284
Views
22
CrossRef citations to date
0
Altmetric
Reviews

Cantilever biosensors in drug discovery

&
Pages 1237-1251 | Published online: 24 Nov 2009

Bibliography

  • Bunney WE, Bunney BG, Vawter MP, Microarray technology: a review of new strategies to discover candidate vulnerability genes in psychiatric disorders. Am J Psychiatry2003;160:657-66
  • Debouck C, Goodfellow PN. DNA microarrays in drug discovery and development. Nat Genet1999;21:48-50
  • Kumble KD. Protein microarrays: new tools for pharmaceutical development. Anal Bioanal Chem2003;377:812-9
  • Vo-Dinh T, Scaffidi J, Gregas M, Applications of fiber-optics-based nanosensors to drug discovery. Expert Opin Drug Discov2009;4:889-900
  • Yu DH, Blankert B, Vire JC, Biosensors in drug discovery and drug analysis. Anal Lett2005;38:1687-701
  • Cooper MA. Optical biosensors in drug discovery. Nat Rev Drug Discov2002;1:515-28
  • Keusgen M. Biosensors: new approaches in drug discovery. Naturwissenschaften2002;89:433-44
  • Cunningham BT, Laing LG. Advantages and application of label-free detection assays in drug screening. Expert Opin Drug Discov2008;3:891-901
  • Cooper MA. Biosensor profiling of molecular interactions in pharmacology. Curr Opin Pharm2003;3:557-62
  • Thevenot DR, Toth K, Durst RA, Electrochemical biosensors: Recommended definitions and classification–(Technical Report). Pure Appl Chem1999;71:2333-48
  • Tatsuma T, Watanabe Y, Oyama N, Multichannel quartz crystal microbalance. Anal Chem1999;71:3632-6
  • Dostalek J, Vaisocherova H, Homola J. Multichannel surface plasmon resonance biosensor with wavelength division multiplexing. Sens Actuators B Chem2005;108:758-64
  • Goeders KM, Colton JS, Bottomley LA. Microcantilevers: sensing chemical interactions via mechanical motion. Chem Rev2008;108:522-42
  • Waggoner PS, Craighead HG. Micro- and nanomechanical sensors for environmental, chemical, and biological detection. Lab Chip2007;7:1238-55
  • Lavrik NV, Sepaniak MJ, Datskos PG. Cantilever transducers as a platform for chemical and biological sensors. Rev Sci Instrum2004;75:2229-53
  • Raiteri R, Grattarola M, Butt HJ, Micromechanical cantilever-based biosensors. Sens Actuators B Chem2001;79:115-26
  • Maraldo D, Rijal K, Campbell G, Method for label-free detection of femtogram quantities of biologics in flowing liquid samples. Anal Chem2007;79:2762-70
  • Rijal K, Mutharasan R. Method for measuring the self-assembly of alkanethiols on gold at femtomolar concentrations. Langmuir2007;23:6856-63
  • Fritz J, Baller MK, Lang HP, Translating biomolecular recognition into nanomechanics. Science2000;288:316-8
  • McKendry R, Zhang JY, Arntz Y, Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proc Natl Acad Sci USA2002;99:9783-8
  • Wu GH, Datar RH, Hansen KM, Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat Biotechnol2001;19:856-60
  • Arntz Y, Seelig JD, Lang HP, Label-free protein assay based on a nanomechanical cantilever array. Nanotechnology2003;14:86-90
  • Burg TP, Godin M, Knudsen SM, Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature2007;446:1066-9
  • Campbell GA, Mutharasan R. Piezoelectric-excited millimeter-sized cantilever (PEMC) sensors detect Bacillus anthracis at 300 spores/mL. Biosens Bioelectron2006;21:1684-92
  • Campbell GA, Mutharasan R. Detection of pathogen Escherichia coli O157: H7 using self-excited PZT-glass microcantilevers. Biosens Bioelectron2005;21:462-73
  • Davila AP, Jang J, Gupta AK, Microresonator mass sensors for detection of Bacillus anthracis Sterne spores in air and water. Biosens Bioelectron2007;22:3028-35
  • Gupta A, Akin D, Bashir R. Single virus particle mass detection using microresonators with nanoscale thickness. Appl Phys Lett2004;84:1976-8
  • Moulin AM, O'Shea SJ, Welland ME. Microcantilever-based biosensors. Ultramicroscopy2000;82:23-31
  • Hwang KS, Jeon HK, Lee SM, Quantification of disease marker in undiluted serum using an actuating layer-embedded microcantilever. J Appl Phys2009;105:102017
  • Maraldo D, Garcia FU, Mutharasan R. Method for quantification of a prostate cancer biomarker in urine without sample preparation. Anal Chem2007;79:7683-90
  • Maraldo D, Mutharasan R. 10-minute assay for detecting Escherichia coli O157: H7 in ground beef samples using piezoelectric-excited millimeter-size cantilever sensors. J Food Prot2007;70:1670-7
  • Campbell GA, Uknalis J, Tu SI, Detect of Escherichia coli O157: H7 in ground beef samples using piezoelectric excited millimeter-sized cantilever (PEMC) sensors. Biosens Bioelectron2007;22:1296-302
  • Maraldo D, Mutharasan R. Detection and confirmation of staphylococcal enterotoxin B in apple juice and milk using piezoelectric-excited millimeter-sized cantilever sensors at 2.5 fg/mL. Anal Chem2007;79:7636-43
  • Stony GG. The tension of metallic films deposited by electrolysis. Proc R Soc Lond Ser A1909;82:172-5
  • Thundat T, Warmack RJ, Chen GY, Thermal and ambient-induced deflections of scanning force microscope cantilevers. Appl Phys Lett1994;64:2894-6
  • Ilic B, Craighead HG, Krylov S, Attogram detection using nanoelectromechanical oscillators. J Appl Phys2004;95:3694-703
  • Yang YT, Callegari C, Feng XL, Zeptogram-scale nanomechanical mass sensing. Nano Lett2006;6:583-6
  • Sader JE. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J Appl Phys1998;84:64-76
  • Van Eysden CA, Sader JE. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope: arbitrary mode order. J Appl Phys2007;101:044908
  • Braun T, Barwich V, Ghatkesar MK, Micromechanical mass sensors for biomolecular detection in a physiological environment. Phys Rev E 2005;72:031907
  • Campbell GA, Mutharasan R. Use of piezoelectric-excited millimeter-sized cantilever sensors to measure albumin interaction with self-assembled monolayers of alkanethiols having different functional headgroups. Anal Chem2006;78:2328-34
  • Verbridge SS, Bellan LM, Parpia JM, Optically driven resonance of nanoscale flexural oscillators in liquid. Nano Lett2006;6:2109-14
  • Vancura C, Lichtenberg J, Hierlemann A, Characterization of magnetically actuated resonant cantilevers in viscous fluids. Appl Phys Lett2005;87:162510
  • Waggoner PS, Tan CP, Bellan L, High-Q, in-plane modes of nanomechanical resonators operated in air. J Appl Phys2009;105:094315
  • Shekhawat G, Tark SH, Dravid VP. MOSFET-embedded microcantilevers for measuring deflection in biomolecular sensors. Science2006;311:1592-5
  • Hermanson GT. Bioconjugate Technique: Elsevier; 2008
  • Datar R, Kim S, Jeon S, Cantilever sensors: nanomechanical tools for diagnostics. MRS Bull2009;34:449-54
  • Braun T, Backmann N, Vogtli M, Conformational change of bacteriorhodopsin quantitatively monitored by microcantilever sensors. Biophys J2006;90:2970-7
  • Shu W, Laurenson S, Knowles TPJ, Highly specific label-free protein detection from lysed cells using internally referenced microcantilever sensors. Biosens Bioelectron2008;24:233-7
  • Lee SM, Hwang KS, Yoon HJ, Sensitivity enhancement of a dynamic mode microcantilever by stress inducer and mass inducer to detect PSA at low picogram levels. Lab Chip2009;9:2683-90
  • Yue M, Stachowiak JC, Lin H, Label-free protein recognition two-dimensional array using nanomechanical sensors. Nano Lett2008;8:520-4
  • Lee JH, Kim TS, Yoon KH. Effect of mass and stress on resonant frequency shift of functionalized Pb(Zr0.52Ti0.48)O3 thin film microcantilever for the detection of C-reactive protein. Appl Phys Lett2004;84:3187-9
  • Grogan C, Raiteri R, O'Connor GM, Characterisation of an antibody coated microcantilever as a potential immuno-based biosensor. Biosens Bioelectron2002;17:201-7
  • Moulin AM, O'Shea SJ, Badley RA, Measuring surface-induced conformational changes in proteins. Langmuir1999;15:8776-9
  • Rijal K, Mutharasan R. PEMC-based method of measuring DNA hybridization at femtomolar concentration directly in human serum and in the presence of copious noncomplementary strands. Anal Chem2007;79:7392-400
  • Mertens J, Rogero C, Calleja M, Label-free detection of DNA hybridization based on hydration-induced tension in nucleic acid films. Nat Nanotechnol2008;3:301-7
  • Su M, Li SU, Dravid VP. Microcantilever resonance-based DNA detection with nanoparticle probes. Appl Phys Lett2003;82:3562-4
  • Hansen KM, Ji HF, Wu GH, Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches. Anal Chem2001;73:1567-71
  • Rijal K. Use of piezoelectric-excited millimeter-sized cantilever (PEMC) sensors for DNA-based detection of pathogens and disease conditions [Ph.D.]. Drexel University: Philadelphia; 2007
  • Shu WM, Laue ED, Seshia AA. Investigation of biotin-streptavidin binding interactions using microcantilever sensors. Biosens Bioelectron2007;22:2003-9
  • Hyun SJ, Kim HS, Kim YJ, Mechanical detection of liposomes using piezoresistive cantilever. Sens Actuators B Chem2006;117:415-9
  • Kooser A, Manygoats K, Eastman MP, Investigation of the antigen antibody reaction between anti-bovine serum albumin (a-BSA) and bovine serum albumin (BSA) using piezoresistive microcantilever based sensors. Biosens Bioelectron2003;19:503-8
  • Campbell GA, Mutharasan R. Detection and quantification of proteins using self-excited PZT-glass millimeter-sized cantilever. Biosens Bioelectron2005;21:597-607
  • Lam Y, Abu-Lail NI, Alam MS, Using microcantilever deflection to detect HIV-1 envelope glycoprotein gp120. Nanomedicine2006;2:222-9
  • Martins MCL, Fonseca C, Barbosa MA, Albumin adsorption on alkanethiols self-assembled monolayers on gold electrodes studied by chronopotentiometry. Biomaterials2003;24:3697-706
  • Raorane DA, Lim MD, Chen FF, Quantitative and label-free technique for measuring protease activity and inhibition using a microfluidic cantilever array. Nano Lett2008;8:2968-74
  • Dauksaite V, Lorentzen M, Besenbacher F, Antibody-based protein detection using piezoresistive cantilever arrays. Nanotechnology2007;18:125503
  • Hwang KS, Lee SM, Eom K, Nanomechanical microcantilever operated in vibration modes with use of RNA aptamer as receptor molecules for label-free detection of HCV helicase. Biosens Bioelectron2007;23:459-65
  • Kwon HS, Han KC, Hwang KS, Development of a peptide inhibitor-based cantilever sensor assay for cyclic adenosine monophosphate-dependent protein kinase. Anal Chim Acta2007;585:344-9
  • Leifert WR, Aloia AL, Bucco O, G-protein-coupled receptors in drug discovery: nanosizing using cell-free technologies and molecular biology approaches. J Biomol Screen2005;10:765-79
  • Zhang Y, Venkatachalan SP, Xu H, Micromechanical measurement of membrane receptor binding for label-free drug discovery. Biosens Bioelectron2004;19:1473-8
  • Braun T, Ghatkesar MK, Backmann N, Quantitative time-resolved measurement of membrane protein-ligand interactions using microcantilever array sensors. Nat Nanotechnol2009;4:179-85
  • Mukhopadhyay R, Sumbayev VV, Lorentzen M, Cantilever sensor for nanomechanical detection of specific protein conformations. Nano Lett2005;5:2385-8
  • Ghatkesar MK, Lang HP, Gerber C, Comprehensive characterization of molecular interactions based on nanomechanics. PLoS ONE2008;3:e3610
  • Ndieyira JW, Watari M, Barrera AD, Nanomechanical detection of antibiotic mucopeptide binding in a model for superbug drug resistance. Nat Nanotechnol2008;3:691-6
  • Huber F, Hegner M, Gerber C, Label free analysis of transcription factors using microcantilever arrays. Biosens Bioelectron2006;21:1599-605
  • Savran CA, Knudsen SM, Ellington AD, Micromechanical detection of proteins using aptamer-based receptor molecules. Anal Chem2004;76:3194-8
  • Hwang KS, Lee JH, Park J, In-situ quantitative analysis of a prostate-specific antigen (PSA) using a nanomechanical PZT cantilever. Lab Chip2004;4:547-52
  • Lee JH, Hwang KS, Park J, Immunoassay of prostate-specific antigen (PSA) using resonant frequency shift of piezoelectric nanomechanical microcantilever. Biosens Bioelectron2005;20:2157-62
  • Wee KW, Kang GY, Park J, Novel electrical detection of label-free disease marker proteins using piezoresistive self-sensing micro-cantilevers. Biosens Bioelectron2005;20:1932-8
  • Maraldo D. Detection of proteins and pathogens in complex matrices using a novel cantilever design [Ph.D.]: Drexel University; 2007
  • Lee YH, Lee SK, Seo HJ, Label-free detection of a biomarker with piezoelectric microcantilever based on mass microbalancing. J Assoc Lab Automat2008;13:259-64
  • Capobianco JA, Shih WY, Yuan QA, Label-free, all-electrical, in situ human epidermal growth receptor 2 detection. Rev Sci Instrum2008;79:076101
  • Milburn C, Zhou J, Bravo O, Sensing interactions between Vimentin antibodies and antigens for early cancer detection. J Biomed Nanotech2005;1:30-8
  • Xia XY, Zhang ZX, Li XX. A Latin-cross-shaped integrated resonant cantilever with second torsion-mode resonance for ultra-resoluble bio-mass sensing. J Micromech Microeng2008;18:035028
  • Liu YJ, Li XX, Zhang ZX, Nanogram per milliliter-level immunologic detection of alpha-fetoprotein with integrated rotating-resonance microcantilevers for early-stage diagnosis of heptocellular carcinoma. Biomed Microdevices2009;11:183-91
  • Maisel AS, Bhalla V, Braunwald E. Cardiac biomarkers: a contemporary status report. Nat Clin Pract Cardiovasc Med2006;3:24-34
  • Kang GY, Han GY, Kang JY, Label-free protein assay with site-directly immobilized antibody using self-actuating PZT cantilever. Sens Actuators B Chem2006;117:332-8
  • Hwang KS, Eom K, Lee JH, Dominant surface stress driven by biomolecular interactions in the dynamical response of nanomechanical microcantilevers. Appl Phys Lett2006;89:173905
  • Knowles TPJ, Shu W, Huber F, Label-free detection of amyloid growth with microcantilever sensors. Nanotechnology2008;19:384007
  • Calleja M, Tamayo J, Nordstrom M, Low-noise polymeric nanomechanical biosensors. Appl Phys Lett2006;88:113901
  • Zhang J, Lang HP, Huber F, Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA. Nat Nanotechnol2006;1:214-20
  • Huber F, Backmann N, Grange W, Analyzing gene expression using combined nanomechanical cantilever sensors. J Phys Conf Ser2007;61:450-3
  • Calleja M, Nordstrom M, Alvarez M, Highly sensitive polymer-based cantilever-sensors for DNA detection. Ultramicroscopy2005;105:215-22
  • Lechuga LM, Tamayo J, Alvarez M, A highly sensitive microsystem based on nanomechanical biosensors for genomics applications. Sens Actuators B Chem2006;118:2-10
  • Vettiger P, Cross G, Despont M, The "millipede"–Nanotechnology entering data storage. IEEE Trans Nanotechnol2002;1:39-55
  • Yue M, Lin H, Dedrick DE, A 2-D microcantilever array for multiplexed biomolecular analysis. J Microelectromech Syst2004;13:290-9
  • Lim SH, Raorane D, Satyanarayana S, Nano-chemo-mechanical sensor array platform for high-throughput chemical analysis. Sens Actuators B Chem2006;119:466-74
  • Meyer GD, Moran-Mirabal JM, Branch DW, Nonspecific binding removal from protein microarrays using thickness shear mode resonators. IEEE Sens J2006;6:254-61
  • Cular S, Branch DW, Bhethanbotla VR, Removal of nonspecifically bound proteins on microarrays using surface acoustic waves. IEEE Sens J2008;8:314-20
  • Dultsev FN, Ostanin VP, Klenerman D. "Hearing" bond breakage. Measurement of bond rupture forces using a quartz crystal microbalance. Langmuir2000;16:5036-40
  • Cooper MA, Dultsev FN, Minson T, Direct and sensitive detection of a human virus by rupture event scanning. Nat Biotechnol2001;19:833-7
  • Yuan YJ, van der Werff MJ, Chen HG, Bond rupture of biomolecular interactions by resonant quartz crystal. Anal Chem2007;79:9039-44
  • Wu J, Fu Z, Yan F, Biomedical and clinical applications of immunoassays and immunosensors for tumor markers. Trends Anal Chem2007;26:679-88
  • Chen CH, Hwang RZ, Huang LS, A wireless bio-MEMS sensor for C-reactive protein detection based on nanomechanics. IEEE Trans Biomed Eng2009;56:462-70
  • Amritsar J, Stiharu I, Packirisamy M. Bioenzymatic detection of troponin C using micro-opto-electro-mechanical systems. J Biomed Opt2006;11:021010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.