1,140
Views
152
CrossRef citations to date
0
Altmetric
Reviews

In situ click chemistry: a powerful means for lead discovery

&
Pages 525-538 | Published online: 16 Nov 2006

Bibliography

  • GOLEBIOWSKI A, KLOPFENSTEIN SR, PORTLOCK DE: Lead compounds discovered from libraries. Curr. Opin. Chem. Biol. (2001) 5(3):273-284.
  • GOLEBIOWSKI A, KLOPFENSTEIN SR, PORTLOCK DE: Lead compounds discovered from libraries: Part 2. Curr. Opin. Chem. Biol. (2003) 7(3):308-325.
  • NICOLAU KC, HANKO R, HARTWIG W: Handbook of Combinatorial Chemistry, Volume 1: Drugs, Catalysts, Materials. Wiley-VCH, Weinheim, Germany (2002).
  • NICOLAU KC, HANKO R, HARTWIG W: Handbook of Combinatorial Chemistry, Volume 2: Drugs, Catalysts, Materials. Wiley-VCH, Weinheim, Germany (2002).
  • REES DC, CONGREVE M, MURRAY CW et al.: Fragment-based lead discovery. Nat. Rev. Drug Discov. (2004) 3(8):660-672.
  • ERLANSON DA, MCDOWELL RS, O’BRIEN T: Fragment-based drug discovery. J. Med. Chem. (2004) 47(14):3463-3482.
  • ERLANSON DA, HANSEN SK: Making drugs on proteins: site-directed ligand discovery for fragment-based lead assembly. Curr. Opin. Chem. Biol. (2004) 8(4):399-406.
  • CARR RAE, CONGREVE M, MURRAY CW, REES DC: Fragment-based lead discovery: leads by design. Drug Discov. Today (2005) 10(14):987-992.
  • SCHUFFENHAUER A, RUEDISSER S, MARZINZIK A et al.: Library design for fragment-based screening. Curr. Top. Med. Chem. (2005) 5(8):751-762.
  • HARTSHORN MJ, MURRAY CW, CLEASBY A et al.: Fragment-based lead discovery using X-ray crystallography. J. Med. Chem. (2005) 48(2):403-413.
  • SHUKER SB, HAJDUK PJ, MEADOWS RP et al.: Discovering high-affinity ligands for proteins: SAR by NMR. Science (1996) 274(5292):1531-1534.
  • SCHADE M, OSCHKINAT H: NMR fragment screening:tackling protein–protein interaction targets. Curr. Opin. Drug Discov. Dev. (2005) 8(3):365-373.
  • HUTH JR, SUN C: Utility of NMR in lead optimization:fragment-based approaches. Comb. Chem. High Throughput Screening (2002) 5(8):631-643.
  • MAMMEN M, CHIO SK, WHITESIDES GM: Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. (1998) 37(20):2755-2794.
  • CHEESEMAN JD, CORBETT AD, GLEASON JL, KASLAUSKAS RJ: Receptor-assisted combinatorial chemistry:thermodynamics and kinetics in drug discovery. Chemistry – A European J. (2005) 11(6):1708-1716.
  • DEBRUIN B, HAUWERT P, REEK JNH: Dynamic combinatorial chemistry: the unexpected choice of receptors by guest molecules. Angew. Chem. Int. Ed. (2006) 45(17):2660-2663.
  • RAMSTROM O, LEHN JM: Drug discovery by dynamic combinatorial libraries. Nat. Rev. Drug Discov. (2002) 1(1):26-36.
  • OTTO S, FURLAN RLE, SNADERS JKM: Dynamic combinatorial chemistry. Drug Discov. Today (2002) 7(2):117-125.
  • VALADE A, URBAN D, BEAU JM: Target-assisted selection of galactosyltransferase binders from dynamic combinatorial libraries. An unexpected solution with restricted amounts of the enzyme. ChemBioChem (2006) 7(7):1023-1027.
  • SHI B, STEVENSON R, CAMPOPIANO DJ, GREANEY MF: Discovery of glutathione S-transferase inhibitors using dynamic combinatorial chemistry. J. Am. Chem. Soc. (2006) 128(26):8459-8467.
  • POULSEN SA, BORNAGHI LF: Fragment-based drug discovery of carbonic anhydrase II inhibitors by dynamic combinatorial chemistry utilizing alkene cross metathesis. Bioorg. Med. Chem. (2006) 14(10):3275-3284.
  • MILANESI l, HUNTER CA, SEDELNIKOVA SE, WALTHO JP: Amplification of bifunctional ligands for calmodulin from a dynamic combinatorial library. Chemistry – A European J. (2006) 12(4):1081-1087.
  • ZAMEO S, VAUZEILLES B, BEAU JM: Dynamic combinatorial chemistry: lysozyme selects an aromatic motif that mimics a carbohydrate residue. Angew. Chem. Int. Ed. (2005) 44(6):965-969.
  • RAMSTROM O, LOHMANN S, BUNYAPAIBOONSRI T, LEHN JM: Dynamic combinatorial carbohydrate libraries:probing the binding site of the concanavalin A lectin. Chemistry – A European J. (2004) 10(7):1711-1715.
  • BUNYAPAIBOONSRI T, RAMSTROM O, LOHMANN S, LEHN JM, PENG L, GOELDNER M: Dynamic deconvolution of a pre-equilibrated dynamic combinatorial library of acetylcholinesterase inhibitors. ChemBioChem (2001) 2(6):438-444.
  • NICOLAU KC, HUGHES R, CHO SY, WINSSINGER N, LABISCHINSKI H, ENDERMANN R: Synthesis and biological evaluation of vancomycin dimers with potent activity against vancomycin-resistant bacteria:target-accelerated combinatorial synthesis. Chemistry – A European J. (2001) 7(17):24-43.
  • RAMSTROM O, LEHN JM: In situ generation and screening of a dynamic combinatorial carbohydrate library against concanavalin A. ChemBioChem (2000) 1(1):41-48.
  • NICOLAU KC, HUGHES R, CHO SY, WINSSINGER N et al.: Target-accelerated combinatorial synthesis and discovery of highly potent antibiotics effective against vancomycin-resistant bacteria. Angew. Chem. Int. Ed. (2000) 39(21):3823-3828.
  • HUC I, LEHN JM: Virtual combinatorial libraries:dynamic generation of molecular and supramolecular diversity by self-assembly. Proc. Natl. Acad. Sci. USA (1997) 94(6):2106-2110.
  • OSLOB JD, ERLANSON DA: Tethering in early target assessment. Drug Discov. Today: Targets (2004) 3(4):143-150.
  • ERLANSON DA, WELLS JA, BRAISTED AC: Tethering: fragment-based drug discovery. Ann. Rev. Biophys. Biomol. Struct. (2004) 33:199-223.
  • ERLANSON DA, MCDOWELL RS, HE MM et al.: Discovery of a new phosphotyrosine mimetic for PTP1B using breakaway tethering. J. Am. Chem. Soc. (2003) 125(19):5602-5603.
  • ERLANSON DA, LAM JW, WIESMANN C et al.: In situ assembly of enzyme inhibitors using extended tethering. Nat. Biotechnology (2003) 21(3):308-314.
  • ERLANSON DA, BRAISTED AC, RAPHAEL DR et al.: Site-directed ligand discovery. Proc. Natl. Acad. Sci. USA (2000) 97(17):9367-9372.
  • KIRBY AJ: Effective molarities for intramolecular reactions. Adv. Phys. Org. Chem. (1980) 17:183-278.
  • JENCKS WP: On the attribution and additivity of binding energies. Proc. Natl. Acad. Sci. USA (1981) 78(7):4046-4050.
  • INGLESE J, BENKOVIC SJ: Multisubstrate adduct inhibitors of glycinamide ribonucleotide transformylase:synthetic and enzyme-assembled. Tetrahedron (1991) 47(14-15):2351-2364.
  • BOGER DL, HAYNES NE, KITOS PA et al.: 10-Formyl-5,8,10-trideazafolic acid (10-formyl-TDAF): a potent inhibitor of glycinamide ribonucleotide transformylase. Bioorg. Med. Chem. (1997) 5(9):1817-1830.
  • GREASLEY SE, MARSILJE TH, CAI H et al.: Unexpected formation of an epoxide-derived multisubstrate adduct inhibitor on the active site of GAR transformylase. Biochemistry (2001) 40(45):13538-13547.
  • RIDEOUT D: Self-assembling cytotoxins. Science (1986) 233(4763):561-563.
  • RIDEOUT D, CALOGEROPOULOU T, JAWORSKI J, MCCARTHY M: Synergism through direct covalent bonding between agents:a strategy for rational design of chemotherapeutic combinations. Biopolymers (1990) 29(1):247-262.
  • NGUYEN R, HUC I: Using an enzyme’s active site to template inhibitors. Angew. Chem. Int. Ed. (2001) 40(9):1774-1776.
  • KOLB HC, FINN MG, SHARPLESS KB: Click chemistry:diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. (2001) 40(11):2004-2021.
  • HUISGEN R, SZEIMIES G, MOEBIUS L: 1,3-Dipolar cycloadditions. XXXII. Kinetics of the addition of organic azides to carbon-carbon multiple bonds. Chem. Ber. (1967) 100(8):2494-2507.
  • EVANS MJ, CRAVATT BF: Mechanism-based profiling of enzyme families. Chem. Rev. (2006) 106(8):3279-3301.
  • SUCH GK, QUINN JF, QUINN A, TJIPTO E, CARUSO F: Assembly of ultrathin polymer multilayer films by click chemistry. J. Am. Chem. Soc. (2006) 128(29):9318-9319.
  • DICHTEL WR, MILJANIC OS, SPRUELL JM, HEATH JR, STODDART JF: Efficient templated synthesis of donor-acceptor rotaxanes using click chemistry. J. Am. Chem. Soc. (2006) 128(32):10388-10390.
  • WELLER RL, RAJSKI SR: DNA methyltransferase-moderated click chemistry. Org. Lett. (2005) 7(11):2141-2144.
  • WU P, FELDMAN A, NUGENT AK et al.: Efficiency and fidelity in a click-chemistry route to triazole dendrimers by the copper(I)-catalyzed ligation of azides and alkynes. Angew. Chem. Int. Ed. (2004) 43(30):3928-3932.
  • LINK AJ, VINK MKS, TIRRELL DA: Presentation and detection of azide functionality in bacterial cell surface proteins. J. Am. Chem. Soc. (2004) 126(34):10598-10602.
  • AGARD NJ, PRESCHER JA, BERTOZZI CR: A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. (2004) 126(46):15046-15047.
  • WANG Q, CHAN TR, HILGRAF R et al.: Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc. (2003) 125(11):3192-3193.
  • KOLB HC, SHARPLESS KB: The growing impact of click chemistry on drug discovery. Drug Discov. Today (2003) 8(24):1128-1137.
  • ROSTOVTSEV VV, GREEN LG, FOKIN VV, SHARPLESS KB: A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective ‘ligation’ of azides and terminal alkynes. Angew. Chem. Int. Ed. (2002) 41(14):2596-2599.
  • TORNOE CW, CHRISTENSEN C, MELDAL M: Peptidotriazoles on solid-phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. (2002) 67(9):3057-3064.
  • KRASINSKI A, FOKIN VV, SHARPLESS KB: Direct synthesis of 1,5-disubstituted-4-magnesio-1,2,3- triazoles, revisited. Org. Lett. (2004) 6(8):1237-1240.
  • ZHANG L, CHEN X, XUE P, et al.: Ruthenium-catalyzed cycloaddition of alkynes and organic azides. J. Am. Chem. Soc. (2005) 127(46):15998-15999.
  • MOCK WL, IRRA TA, WEPSOEC JP, ADHYA M: Catalysis by cucurbituril. The significance of bound-substrate destabilization for induced triazole formation. J. Org. Chem. (1989) 54(22):5302-5308.
  • SAXON E, BERTOZZI CR: Cell surface engineering by a modified Staudinger reaction. Science (2000) 287(5460):2007-2010.
  • SAXON E, ARMSTRON JI, BERTOZZI CR: A ‘traceless’ staudinger ligation for the chemoselective synthesis of amide bonds. Org. Lett. (2000) 2(14):2141-2143.
  • LEWIS WG, GREEN LG, GRYNSPAN F et al.: Click chemistry in situ: acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angew. Chem. Int. Ed. (2002) 41(6):1053-1057.
  • MANETSCH R, KRASINSKI A, RADIC Z et al.: In situ click chemistry: enzyme inhibitors made to their own specifications. J. Am. Chem. Soc. (2004) 126(40):12809-12818.
  • KRASINSKI A, RADIC Z, MANETSCH R et al.: In situ selection of lead compounds by click chemistry: target-guided optimization of acetylcholinesterase inhibitors. J. Am. Chem. Soc. (2005) 127(18):6686-6692.
  • TAYLOR P, RADIC Z: The cholinesterases: from genes to proteins. Ann. Rev. Pharmacool. Toxicol. (1994) 34:281-320.
  • SILMAN I, SUSSMAN JL: Acetylcholinesterase: ‘classical’ and ‘non-classical’ functions and pharmacology. Curr. Opin. Pharmacol. (2005) 5(3):293-302.
  • GREENBLATT HM, DVIR H, SILMAN I, SUSSMAN JL: Acetylcholinesterase. A multifaceted target for structure-based drug design of anticholinesterase agents for the treatment of Alzheimer’s disease. J. Mol. Neurosci. (2003) 20(3):369-383.
  • RADIC Z, TAYLOR P: Interaction kinetics of reversible inhibitors and substrates with acetylcholinesterase and its fasciculin 2 complex. J. Biol. Chem. (2001) 276(7):4622-4633.
  • TAYLOR P, LAPPI S: Interaction of fluorescence probes with acetylcholinesterase. Site and specificity of propidium binding. Biochemistry (1975) 14(9):1989-1997.
  • CARLIER PR, DU DM, HAN YF et al.: Dimerization of an inactive fragment of huperzine A produces a drug with twice the potency of the natural product. Angew. Chem. Int. Ed. (2000) 39(10):1775-1777.
  • WEI J, BURIAK JM, SIUZDAK G: Desorption-ionization mass spectrometry on porous silicon. Nature (1999) 399(6733):243-246.
  • SENAPATI S, BUI JM, MCGAMMON JA: Induced fit in mouse acetylcholinesterase: configurational selection imposed by steric interactions. J. Med. Chem. (2006) 49(21):8155-8162
  • SENAPATI S, CHEN Y, MCGAMMON JA: In situ synthesis of a tacrine-triazole-based inhibitor of acetylecholinesterase: configurational selection imposed by steric interactions J.Med. Chem. (2006) 49
  • RADIC Z, MANETSCH R, KRASINSKI A et al.: Molecular basis of interactions of cholinesterases with tight binding inhibitors. Chem. Biol. Interact. (2005) 157-158:133-141.
  • BOURNE Y, KOLB HC, RADIC Z et al.: Freeze-frame inhibitor captures acetylcholinesterase in a unique conformation. Proc. Natl. Acad. Sci. USA (2004) 101(6):1449-1454.
  • BOURNE Y, RADIC Z, KOLB HC et al.: Structural insights into conformational flexibility at the peripheral site and within the active center gorge of AChE. Chem. Biol. Interact. (2005) 157-158:159-165.
  • DODGSON SJ, TASHIAN RE, GROS G, CARTER N: In: The Carbonic Anhydrases. Cellular, Physiology and Molecular Genetics. Plenum Press, New York, USA (1991).
  • MINCIONE F, STARNOTTI M, MENABUONI L, SCOZZAFAVA A, CASINI A, SUPURAN CT: Carbonic anhydrase inhibitors: 4-sulfamoyl-benzenecarboxamides and 4-chloro-3-sulfamoyl-benzenecarboxamides with strong topical antiglaucoma properties. Bioorg. Med. Chem (2001) 11(13):1787-1791.
  • CASOMO A, MINCIONE F, ILIES MA, MENABUONI L, SCOZZAFAVA A, SUPURAN CT: Carbonic anhydrase inhibitors:synthesis and inhibition against isozymes I, II and IV of topically acting antiglaucoma sulfonamides incorporating cis-5-norbornene-endo-3-carboxy-2-carboxamido moieties. J. Enzym Inhib. (2001) 16(2):113-123.
  • GAO J, CHENG X, CHEN R et al.: Screening derivatized peptide libraries for tight binding inhibitors to carbonic anhydrase II by electrospray ionization-mass spectrometry. J. Med. Chem. (1996) 39(10):1949-1955.
  • GRYBOWSKI BA, ISHCHENKO AV, KIM CY et al.: Combinatorial computational method gives new picomolar ligands for a known enzyme. Proc. Natl. Acad. Sci. USA (2002) 99(3):1270-1273.
  • MOCHARLA VP, COLASSON B, LEE LV et al.: In situ click chemistry: enzyme-generated inhibitors of carbonic anhydrase II. Angew. Chem. Int. Ed. (2004) 44(1): 116-120.
  • WANG J, SUI G, MOCHARLA VP et al.: Integrated microfludics for parallel screening of an in situ click chemistry library. Angew. Chem. Int. Ed. (2006) 45(32):5276-5281.
  • GOSH AK, BILCER G, SCHILTZ G: Syntheses of FDA approved HIV protease inhibitors. Synthesis (2001) 15:2203-2229.
  • WHITING M, MULDOON J, LIN Y-C et al.: Inhibitors of HIV-1 protease by using in situ click chemistry. Angew. Chem. Int. Ed. (2006) 45(9):1435-1439.
  • DERVAN PB, POULIN-KERSTIEN AT, FECHTER EJ, EDELSON BS: Regulation of gene expression by synthetic DNA-binding ligands. Top. Curr. Chem. (2005) 253:1-31.
  • BAILLY C, CHAIRES JB: Sequence-specific DNA minor groove binders. Design and synthesis of netropsin and distamycin analogues. Bioconjugate Chem. (1998) 9(5):513-538.
  • REDDY BSP, SHARMA SK, LOWN JW: Recent developments in sequence selective minor groove DNA effectors. Curr. Med. Chem. (2001) 8(5):475-508.
  • FARIA M, GIOVANNANGELI C: Triplex-forming molecules:from concepts to applications. J. Gene Med. (2001) 3(4):299-310.
  • NAYLOR R, GILHAM PT: Studies on some interactions and reactions of oligonucleotides in aqueous solution. Biochemistry (1966) 5(8):2722-2728.
  • POULIN-KERSTIEN AT, DERVAN PB: DNA-templated dimerization of hairpin polyamides. J. Am. Chem. Soc. (2003) 125(51):15811-15821.
  • MOSES H III, DORSEY ER, MATHESON DHM, SAMUEL OT: Financial anatomy of biomedical research. J. Am. Med. Assoc. (2005) 294(11):1333-1342.
  • ENGELKAMP H, HATZAKIS NS, HOFKENS J, DE SCHRYVER F, NOLTE RJM, ROWAN AE: Do enzymes sleep and work? Chem. Commun. (2006):935-940.
  • GETZOFF ED, GEYSEN HM, RODDA SJ, ALEXANDER H, TAINER JA, LERNER RA: Mechanisms of antibody binding to a protein. Science (1987) 235(4793):1191-1196.
  • DYSON HJ, LERNER RA, WRIGHT PE: The physical basis for induction of protein-reactive antipeptides antibodies. Annu. Rev. Biophys. Biophys. Chem. (1988) 17:305-324.
  • XUE Q, YEUNG ES: Differences in the chemical reactivity of individual molecules of an enzyme. Nature (1995) 373:681-683.
  • HATZAKIS NS, ENGELKAMP H, VELONIA K et al.: Synthesis and single enzyme activity of a clicked lipase-BSA hetero-dimer. Chem. Commun. (2006) 19:2012-2014.
  • ENGELKAMP H, HATZAKIS NS, HOFKENS J: Do enzymes sleep and work? Chem. Commun. (2006) 9:935-940.
  • EKROOS M, SJOEGREN T: Structural basis for ligand promiscuity in cytochrome P450 3A4. Proc. Natl. Acad. Sci. USA (2006) 103(37):13682-13687.
  • BOEHR DD, McELHENY D, DYSONE HJ, WRIGHT PE: The dynamic energy landscape of dihydrofolate reductase catalysis. Science (2006) 313(5793):1638-1642.
  • MIN W, ENGLISH BP, LUO G et al.: Fluctuating enzymes: lessons from single-molecule studies. Acc. Chem. Res. (2005) 38(12):923-931.
  • LU HP, XUN L, XIE XS: Single-molecule enzymic dynamics. Science (1998) 282(5395):1877-1882.
  • EDMAN L, FOLDES-PAPP Z, WENNMALM S, RIGLER R: The fluctuating enzyme: a single molecule approach. Chem. Phys. (1999) 247(1):11-22.
  • CHEN Y, HU D, VORPAGEL ER, LU HP: Probing single-molecule T4 lysozyme conformational dynamics by intramolecular fluorescence energy transfer. J. Phys. Chem B (2003) 107(31):7947-7956.
  • VELONIA K, FLOMENBOM O, LOOS D et al.: Single-enzyme kinetics of CALB-catalyzed hydrolysis. Angew. Chem. Int. Ed. (2005) 44(4):560-564.
  • FLOMEBBOM O, VELONIA K, LOOS D: Stretched exponential decay and correlations in the catalytic activity of fluctuating single lipase molecules. Proc. Natl. Acad. Sci. USA (2005) 102(7):2368-2372.
  • ANTIKAINEN NM, SMILEY R, BENKOVIC SJ, GORDON G: Conformation coupled enzyme catalysis: single-molecule and transient kinetics investigation of dihydrofolate reductase. Biochemistry (2005) 44(51):16835-16843
  • SMILEY RD, HAMMES GG: Single molecule studies on enzyme mechanisms. Chem. Rev. (2006) 106(8):3080-3094.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.