336
Views
27
CrossRef citations to date
0
Altmetric
Reviews

Discovery of novel antibacterials

&
Pages 145-154 | Published online: 05 Jan 2010

Bibliography

  • Sneader W. Drug discovery: a history. Wiley, West Sussex, England; 2005
  • Palumbi SR. Humans as the world's greatest evolutionary force. Science 2001;293:1786-90
  • Levy SB. Antibiotic resistance – the problem intensifies. Adv Drug Deliv Rev 2005;57:1446-50
  • Livermore DM. Has the era of untreatable infections arrived? J Antimicrob Chemother 2009;64(Suppl 1):i29-36
  • Talbot GH, Bradley J, Edwards JE, Bad bugs need drugs: an update on the development pipeline from the Antimicrobial Availability Task Force of the Infectious Diseases Society of America. Clin Infect Dis 2006;42:657-68
  • Marshall E. Trench warfare in a battle with TB. Science 2008;321:362-4
  • Newman DJ, Cragg GM, Snader KM. Natural products as sources of new drugs over the period 1981-2002. J Nat Prod 2003;66:1022-37
  • Singh SB, Barrett JF. Empirical antibacterial drug discovery-foundation in natural products. Biochem Pharm 2006;71:1006-15
  • Clardy J, Fischbach MA, Walsh CT. New antibiotics from bacterial natural products. Nat Biotechnol 2006;24:1541-50
  • Torsvik V, Øvreås L, Thingstad TF. Prokaryotic diversity-magnitude, dynamics, and controlling factors. Science 2002;296:1064-6
  • Pace NR. A molecular view of microbial diversity and the biosphere. Science 1997;276:734-40
  • Harvey A. Strategies for discovering drugs from previously unexplored natural products. Drug Discov Today 2000;5:294-300
  • Handelsman J. Metagenomics: application of genomics to uncultured microorganisms. Micro Mol Biol Rev 2004;68:669-85
  • Charest MG, Lerner CD, Brubaker JD, A convergent enantioselective route to structurally diverse 6-deoxytetracycline antibiotics. Science 2005;308:395-8
  • Walsh C. Antibiotics: actions, origins, resistance. ASM Press: Washington DC; 2003
  • Reeves CD. The enzymology of combinatorial biosynthesis. Crit Rev Biotechnol 2003;23:95-147
  • Fu X, Albermann C, Jiang J, Antibiotic optimization via in vitro glycorandomization. Nat Biotechnol 2003;21:1467-9
  • Griffith BR, Langenhan JM, Thorson JS. Sweetening' natural products via glycorandomization. Curr Opin Biotechnol 2005;16:622-30
  • Drlica K, Zhao X. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev 1997;61:377-92
  • Laponogov I, Sohi MK, Veselkov DA, Structural insight into the quinolone-DNA cleavage complex of type IIA topoisomerases. Nat Struct Mol Biol 2009;16:667-9
  • Bradbury BJ, Pucci MJ. Recent advances in bacterial topoisomerase inhibitors. Curr Opin Pharmacol 2008;8:574-81
  • Miller AA, Bundy GL, Mott JE. Discovery and characterization of QPT-1, the progenitor of a new class of bacterial topoisomerase inhibitors. Antimicrob Agents Chemother 2008;52:2806-12
  • Long DD, Aggen JB, Chinn J, Exploring the positional attachment of glycopeptide/beta-lactam heterdimers. J Antibiot 2008;61:603-14
  • Brötz-Oesterhelt H, Brunner NA. How many modes of action should an antibiotic have? Curr Opin Pharmacol 2008;8:564-73
  • Brown ED, Wright GD. New targets and screening approaches in antimicrobial drug discovery. Chem Rev 2005;105:759-74
  • Walsh C. Where will new antibiotics come from? Nat Rev Microbiol 2003;1:65-9
  • Von Nussbaum F, Brands M, Hinzen B, Antibacterial natural products in medicinal chemistry – exodus or revival? Angew Chem Int Ed 2006;45:5072-129
  • Bumann D. Has nature already identified all useful antibacterial targets? Curr Opin Microbiol 2008;11:387-92
  • Haydon DJ, Stokes NR, Ure R, An inhibitor of FtsZ with potent and selective anti-staphylococcal activity. Science 2008;321:1673-5
  • Pathania R, Zlitni S, Barker C, Chemical genomics in escherichia coli identifies an inhibitor of bacterial lipoprotein targeting. Nat Chem Biol 2009;5:849-56
  • Blount KF, Breaker RR. Riboswitches as antibacterial drug targets. Nat Biotechnol 2006;24:1558-64
  • Sudarsan N, Cohen-Chalamish S, Nakamura S, Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine. Chem Biol 2005;12:1325-35
  • Black MT, Hodgson J. Novel target sites in bacteria for overcoming antibiotic resistance. Adv Drug Deliv Rev 2005;57:1528-38
  • Pucci MJ. Use of genomics to select antibacterial targets. Biochem Pharmacol 2006;71:1066-72
  • Akerley BJ, Rubin EJ, Camilli A, Systematic identification of essential genes by in vitro mariner mutagenesis. Proc Natl Acad Sci USA 1998;95:8927-32
  • Payne DJ, Gwynn MN, Holmes DJ, Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Revs Drug Discov 2007;6:29-40
  • Mochalkin I, Miller JR, Narasimhan L, Discovery of antibacterial biotin carboxylase inhibitors by virtual screening and fragment-based approaches. ACS Chem Biol 2009;4:473-83
  • Jacobs MA, Alwood A, Thaipisuttikul I, Comprehensive transposon mutant library of pseudomonas aeruginosa. Proc Natl Acad Sci USA 2003;100:14339-44
  • Payne DJ, Wallis NG, Gentry DR, The impact of genomics on novel antibacterial targets. Curr Opin Drug Discov Devel 2000;3:177-90
  • Campbell JW, Cronan JE. Bacterial fatty acid biosynthesis: targets for antibacterial drug discovery. Annu Rev Microbiol 2001;55:305-32
  • Zhang YM, White SW, Rock CO. Inhibiting bacterial fatty acid synthesis. J Biol Chem 2006;281:17541-4
  • Miller JR, Dunham S, Mochalkin I, A class of selective antibacterials derived from a protein kinase inhibitor pharmacophore. Proc Natl Acad Sci USA 2009;106:1737-42
  • Wang J, Soisson SM, Young K, Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature 2006;44:358-61
  • Freiberg C, Brunner NA, Schiffer G, Identification and characterization of the first class of potent bacterial acetyl-coA carboxylase inhibitors with antibacterial activity. J Biol Chem 2004;279:26066-73
  • Cheng CC, Shipps GW, Yang Z, Discovery and optimization of antibacterial AccC inhibitors. Bioorg Med Chem Lett. In press, doi:10.1016/j.bmcl.2009.10.057
  • Brinster S, Lamberet G, Staels B, Type II fatty acid synthesis is not a suitable antibiotic target for grampositive pathogens. Nature 2009;458:83-6
  • Mahajan-Miklos S, Tan M-W, Rahme LG, Molecular mechanisms of bacterial virulence elucidated using a pseudomonas aeruginosa-caenorhabditis elegans pathogenesis model. Cell 1999;96:47-56
  • Moy TI, Conery AL, Larkins-Ford J, High-throughput screen for novel antimicrobials using a whole animal infection model. ACS Chem Biol 2009;4:527-33
  • Hogan DA, Kolter R. Pseudomonas-candida interactions: an ecological role for virulence factors. Science 2002;296:2229-32
  • Van der Sar AM, Appelmelk BJ, Vandenbroucke-Grauls CMJE, A star with stripes: zebrafish as an infection model. Trends Microbiol 2004;12:451-7
  • Cossart P, Jonquières R. Sortase, a universal target for therapeutic agents against Gram-positive bacteria? Proc Natl Acad Sci USA 2000;97:5013-15
  • Waters CM, Bassler BL. Quorom sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 2005;21:319-46
  • O'Shea R, Moser HE. Physicochemical properties of antibacterial compounds: implications for drug discovery. J Med Chem 2008;51:2871-8
  • Lipinski CA, Lombardo F, Dominy BW, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 1997;23:3-23
  • Sandy M, Butler A. Microbial iron acquisition: marine and terrestrial siderophores. Chem Rev 2009;109:4580-95
  • Girijavallabhan V, Miller MJ. Therapeutic uses of iron (III) chelators and their antimicrobial conjugates. In: Crosa JH, Mey AR, Payne SM, editors, Iron transport in bacteria. ASM Press: Washington, DC; 2004. p. 413-33
  • Zurenko GE, Truesdell SE, Yagi BH, In vitro antibacterial activity and interactions with b-lactamases and penicillin-binding proteins of the new monocarbam antibiotic u-78608. Antimicrob Agents Chemother 1990;34:884-8
  • Sykes RB, Koster WH, Bonner DP. The new monobactams: chemistry and biology. J Clin Pharmacol 1988;28:113-19
  • Desarbre E, Page MGP. Combination medicaments for treating bacterial infections. WO2008116813; 2008
  • Desarbre E, Gaucher B, Page MGP, Roussel P. Useful combinations of monobactam antibiotics with beta -lactamase inhibitors. WO2007065288; 2007
  • Barker JJ. Antibacterial drug discovery and structure-based design. Drug Discov Today 2006;11:391-404
  • Reck F, Zhou F, Girardot M, Identification of 4-substituted 1,2,3-triazoles as novel oxazolidinone antibacterial agents with reduced activity against monoamine oxidase A. J Med Chem 2005;48:499-506
  • McInnes C. Virtual screening strategies in drug discovery. Curr Opin Chem Biol 2007;11:494-502
  • Rush TS, Grant JA, Mosyak L, A shape-based 3-D scaffold hopping method and its application to a bacterial protein-protein interaction. J Med Chem 2005;48:1489-95
  • Douguet D. Ligand-based approaches in virtual screening. Curr Comput Aided Drug Des 2008;4:180-90
  • Congreve M, Chessari G, Tisi D, Recent developments in fragment-based drug discovery. J Med Chem 2008;51:3661-80
  • Alex AA, Flocco MM. Fragment-based drug discovery: what has it achieved so far? Curr Top Med Chem 2007;7:1544-67
  • Fattori D. Molecular recognition: the fragment approach in lead generation. Drug Discov Today 2004;9:229-38
  • Hopkins AL. Ligand efficiency: a useful metric for lead selection. Drug Discov Today 2004;9:430-1
  • Jhoti H, Cleasby A, Verdonk M, Williams G. Fragment-based screening using X-ray crystallography and NMR spectroscopy. Curr Opin Chem Biol 2007;11:485-93
  • Mayer MB, Mayer B. Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew Chem Int Ed 1999;38:1784-8
  • Dalvit C, Fogliatto G, Stewart A, WaterLOGSY as a method for primary NMR screening: Practical aspects and range of applicability. J Biol Mol NMR 2001;21:349-59
  • Hubbard RE. Fragment approaches in structure-based drug discovery. J Synchrotron Radiat 2008;15:227-30
  • Makara GM, Athanasopoulos J. Improving success rates for lead generation using affinity binding technologies. Curr Opin Biotechnol 2005;16:666-73
  • Siegel G, Eiso A, Schultz J. Integration of fragment screening and library design. Drug Discov Today 2007;12:1032-9
  • Boehm H-J, Boehringer M, Bur D, Novel Inhibitors of DNA gyrase: 3D structure based biased needle screening, hit validation by biophysical methods, and 3D guided optimization. A promising alternative to random screening. J Med Chem 2000;43:2664-74
  • Oblak M, Grdadolnik SG, Kotnik M, In silico fragment-based discovery of indolin-2-one analogues as potent DNA gyrase inhibitors. Bioorg Med Chem Lett 2005;15:5207-10
  • Perkins R, Fang H, Tony W, Welsh WJ. Quantitative structure-activity relationship methods: perspectives on drug discovery and toxicology. Environ Toxicol Chem 2003;22:1666-79
  • Prado-Prado FJ, Gonzalez-Diaz H, Santana L, Uriarte E. Unified QSAR approach to antimicrobials. Part 2: predicting activity against more than 90 different species in order to halt antibacterial resistance. Bioorg Med Chem 2007;15:897-902
  • Gonzalez-Diaz H, Prado-Prado F, Ubeira FM. Predicting antimicrobial drugs and targets with the MARCH-INSIDE approach. Curr Top Med Chem 2008;8:1676-90
  • Cai H, Rose K, Liang L-H, Development of a liquid chromatography/mass spectrometry-based drug accumulation assay in pseudomonas aeruginosa. Anal Biochem 2009;385:321-5
  • Piddock LJV, Jin YF, Griggs DJ. Effect of hydrophobicity and molecular mass on the accumulation of fluoroquinolones by Staphylococcus aureus. J Antimicrob Chemother 2001;47:261-70
  • Moreau N, Lacroix P, Fournel L. Antibiotic uptake by bacteria as measured by partition in polymer aqueous phase systems. Anal Biochem 1984;141:94-100
  • Piddock LJV, Johnson MM. Accumulation of 10 fluoroquinolones by wild-type or efflux mutant streptococcus pneumoniae. Antimicrob Agents Chemother 2002;46:813-20
  • Piddock LJV, Jin YF, Ricci V, Asuquo AE. Quinolone accumulation by pseudomonas aeruginosa, staphylococcus aureus and escherichia coli. J Antimicrob Chemother 1999;43:61-70
  • Murakami S, Nakashima R, Yamashita E, Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 2006;443:173-9
  • Kamicker BJ, Sweeney MT, Kaczmarek F, Bacterial efflux pump inhibitors. In: Champney WS, editor, New antibiotic targets. Methods in molecular medicine (Volume 142). Humana Press, Totowa, NJ; 2008. p. 187-204

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.