603
Views
121
CrossRef citations to date
0
Altmetric
Reviews

Using zebrafish to assess the impact of drugs on neural development and function

Pages 715-726 | Published online: 09 Jun 2009

Bibliography

  • Kandel ER, Schwartz JH, Jessell TM. Principles of neural science, McGraw-Hill Health Professions Division, 2000
  • Available from: http://www.ninds.nih.gov/about_ninds/ninds_overview.html
  • Peterson RT, Fishman MC. Discovery and use of small molecules for probing biological processes in zebrafish. Methods Cell Biol 2004;76:569-91
  • Zon LI, Peterson RT. In vivo drug discovery in zebrafish. Nat Rev Drug Discov 2005;4:35-44
  • Lan C, Laurenson S, Copp BR, et al. Whole organism approaches to chemical genomics: the promising role of zebrafish (Danio rerio). Expert Opin Drug Discov 2007;2:1-13
  • Peterson RT, et al. Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation. Nat Biotech 2004;22:595-9
  • Stern HM, et al. Small molecules that delay S phase suppress a zebrafish bmyb mutant. Nat Chem Biol 2005;1:366-70
  • Burns CG, et al. High-throughput assay for small molecules that modulate zebrafish embryonic heart rate. Nat Chem Biol 2005;1:263-4
  • Langheinrich U. Zebrafish: a new model on the pharmaceutical catwalk. Bioessays 2003;25:904-12
  • Milan DJ, Peterson TA, Ruskin JN, et al. Drugs that induce repolarization abnormalities cause bradycardia in zebrafish. Circulation 2003;107:1355-8
  • North TE, et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 2007;447:1007-11
  • Kimmel CB. Patterning the brain of the zebrafish embryo. Annu Rev Neurosci 1993;16:707-32
  • Wilson SW, Brand M, Eisen JS. Patterning the zebrafish central nervous system. Results Probl Cell Differ 2002;40:181-215
  • Higashijima S, Mandel G, Fetcho JR. Distribution of prospective glutamatergic, glycinergic, and GABAergic neurons in embryonic and larval zebrafish. J Comp Neurol 2004;480:1-18
  • Mueller T, Vernier P, Wullimann MF. A phylotypic stage in vertebrate brain development: GABA cell patterns in zebrafish compared to mouse. J Comp Neurol 2006;494:620-34
  • Mueller T, Wullimann MF, Guo S. Early teleostean basal ganglia development visualized by zebrafish Dlx2a, Lhx6, Lhx7, Tbr2 (eomesa), and GAD67 gene expression. J Comp Neurol 2008;507:245-57
  • Guo S, et al. Mutations in the zebrafish unmask shared regulatory pathways controlling the development of catecholaminergic neurons. Dev Biol 1999;208:473-87
  • Holzschuh J, Ryu S, Aberger F, Driever W. Dopamine transporter expression distinguishes dopaminergic neurons from other catecholaminergic neurons in the developing zebrafish embryo. Mech Dev 2001;101:237-43
  • Bellipanni G, Rink E, Bally-Cuif L. Cloning of two tryptophan hydroxylase genes expressed in the diencephalon of the developing zebrafish brain. Gene Expr Patterns 2002;2:251-6
  • McLean DL, Fetcho JR. Ontogeny and innervation patterns of dopaminergic, noradrenergic, and serotonergic neurons in larval zebrafish. J Comp Neurol 2004;480:38-56
  • Kaslin J, Panula P. Comparative anatomy of the histaminergic and other aminergic systems in zebrafish (Danio rerio). J Comp Neurol 2001;440:342-77
  • Arenzana FJ, et al. Development of the cholinergic system in the brain and retina of the zebrafish. Brain Res Bull 2005;66:421-5
  • Kaslin J, Nystedt JM, Ostergård M, et al. The orexin/hypocretin system in zebrafish is connected to the aminergic and cholinergic systems. J Neurosci 2004;24:2678-89
  • Chandrasekar G, Lauter G, Hauptmann G. Distribution of corticotropin-releasing hormone in the developing zebrafish brain. J Comp Neurol 2007;505:337-51
  • Brösamle C, Halpern ME. Characterization of myelination in the developing zebrafish. Glia 2002;39:47-57
  • Kawai H, Arata N, Nakayasu H. Three-dimensional distribution of astrocytes in zebrafish spinal cord. Glia 2001;36:406-13
  • Rubenstein JL, Martinex S, Shimaura K, Puelles L. The embryonic vertebrate forebrain: the prosomeric model. Science 1994;266:576-80
  • Mueller T, Wullimann MF. Atlas of early zebrafish brain development. Elsevier B.V., Amsterdam, the Netherlands, 2005
  • Hauptmann G, Soll I, Gerster T. The early embryonic zebrafish forebrain is subdivided into molecularly distinct transverse and longitudinal domains. Brain Res Bull 2002;57:371-75
  • Puelles L, Rubenstein JL. Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci 2003;26:469-76
  • Wullimann MF, Mueller T. Teleostean and mammalian forebrains contrasted: Evidence from genes to behavior. J Comp Neurol 2004;475:143-62
  • Northcutt RG, Braford MRJ. New observations on the organization and evolution of the telencephalon of actinopterygian fishes. In: Ebbesson SOE, editor, Comparative neurology of the telencephalon. Plenum Press, New York, 1980. p. 41-98
  • Meek J, Nieuwenhuys R. The central nervous system of vertebrates. Berlin: Springer. In: Nieuwenhuys R, Donkelaar HJ, Nicholson C, editors, The central nervous system of vertebrates. Springer, Berlin, 1998. p 759-937
  • Smeets WJAJ, Reiner A. Phylogeny and development of catecholamine systems in the CNS of vertebrates, Cambridge University Press, Cambridge, England, 1994
  • Rink E, Wullimann MF. The teleostean (zebrafish) dopaminergic system ascending to the subpallium (striatum) is located in the basal diencephalon (posterior tuberculum). Brain Res 2001;889:316-30
  • Costagli A, Kapsimali M, Wilson SW, Mione M. Conserved and divergent patterns of Reelin expression in the zebrafish central nervous system. J Comp Neurol 2002;450:73-93
  • Rupp B, Wullimann MF, Reichert H. The zebrafish brain: a neuroanatomical comparison with the goldfish. Anat Embryol 1996;194:187-203
  • Wullimann MF. The central nervous system. In: Evans DH, editor, The physiology of fishes. CRC Press LLC, New York, 1997. p. 245-81
  • Bjarnadóttir TK, Fredriksson R, Schiöth HB. The gene repertoire and the common evolutionary history of glutamate, pheromone (V2R), taste(1) and other related G protein-coupled receptors. Gene 2005;362:70-84
  • Boehmler W, et al. Evolution and expression of D2 and D3 dopamine receptor genes in zebrafish. Dev Dyn 2004;230:481-93
  • Norton WH, Folchert A, Bally-Cuif L. Comparative analysis of serotonin receptor (HTR1A/HTR1B families) and transporter (slc6a4a/b) gene expression in the zebrafish brain. J Comp Neurol 2008;511:521-42
  • Salaneck E, Larsson TA, Larson ET, Larhammar D. Birth and death of neuropeptide Y receptor genes in relation to the teleost fish tetraploidization. Gene 2008;409:61-71
  • Sanchez-Simon FM, Rodriguez RE. Developmental expression and distribution of opioid receptors in zebrafish. Neuroscience 2008;151:129-37
  • Scalzo FM, Levin ED. The use of zebrafish (Danio rerio) as a model system in neurobehavioral toxicology. Neurotoxicol Teratol 2004;26:708-8
  • Linney E, Upchurch L, Donerly S. Zebrafish as a neurotoxicological model. Neurotoxicol Teratol 2004;26:709-18
  • Parng C, Ton C, Lin YX, Roy NM. A zebrafish assay for identifying neuroprotectants in vivo. Neurotoxicol Teratol 2006;28:509-16
  • Parng C, Roy NM, Ton C, et al. Neurotoxicity assessment using zebrafish. J Pharmacol Toxicol Methods 2007;55:103-12
  • Ton C, Lin Y, Willett C. Zebrafish as a model for developmental neurotoxicity testing. Birth Defects Res A Clin Mol Teratol 2006;76:553-67
  • Gerlai R, Lahav M, Guo S, Rosenthal A. Drinks like a fish: zebrafish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharm Biochem Behav 2000;67:773-82
  • Lockwood B, Bjerke S, Kobayashi K, Guo S. Acute effects of alcohol on larval zebrafish: a genetic system for large-scale screening. Pharm Biochem Behav 2004;77:647-54
  • Darland T, Dowling JE. Behavioral screening for cocaine sensitivity in mutagenized zebrafish. Proc Natl Acad USA 2001;98:11691-6
  • López-Patiño MA, Yu L, Cabral H, Zhdanova IV. Anxiogenic effects of cocaine withdrawal in zebrafish. Physiol Behav 2008;93:160-71
  • Ninkovic J, et al. Genetic identification of AChE as a positive modulator of addiction to the psychostimulant D-amphetamine in zebrafish. J Neurobiol 2006;66:463-75
  • Lau B, Bretaud S, Huang Y, et al. Dissociation of food and opiate preference by a genetic mutation in zebrafish. Genes Brain Behav 2006;5:497-505
  • Bretaud S, et al. A choice behavior for morphine reveals experience-dependent drug preference and underlying neural substrates in developing larval zebrafish. Neuroscience 2007;146:1109-16
  • Levin ED, Bencan Z, Cerutti DT. Anxiolytic effects of nicotine in zebrafish. Physiol Behav 2007;90:54-8
  • Bilotta J, Barnett JA, Hancock L, Saszik S. Ethanol exposure alters zebrafish development: a novel model of fetal alcohol syndrome. Neurotoxicol Teratol 2004;26:737-43
  • Menelaou E, Svoboda KR. Secondary motoneurons in juvenile and adult zebrafish: axonal pathfinding errors caused by embryonic nicotine exposure. J Comp Neurol 2009;512:305-22
  • Nasevicius A, Ekker SC. Effective targeted gene “knockdown” in zebrafish. Nat Genet 2000;26:216-20
  • Wienholds E, Schulte-Merker S, Walderich B, Plasterk RHA. Target-selected inactivation of the zebrafish rag1 gene. Science 2002;297:99-102
  • Wang D, et al. Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions. Proc Natl Acad Sci 2007;104:12428-33
  • Doyon Y, et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 2008;26:702-8
  • Meng X, Noyes MB, Zhu LJ, et al. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 2008;26:695-701
  • Thermes V, et al. I-SceI meganuclease mediates highly efficient transgenesis in fish. Mech Dev 2002 In press
  • Shin J, Park HC, Topczewska JM, et al. Neural cell fate analysis in zebrafish using olig2 BAC transgenics. Methods Cell Sci 2003;25:7-14
  • Kawakami K. Tol2: a versatile gene transfer vector in vertebrates. Genome Biol 2007;8:S7
  • Pisharath H, Rhee JM, Swanson MA, et al. Targeted ablation of beta cells in the embryonic zebrafish pancreas using E. coli nitroreductase. Mech Dev 2007;124:218-29
  • Curado S, et al. Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies. Dev Dyn 2007;236:1025-35
  • Fombonne E. Epidemiology of autistic disorder and other pervasive developmental disorders. J Clin Psychiatry 2005;66:3-8
  • Amaral DG, Schumann CM, Nordahl CW. Neuroanatomy of autism. Trends Neurosci 2008;31:137-45
  • Schmitz C, Rezaie P. The neuropathology of autism: where do we stand? Neuropathol Appl Neurobiol 2008;34:4-11
  • Moretti P, Zoghbi HY. MeCP2 dysfunction in Rett syndrome and related disorders. Curr Opin Genet Dev 2006;16:276-81
  • Gharani N, Benayed R, Mancuso V, et al. Association of the homeobox transcription factor, ENGRAILED 2, 3, with autism spectrum disorder. Mol Psychiatry 2004;9:474-84
  • Benayed R, et al. Support for the homeobox transcription factor gene ENGRAILED 2 as an autism spectrum disorder susceptibility locus. Am J Hum Genet 2005;77:851-68
  • Bagni C, Greenough WT. From mRNP trafficking to spine dysmorphogenesis: the roots of fragile X syndrome. Nat Rev Neurosci 2005;6:376-87
  • Wiznitzer M. Autism and tuberous sclerosis. J Child Neurol 2004;19:675-9
  • Butler MG, et al. Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. J Med Genet 2005;42:318-21
  • Jamain S, et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 2003;10:329-32
  • Durand CM, et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 2007;39:25-7
  • Kim HG, et al. Disruption of neurexin 1 associated with autism spectrum disorder. Am J Hum Genet 2008;82:199-207
  • Arking DE, et al. A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. Am J Hum Genet 2008;82:7-9
  • Alarcón M, et al. Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am J Hum Genet 2008;82:150-9
  • Splawski I, et al. Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 2004;119:19-31
  • Persico AM, et al. Reelin gene alleles and haplotypes as a factor predisposing to autistic disorder. Mol Psychiatry 2001;6:150-9
  • Tropepe V, Sive HL. Can zebrafish be used as a model to study the neurodevelopmental causes of autism? Genes Brain Behav 2003;2:268-81
  • Rissone A, et al. Comparative genome analysis of the neurexin gene family in Danio rerio: insights into their functions and evolution. Mol Biol Evol 2007;24:236-52
  • Coverdale LE, Martyniuk CJ, Trudeau VL, Martin CC. Differential expression of the methyl-cytosine binding protein 2 gene in embryonic and adult brain of zebrafish. Brain Res Dev Brain Res 2004;153:281-7
  • Tallafuss A, Eisen JS. The Met receptor tyrosine kinase prevents zebrafish primary motoneurons from expressing an incorrect neurotransmitter. Neural Dev 2008;3:18
  • Colman JR, Baldwin D, Johnson LL, Scholz NL. Effects of the synthetic estrogen, 17alpha-ethinylestradiol, on aggression and courtship behavior in male zebrafish (Danio rerio). Aquat Toxicol 2009;91:346-54
  • Engeszer RE, Wang G, Ryan MJ, Parichy DM. Sex-specific perceptual spaces for a vertebrate basal social aggregative behavior. Proc Natl Acad Sci 2008;105:929-33
  • Larson ET, O'Malley DM, Melloni RHJ. Aggression and vasotocin are associated with dominant-subordinate relationships in zebrafish. Behav Brain Res 2006;167:94-102
  • Polymeropoulos MH, et al. Mutations in the a-synuclein gene identified in families with Parkinson's disease. Science 1997;276:2045-7
  • Kitada T, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998;392:605-8
  • Bonifati V, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 2003;299:256-9
  • Valente EM, et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 2004;304:1158-60
  • Paisán-Ruíz C, et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 2004;44:595-600
  • Zimprich A, et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 2004;44:601-7
  • Anichtchik OV, Kaslin J, Peitsaro N, et al. Neurochemical and behavioral changes in zebrafish Danio rerio after systemic administration of 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine. J Neurochem 2004;88:443-53
  • Bretaud S, Lee S, Guo S. Sensitivity of zebrafish to environmental toxins implicated in Parkinson's disease. Neurotox Teratol 2004;26:857-64
  • Lam CS, Korzh V, Strahle U. Zebrafish embryos are susceptible to the dopaminergic neurotoxin MPTP. Eur J Neurosci 2005;21:1758-62
  • McKinley ET, et al. Neuroprotection of MPTP-induced toxicity in zebrafish dopaminergic neurons. Brain Res Mol Brain Res 2005;141:128-37
  • Son OL, et al. Cloning and expression analysis of a Parkinson's disease gene, uch-L1, and its promoter in zebrafish. Biochem Biophys Res Commun 2003;312:601-7
  • Bretaud S, Allen C, Ingham PW, Bandmann O. p53-dependent neuronal cell death in a DJ-1-deficient zebrafish model of Parkinson's disease. J Neurochem 2007;100:1626-35
  • Anichtchik O, et al. Loss of PINK1 function affects development and results in neurodegeneration in zebrafish. J Neurosci 2008;28:8199-207
  • Bertram L, Tanzi RE. Thirty years of Alzheimer's disease genetics: the implications of systematic meta-analyses. Nat Rev Neurosci 2008;9:768-78
  • Musa A, Lehrach H, Russo VA. Distinct expression patterns of two zebrafish homologues of the human APP gene during embryonic development. Dev Genes Evol 2001;211:563-7
  • Leimer U, et al. Zebrafish (Danio rerio) presenilin promotes aberrant amyloid beta-peptide production and requires a critical aspartate residue for its function in amyloidogenesis. Biochemistry 1999;38:3602-9
  • Groth C, Nornes S, McCarty R, et al. Identification of a second presenilin gene in zebrafish with similarity to the human Alzheimer's disease gene presenilin2. Dev Genes Evol 2002;212:486-90
  • Tomasiewicz HG, Flaherty DB, Soria JP, Wood JG. Transgenic zebrafish model of neurodegeneration. J Neurosci Res 2002;70:734-45
  • Levin ED, Limpuangthip J, Rachakonda T, Peterson M. Timing of nicotine effects on learning in zebrafish. Psychopharmacology 2005 In press
  • Rubinsztein DC. Lessons from animal models of Huntington's disease. Trends Genet 2002;18:202-9
  • Ross CA. Polyglutamine pathogenesis; emergence of unifying mechanisms for Huntington's disease and related disorders. Neuron 2002;35:819-22
  • Bonelli RM, Hofmann P. A systematic review of the treatment studies in Huntington's disease since 1990. Expert Opin Pharmacother 2007;8:141-53
  • Karlovich CA, John RM, Ramirez LSD, Myers RM. Characterization of the Huntington's disease (HD) gene homologue in the zebrafish Danio rerio. Gene 1998;217:117-25
  • Lumsden AL, Henshall TL, Dayan S, et al. Huntingtin-deficient zebrafish exhibit defects in iron utilization and development. Hum Mol Genet 2007;16:1905-20
  • Schiffer NW, et al. Identification of anti-prion compounds as efficient inhibitors of polyglutamine protein aggregation in a zebrafish model. J Biol Chem 2007;282:9195-203
  • Miller VM, et al. CHIP suppresses polyglutamine aggregation and toxicity in vitro and in vivo. J Neurosci 2005;25:9152-61
  • Kessler RC, Greenberg PE. The economic burden of anxiety and stress disorders. In: Davis KL, Charney DS, Coyle JT, Nemeroff C, editors, Neuropsychopharmacology: the fifth generation of progress. Lippincott Williams and Wilkins, Philadelphia, 2002
  • Gorman JM, Kent JM, Coplan JD. Current and emerging therapeutics of anxiety and stress disorders. In: editors, Davis KL, Charney DS, Coyle JT, Nemeroff C, Neuropsychopharmacology: the fifth generation of progress. Lippincott Williams and Wilkins, Philadelphia, 2002
  • Guo S. Linking genes to brain, behavior, and neurological diseases: what can we learn from zebrafish? Genes Brain Behav 2004;3:63-74
  • Speedie N, Gerlai R. Alarm substance induced behavioral responses in zebrafish (Danio rerio). Behav Brain Res 2007 [Epub ahead of print]
  • Jesuthasan SJ, Mathuru AS. The alarm response in zebrafish: innate fear in a vertebrate genetic model. J Neurogenet 2008;22:211-28
  • Bass SL, Gerlai R. Zebrafish (Danio rerio) responds differentially to stimulus fish: the effects of sympatric and allopatric predators and harmless fish. Behav Brain Res 2008;186:107-17
  • Bencan Z, Levin ED. The role of alpha7 and alpha4beta2 nicotinic receptors in the nicotine-induced anxiolytic effect in zebrafish. Physiol Behav 2008;95:408-12
  • Kokel D, Peterson RT. Chemobehavioural phenomics and behaviour-based psychiatric drug discovery in the zebrafish. Brief Funct Genomic Proteomic 2008;7:483-90
  • Thirumalai V, Cline HT. Endogenous dopamine suppresses initiation of swimming in prefeeding zebrafish larvae. J Neurophysiol 2008;100:1635-48
  • Burgess HA, Granato M. Sensorimotor gating in larval zebrafish. J Neurosci 2007;27:4884-94
  • Yu CJ, Li L. Dopamine modulates voltage-activated potassium currents in zebrafish retinal on bipolar cells. J Neurosci Res 2005;82:368-76
  • Airhart MJ, et al. Movement disorders and neurochemical changes in zebrafish larvae after bath exposure to fluoxetine (PROZAC). Neurotoxicol Teratol 2007;29:652-64
  • Brustein E, Chong M, Holmqvist B. Serotonin patterns locomotor network activity in the developing zebrafish by modulating quiescent periods. J Neurobiol 2003;57:303-22
  • Tabo R, Friedrich RW. Pharmacological analysis of ionotropic glutamate receptor function in neuronal circuits of the zebrafish olfactory bulb. PLoS ONE 2008;3:e1416
  • Todd KJ, Slatter CA, Ali DW. Activation of ionotropic glutamate receptors on peripheral axons of primary motoneurons mediates transmitter release at the zebrafish NMJ. J Neurophysiol 2004;91:828-40
  • Tabor R, Yaksi E, Friedrich RW. Multiple functions of GABA A and GABA B receptors during pattern processing in the zebrafish olfactory bulb. Eur J Neurosci 2008;28:117-27
  • Zhdanova IV, Wang SY, Leclair OU, Danilova NP. Melatonin promotes sleep-like state in zebrafish. Brain Res 2001;903:263-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.