2,706
Views
17
CrossRef citations to date
0
Altmetric
Reviews

Computational systems approach for drug target discovery

Pages 1221-1236 | Published online: 24 Nov 2009

Bibliography

  • Drews J. Drug Discovery: a Historical Perspective. Science 2000;287(5460):1960-4
  • Butcher EC, Berg EL, Kunkel EJ. Systems biology in drug discovery. Nat Biotechnol 2004;22(10):1253-9
  • Butcher E. Can cell systems biology rescue drug discovery? Nat Rev Drug Discov 2005;4(6):461-7
  • Materi W, Wishart DS. Computational systems biology in drug discovery and development: methods and applications. Drug Discov Today 2007;12(7-8):295-303
  • Lindsay MA. Target discovery. Nat Rev Drug Discov 2003;2(10):831-8
  • Leon D, Markel S. In silico technologies in drug target identification validation. CRC Press, Taylor and Francis; June 13, 2006
  • Kitano H. Systems biology: a brief overview. Science 2002;295(5560):1662-4
  • Aderem A. Systems biology: its practice and challenges. Cell 2005;121(4):511-3
  • Auffray C, Chen Z, Hood L. Systems medicine: the future of medical genomics and healthcare. Genome Med 2009;1(1):2
  • Noble D. From the hodgkin-huxley axon to the virtual heart. J Physiol 2007;580:15-22
  • Hasan S, Daugelat S, Rao PSS, Schreiber M. Prioritizing genomic drug targets in pathogens: application to mycobacterium tuberculosis. PLoS Comput Biol 2006;2(6):e61
  • Kauffman KJ, Prakash P, Edwards JS. Advances in flux balance analysis. Curr Opin Biotechnol 2003;14(5):491-6
  • Bakker BM, Michels PAM, Opperdoes FR, Westerhoff HV. Glycolysis in bloodstream form trypanosoma brucei can be understood in terms of the kinetics of the glycolytic enzymes. J Biol Chem 1997;272(6):3207-15
  • Barabasi A-L, Oltvai ZN. Network biology: understanding the cell's functional organization. Nat Rev Genet 2004;5(2):101-13
  • Hardy S, Robillard PN. Phenomenological and molecular-level petri net modeling and simulation of long-term potentiation. Biosystems 2005;82(1):26-38
  • Eisenthal R, Cornish-Bowden A. Prospects for antiparasitic drugs. The case of trypanosoma brucei, the causative agent of african sleeping sickness. J Biol Chem 1998;273(10):5500-5
  • Stelling J. Mathematical models in microbial systems biology. Curr Opin Microbiol 2004;7(5):513-8
  • Wiechert W. Modeling and simulation: tools for metabolic engineering. J Biotechnol 2002;94(1):37-63
  • Cascante M, Boros LG, Comin-Anduix B, Metabolic control analysis in drug discovery and disease. Nat Biotechnol 2002;20(3):243-9
  • Covert M, Schilling C, Famili I, Metabolic modeling of microbial strains in silico. Trends Biochem Sci 2001;26(3):179-86
  • Ogata H, Goto S, Sato K, KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 1999;27(1):29-34
  • Karp PD, Ouzounis CA, Moore-Kochlacs C, Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res 2005;33(19):6083-9
  • Le Novere N, Bornstein B, Broicher A, Biomodels database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res 2006;34(Database issue):D689-91
  • Hucka M, Finney A, Sauro HM, The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 2003;19(4):524-31
  • Raman K, Rajagopalan P, Chandra N. Principles and practices of pathway modelling. Curr Bioinform 2006;1:147-60
  • Price ND, Reed JL, Palsson BO. Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2004;2(11):886-97
  • Albert M-A, Haanstra JR, Hannaert V, Experimental and in silico analysis of glycolytic flux control in bloodstream-form trypanosoma brucei. J Biol Chem 2005;280(31):28306-15
  • Yang K, Ma W, Liang H, Dynamic simulations on the arachidonic acid metabolic network. PLoS Comput Biol 2007;3(3):0523-30
  • Feist AM, Herrgard MJ, Thiele I, Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 2009;7(2):129-43
  • Lee JM, Gianchandani EP, Papin JA. Flux balance analysis in the era of metabolomics. Brief Bioinform 2006 2006;7(2):140-50
  • Duarte NC, Herrgayrd MJ, Palsson BO. Reconstruction and validation of saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res 2004;14(7):1298-309
  • Förster J, Famili I, Palsson BO, Nielsen J. Large-scale evaluation of in silico gene deletions in Saccharomyces cerevisiae. OMICS 2003;7(2):193-202
  • Edwards JS, Palsson BO. The Escherichia coli MG1655 in silico metabolic genotype: Its definition, characteristics, and capabilities. Proc Natl Acad Sci USA 2000;97(10):5528-33
  • Raman K, Rajagopalan P, Chandra N. Flux balance analysis of mycolic acid pathway: targets for anti-tubercular drugs. PLoS Comput Biol 2005;1(5):e46
  • Beste D, Hooper T, Stewart G, GSMN-TB: a web-based genome-scale network model of mycobacterium tuberculosis metabolism. Genome Biol 2007;8(5):R89
  • Jamshidi N, Palsson B. Investigating the metabolic capabilities of mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets. BMC Syst Biol 2007;1(1):26
  • Lee D-S, Burd H, Liu J, Comparative genome-scale metabolic reconstruction and flux balance analysis of multiple staphylococcus aureus genomes identify novel antimicrobial drug targets. J Bacteriol 2009;191(12):4015-24
  • Wildermuth M. Metabolic control analysis: biological applications and insights. Genome Biol 2000;1(6): reviews1031.1-reviews.5
  • Stephanopoulos G, Aristidou A, Nielsen J. Metabolic engineering - principles and methodologies. Academic Press; 1998
  • Raamsdonk LM, Teusink B, Broadhurst D, A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol 2001;19(1):45-50
  • Teusink B, Baganz F, Westerhoff HV, Oliver SG. Metabolic control analysis as a tool in the elucidation of the function of novel genes. Yeast gene analysis. San Diego: Academic Press Inc; 1998. p. 297-336
  • Agius L. The physiological role of glucokinase binding and translocation in hepatocytes. In: Weber G, Weber CEF, editors. 38th Symposium on Regulation of Enzyme Activity and Synthesis in Normal and Neoplastic Tissues; 1997 Sep 29-30; Indianapolis, Indiana: Pergamon Press Ltd; 1997. p. 303-31
  • Gerber S, Aßmus H, Bakker B, Klipp E. Drug-efficacy depends on the inhibitor type and the target position in a metabolic network–A systematic study. J Theor Biol 2008;252(3):442-55
  • Carole K, Jean-Michel F, Guillaume B. The topology of the protein network influences the dynamics of gene order: from systems biology to a systemic understanding of evolution. Artif Life 2008;14(1):149-56
  • Chautard E, Thierry-Mieg N, Ricard-Blum S. Interaction networks: from protein functions to drug discovery. A review. Pathol Biol 2009;57(4):324-33
  • B Ganter, C Giroux. Emerging applications of network and pathway analysis in drug discovery and development. Curr Opin Drug Discov Devel 2008;11:86-94
  • Verkhedkar KD, Raman K, Chandra NR, Vishveshwara S. Metabolome based reaction graphs of M. tuberculosis and M. leprae: a comparative network analysis. PLoS ONE 2007;2(9):e881
  • Strong M, Graeber TG, Beeby M, Visualization and interpretation of protein networks in Mycobacterium tuberculosis based on hierarchical clustering of genome-wide functional linkage maps. Nucleic Acids Res 2003;31(24):7099-109
  • Jensen LJ, Kuhn M, Stark M, STRING 8--a global view on proteins and their functional interactions in 630 organisms. Nucl Acids Res 2009;37(Suppl 1):D412-6
  • Raman K, Yeturu K, Chandra N. targetTB: a target identification pipeline for Mycobacterium tuberculosis through an interactome, reactome and genome-scale structural analysis. BMC Syst Biol 2008;2(1):109
  • Cui T, Zhang L, Wang X, He Z-G. Uncovering new signaling proteins and potential drug targets through the interactome analysis of Mycobacterium tuberculosis. BMC Genomics 2009;10(1):118
  • Balazsi G, Heath AP, Shi L, Gennaro ML. The temporal response of the mycobacterium tuberculosis gene regulatory network during growth arrest. Mol Syst Biol 2008;4:225
  • Kitano H. Towards a Theory of Biological Robustness. Mol Syst Biol 2007;3:137
  • Chen Y, Zhu J, Lum PY, Variations in DNA elucidate molecular networks that cause disease. Nature 2008;452(7186):429-35
  • Ooi SL, Pan X, Peyser BD, Global synthetic-lethality analysis and yeast functional profiling. Trends Genet 2006;22(1):56-63
  • Whitehurst AW, Bodemann BO, Cardenas J, Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature 2007;446(7137):815-9
  • Raman K, Vashisht R, Chandra N. Strategies for efficient disruption of metabolism in Mycobacterium tuberculosis from network analysis. Mol BioSyst; 2009; June 29 [Epub ahead of print]
  • Goemann B, Wingender E, Potapov A. An approach to evaluate the topological significance of motifs and other patterns in regulatory networks. BMC Syst Biol 2009;3(1):53
  • Tamada Y, Araki H, Imoto S, Unraveling dynamic activities of autocrine pathways that control drug-response transcriptome networks. Pac Symp Biocomput 2009;14:251-63
  • Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 2008;4(11):682-90
  • Mount DW. Bioinformatics - sequence and genome analysis: CBS Publishers and Distributors; 2001
  • Available from: http://www.ncbi.nlm.nih.gov
  • Li Q, Lai L. Prediction of potential drug targets based on simple sequence properties. BMC Bioinform 2007;8(1):353
  • Sanseau P. Impact of human genome sequencing for in silico target discovery. Drug Discov Today 2001;6(6):316-23
  • Wishart DS. Discovering drug targets through the web. Comp Biochem Physiol D Genomics Proteomics 2007;2(1):9-17
  • Holm L, Sander C. Protein structure comparison by alignment of distance matrices. J Mol Biol 1993;233(1):123-38
  • Scapin G. Structural biology and drug discovery. Curr Pharm Des 2006;12(17):2087-97
  • Berman HM, Westbrook J, Feng Z, The protein data bank. Nucleic Acids Res 2000;28(1):235-42
  • Todd AE, Marsden RL, Thornton JM, Orengo CA. Progress of structural genomics initiatives: an analysis of solved target structures. J Mol Biol 2005;348(5):1235-60
  • Available from: http://www.rcsb.org/pdb/
  • Martí-Renom MA, Stuart AC, Fiser As, Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 2000;29(1):291-325
  • Riccardo MB-L, Alex DH, Michael JES, Lawrence AK. Exploring the extremes of sequence/structure space with ensemble fold recognition in the program Phyre. Proteins Struct Funct Bioinform 2008;70(3):611-25
  • Murzin AG, Brenner SE, Hubbard T, Chothia C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 1995;247(4):536-40
  • Orengo CA, Michie AD, Jones S, CATH a hierarchic classification of protein domain structures. Structure 1997;5(8):1093-109
  • Taylor WR, Orengo CA. Protein structure alignment. J Mol Biol 1989;208:1-22
  • Kalidas Y, Chandra N. PocketDepth: a new depth based algorithm for identification of ligand binding sites in proteins. J Struct Biol 2008;161(1):31-42
  • Yeturu K, Chandra N. PocketMatch: a new algorithm to compare binding sites in protein structures. BMC Bioinform 2008;9(1):543
  • An J, Totrov M, Abagyan R. Pocketome via comprehensive identification and classification of ligand binding envelopes. Mol Cell Proteomics 2005;4(6):752-61
  • Egner U, Hillig RC. A structural biology view of target drugability. Expert Opin Drug Discov 2008;3(4):391-401
  • Xie L, Li J, Xie L, Bourne PE. Drug discovery using chemical systems biology: identification of the protein-ligand binding network to explain the side effects of CETP inhibitors. PLoS Comput Biol 2009;5(5):e1000387
  • Campillos M, Kuhn M, Gavin A-C, Drug target identification using side-effect similarity. Science 2008;321(5886):263-6
  • Forst CV. Network genomics – a novel approach for the analysis of biological systems in the post-genomic era. Mol Biol Rep 2002;29(3):265-80
  • Yamanishi Y, Araki M, Gutteridge A, Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 2008;24(13):i232-40
  • Yildirim MA, Goh K-I, Cusick ME, Drug target network. Nat Biotechnol 2007;25(10):1119-26
  • Heller MJ. DNA microarray technology: devices, systems, and applications. Annu Rev Biomed Eng 2002;4(1):129-53
  • Yamamoto M, Wakatsuki T, Hada A, Ryo A. Use of serial analysis of gene expression (SAGE) technology. J Immunol Methods 2001;250(1-2):45-66
  • Weinberg GA, Erdman DD, Edwards KM, Superiority of reverse transcription polymerase chain reaction to conventional viral culture in the diagnosis of acute respiratory tract infections in children. J Infect Dis 2004;189(4):706-10
  • Bajorath J. Rational drug discovery revisited: interfacing experimental programs with bio- and chemo-informatics. Drug Discov Today 2001;6(19):989-95
  • Stefanie F, Shoudan L, Xiling W, Roland S. Target finding in genomes and proteomes. In: Thomas L, editor, Bioinformatics - From Genomes to Drugs 2004. p. 119-35
  • Sassetti CM, Boyd DH, Rubin EJ. Genes required for mycobacterium growth defined by high density mutagenesis. Mol Microbiol 2003;48:77-84
  • Wright GD. The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol 2007;5(3):175-86
  • Raman K, Chandra N. Mycobacterium tuberculosis interactome analysis unravels potential pathways to drug resistance. BMC Microbiol 2008;8(1):234
  • Hunter PJ, Borg TK. Integration from proteins to organs: the physiome project. Nat Rev Mol Cell Biol 2003;4(3):237-43
  • Avialable from: http://www.entelos.com/

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.