-42
  • Yokomaku Y, Sugimoto T, Kume S, et al. Asialoerythropoietin prevents contrast-induced nephropathy. J Am Soc Nephrol 2008;19:321-8
  • Agmon Y, Peleg H, Greenfeld Z, et al. Nitric oxide and prostanoids protect the renal outer medulla from radiocontrast toxicity in the rat. J Clin Invest 1994;94:1069-75
  • Palm F, Cederberg J, Hansell P, et al. Reactive oxygen species cause diabetes-induced decrease in renal oxygen tension. Diabetologia 2003;46:1153-60
  • Heyman SN, Kaminski N, Brezis M. Dopamine increases medullary blood flow without improving regional hypoxia. Exp Nephrol 1995;3:331-7
  • Prasad PV, Priatna A, Spokes K, et al. Changes in intrarenal oxygenation as evaluated by BOLD MRI in a rat kidney model for radiocontrast nephropathy. J Magn Reson Imaging 2001;13:744-7
  • Mason RP. Non-invasive assessment of kidney oxygenation: a role for BOLD MRI. Kidney Int 2006;70:10-1
  • Gupta A, Gerlitz B, Richardson MA, et al. Distinct functions of activated protein c differentially attenuate acute kidney injury. J Am Soc Nephrol 2009;20:267-77
  • Maril N, Margalit R, Rosen S, et al. Detection of evolving acute tubular necrosis with renal 23Sodium MRI: studies in rats. Kidney Int 2006;69:765-8
  • Ashworth SL, Sandoval RM, Tanner GM, et al. Two-photon microscopy: visualization of kidney dynamics. Kidney Int 2007;72:416-21
  • Rosenberger C, Heyman SN, Rosen S, et al. Upregulation of HIF in acute renal failure – evidence for a protective transcriptional response to hypoxia. Kidney Int 2005;67:531-42
  • Rosenberger C, Shina A, Rosen S, et al. Hypoxia inducible factors and tubular cell survival in isolated perfused kidneys. Kidney Int 2006;70:60-70
  • Taulan M, Paquet F, Argiles A, et al. Comprehensive analysis of the renal transcriptional response to acute uranyl nitrate exposure. BMC Genomics 2006;7:2
  • Grigoryev DN, Liu M, Hassoun HT, et al. The local and systemic inflammatory transcriptome after acute kidney injury. J Am Soc Nephrol 2008;19:547-58
  • Nechemia-Arbely Y, Barkan D, Pizov G, et al. IL-6/IL-6R axis plays a critical role in acute kidney injury. J Am Soc Nephrol 2008;19:1106-15
  • Srichai MB, Hao C, Davis L, et al. Apoptosis of the thick ascending limb results in acute kidney injury. J Am Soc Nephrol 2008;19:1538-46
  • Zhang B, Ramesh G, Uematsu S, et al. TLR4 signaling mediates inflammation and tissue injury in nephrotoxicity. J Am Soc Nephrol 2008;19:923-32
  • Heyman SN, Spokes K, Egorin MJ, et al. Glycine reduces early renal parenchymal uptake of cisplatin. Kidney Int 1993;43:1226-8
  • Basile DP, Donohoe D, Cao X, et al. Resistance to ischemic acute renal failure in the Brown Norway rat: a new model to study cytoprotection. Kidney Int 2004;65:2201-11
  • Lee MG, Lee JH, Oh JM. Pharmacokinetic changes of drugs in rat model of acute renal failure induced by uranyl nitrate: correlation between drug metabolism and hepatic microsomal cytochrome P450 isozymes. Curr Clin Pharmacol 2006;1:193-205
  • Liano F, Pascual J. Epidemiology of acute renal failure: a prospective, multicenter, community-based study. Madrid Acute Renal Failure Study Group. Kidney Int 1996;50:811-8
  • Mehta RL, Pascual MT, Soroko S, et al. Spectrum of acute renal failure in the intensive care unit: the PICARD experience. Kidney Int 2004;66:1613-21

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.