172
Views
15
CrossRef citations to date
0
Altmetric
Reviews

In vitro prediction of brain penetration – a case for free thinking?

&
Pages 595-607 | Published online: 16 Nov 2006

Bibliography

  • ALAVIJEH MS, CHISHTY M, QAISER MZ, PALMER AM: Drug metabolism and pharmacokinetics, the blood–brain barrier, and central nervous system drug discovery. NeuroRx. (2005) 2(4):554-571.
  • FRANK R, HARGREAVES R: Clinical biomarkers in drug discovery and development. Nat. Rev. Drug Discov. (2003) 2(7):566-580.
  • HOUGHTON GW, RICHENS A, TOSELAND PA, DAVIDSON S, FALCONER MA: Brain concentrations of phenytoin, phenobarbital and primidone in epileptic patients. Eur. J. Clin. Pharmacol. (1975) 9(1):73-78.
  • MORSELLI PL, BARUZZI A, GERNA M, BOSSI L, PORTA M: Carbamazepine and carbamazepine-10, 11-epoxide concentrations in human brain. Br. J. Clin. Pharmacol. (1977) 4(5):535-540.
  • KORNHUBER J, SCHULTZ A, WILTFANG J et al.: Persistence of haloperidol in human brain tissue. Am. J. Psychiatry. (1999) 156(6):885-890.
  • JHEE SS, CHAPPELL AS, ZAROTSKY V et al.: Multiple-dose plasma pharmacokinetic and safety study of LY450108 and LY451395 (AMPA receptor potentiators) and their concentration in cerebrospinal fluid in healthy human subjects. J. Clin. Pharmacol. (2006) 46(4):424-432.
  • BAFELTOWSKA JJ, BUSZMAN E: Pharmacokinetics of fluconazole in the cerebrospinal fluid of children with hydrocephalus. Chemotherapy. (2005) 51(6):370-376.
  • MAWLAWI O, MARTINEZ D, SLIFSTEIN M et al.: Imaging human mesolimbic dopamine transmission with positron emission tomography: I. Accuracy and precision of D(2) receptor parameter measurements in ventral striatum. J. Cereb. Blood Flow Metab. (2001) 21(9):1034-1057.
  • ITO H, HALLDIN C, FARDE L: Localization of 5-HT1A receptors in the living human brain using [carbonyl-11C]WAY-100635: PET with anatomic standardization technique. J. Nucl. Med. (1999) 40(1):102-109.
  • BROWN EA, GRIFFITHS R, HARVEY CA, OWEN DA: Pharmacological studies with SK&F93944 (Temelastine) a novel histamine H1-receptor antagonist with negligible ability to penetrate the central nervous system. Br. J. Pharmacol. (1986) 87:569-578.
  • LIU X, CHEN C: Strategies to optimize brain penetration in drug discovery. Curr.Opin. Drug Discov. Devel. (2005) 8(4):505-512.
  • TAKASATO Y, RAPAPORT SI. SMITH QR: An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am. J. Physiol. Heart Circ. Physiol. (1984) 247:484-493.
  • BEGLEY DJ: Methods for determining CNS drug transport in animals: In Brain Barrier Systems. Alfred Benzon Symposium 45 Munksgaard, Copenhagen. Paulson O, Knudsen GM and Moos T (Eds), (1999):91-109.
  • MARTIN I: Prediction of blood–brain barrier penetration: are we missing the point. Drug Discov. Today (2004) 9(4):161-162.
  • PARDRIDGE WM: Log(BB), PS products and in silico models of drug brain penetration. Drug Discov. Today. (2004) 9(9):392-393.
  • VAN DE WATERBEEMD H, SMITH DA, JONES BC: Lipophilicity in PK design: methyl, ethyl, futile. J. Comput. Aided Mol. Des. (2001) 15(3):273-286.
  • WALKER MC, TONG X, PERRY H, ALAVIJEH MS, PATSALOS PN: Comparison of serum, cerebrospinal fluid and brain extracellular fluid pharmacokinetics of lamotrigine. Br. J. Pharmacol. (2000) 130(2):242-248.
  • DORAN A, OBACH RS, SMITH BJ et al.: The impact of P-glycoprotein on the disposition of drugs targeted for indications of the central nervous system: evaluation using the mdr1a/b knockout mouse model. Drug Metab. Dispos. (2005) 33(1):165-174.
  • TOZER TN: Concepts basic to pharmacokinetics. Pharmac Ther. (1981) 14:109-131.
  • DE LANGE EC, RAVENSTIJN PGM, GROENENDALL D, VAN STEEG TJ: Toward prediction of CNS drug-effect profiles in physiological and pathological conditions using microdialysis and mechanism-based pharmacokinetic–pharmacodynamic modelling. AAPS Journal. (2005) 7(3):E532-E543.
  • DE LANGE EC, DANHOF M, DE BOER AG, BREIMER DD: Methodological considerations of intracerebral microdialysis in pharmacokinetic studies on drug transport across the blood–brain barrier. Brain Res. Rev. (1997) 25:27-49.
  • DE LANGE EC, DE BOER BA, BREIMER DD: Microdialysis for pharmacokinetic analysis of drug transport to the brain. Adv. Drug Deliv. Rev. (1999) 36:211-227.
  • DEGUCHI Y, MORIMOTO K: Application of an in vivo brain microdialysis technique to studies of drug transport across the blood–brain barrier. Curr. Drug Metab. (2001) 2:411-423.
  • HAMANI C, LUER MS, DUJOVNY M: Microdialysis in the human brain: review of its applications. Neurol. Res. (1997) 19:281-288.
  • TISDALL MM, SMITH M: Cerebral microdialysis: research technique or clinical tool. Br. J. Anaesth. (2006) 97:18-25.
  • FENG MR, TURLUCK D, BURLEIGH J: Brain microdialysis and PK/PD correlation of pregabalin in rats. Eur. J. Drug Metab. Pharmacokinet. (2001) 26:123-128.
  • BOUW MR, XIE R, TUNBLAD K, HAMMARLUND-UDENAES M: Blood–brain barrier transport and brain distribution of morphine-6-glucuronide in relation to the antinociceptive effect in rats-pharmacokinetic/pharmacodynamic modelling. Br. J. Pharmacol. (2001) 134:1796-1804.
  • BONATI M, KANTO J, TOGNONI G: Clinical pharmacokinetics of cerebrospinal fluid. Clin. Pharmacokinet. (1982) 7(4):312-335.
  • BANNWARTH B, NETTER P, POUREL J, ROYER RJ, GAUCHER A: Clinical pharmacokinetics of nonsteroidal anti-inflammatory drugs in the cerebrospinal fluid. Biomed. Pharmacother. (1989) 43(2):121-126.
  • PARDRIDGE, WM: Drug targeting, drug discovery, and brain drug development. In Brain Drug Targeting: The Future of Brain Drug Development. Cambridge University Press (2001):14-18.
  • DE LANGE EC, DANHOF M: Considerations in the use of cerebrospinal fluid pharmacokinetics to predict brain target concentrations in the clinical setting: implications of the barriers between blood and brain. Clin. Pharmacokinet. (2002) 41:691-703.
  • WODE-HELGODT B, ALFREDSSON G: Concentrations of chlorpromazine and two of its active metabolites in plasma and cerebrospinal fluid of psychotic patients treated with fixed drug doses. Psychopharmacology (Berl). (1981) 73:55-62.
  • NYBERG G, R AXELSSON R, MÅRTENSSON E: Cerebrospinal fluid concentrations of thioridazine and its main metabolites in psychiatric patients. Eur. J. Clin. Pharmacol. (1981) 19:139-148.
  • BEGLEY DJ, BRIGHTMAN MW: Structural and functional aspects of the blood–brain barrier. Prog. Drug Res. (2003) 61:39-78.
  • UCHINO H, KANAI Y, KIM DO et al.: Transport of amino acid-related compounds mediated by L-type amino acid transporter (LAT1): Insights into the mechanisms of substrate recognition. Mol. Pharmacol. (2002) 61:729-737.
  • DEELEY RG, COLE SP: Function, evolution and structure of multi-drug resistance protein (MRP). Semin. Cancer Biol. (1997) 8:193-204.
  • CHIN JE, SOFFIR R, NOONAN KE, CHOI K, RONINSON IB: Structure and expression of the human MDR (P-glycoprotein) gene family. Mol. Cell. Biol. (1989) 9:3808-3820.
  • HSU SI, COHEN D, KIRSCHNER LS, LOTHSTEIN L, HARTSTEIN M, HORWITZ SB: Structural analysis of the mouse mdr1a (P-glycoprotein) promoter reveals the basis for differential transcript heterogeneity in multi-drug resistant J774.2 cells. Mol. Cell. Biol. (1990) 10:3596-3606. Erratum in: Mol. Cell. Biol. (1990) 10:6101.
  • CORDON-CARDO C, O’BRIEN JP, CASALS D et al.: Multi-drug resistance gene (P-glycoprotein) is expressed by endothelial cells at blood–brain barrier sites. Proc. Natl. Acad. Sci. USA (1989) 86:695-869.
  • BEGLEY DJ, KAHN EU, ROLLINSON C, ABBOTT NJ, REGINA A, ROUF F: The role of brain extracellular fluid production and efflux mechanisms in drug transport to the brain. In DJ Begley, MWB Bradbury and J Kreuter (eds): The blood–brain barrier and drug delivery to the CNS. (2000) Marcel Dekker, New York, 93-108.
  • SUMMERFIELD SG, STEVENS AJ, CUTLER L et al.: Improving the in vitro prediction of in vivo central nervous system penetration: integrating permeability, P-glycoprotein efflux, and free fractions in blood and brain. J. Pharmacol. Exp. Ther. (2006) 316(3):1282-90.
  • MAHAR DOAN KM, HUMPHREYS JE, WEBSTER LO et al.: Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs. J. Pharmacol. Exp. Ther. (2002) 303:1029-1037.
  • CHEN C, HANSON E, WATSON JW, LEE JS: P-glycoprotein limits the brain penetration of nonsedating but not sedating H1-antagonists. Drug Metab. Dispos. (2003) 31(3):312-318.
  • OTIS KW, AVERY ML, BROWARD-PARTIN SM et al.: Evaluation of the BBMEC model for screening the CNS permeability of drugs. J. Pharmacol. Toxicol. Methods. (2001) 45(1):71-77.
  • YANG J, ASCHNER M: Developmental aspects of blood–brain barrier (BBB) and rat brain endothelial (RBE4) cells as in vitro model for studies on chlorpyrifos transport. Neurotoxicology (2003) 24(4-5):741-745.
  • WEKSLER BB, SUBILEAU EA, PERRIERE N et al.: Blood–brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J. (2005) 19(13):1872-1874.
  • MURUGANANDAM A, HERX LM, MONETTE R, DURKIN JP, STANIMIROVIC DB: Development of immortalized human cerebromicrovascular endothelial cell line as an in vitro model of the human blood–brain barrier. FASEB J. (1997) 11(13):1187-1197.
  • LENTZ KA, POLLI JW, WRING SA, HUMPHREYS JE, POLLI JE: Influence of passive permeability on apparent P-glycoprotein kinetics. Pharm. Res. (NY). (2000) 17:1456-1460.
  • LIN JH: How significant is the role of P-glycoprotein in drug absorption and brain uptake. Drugs of Today. (2004) 40:5-22.
  • DIDZIAPETRIS R, JAPERTAS P, AVDEEF A, PETRAUSKAS A: Classification analysis of P-glycoprotein substrate specificity. J. Drug Target. (2003) 11(7):391-406.
  • SEELIG A, LANDWOJTOWICZ E: Structure–activity relationship of P-glycoprotein substrates and modifiers. Eur J Pharm. Sci. (2000) 12(1):31-40.
  • CUTLER L, HOWES C, DEEKS NJ, BUCK TL, JEFFREY P: Development of a P-glycoprotein knockout model in rodents to define species differences in its functional effect at the blood–brain barrier. J Pharm. Sci. (2006) 95(9):1944-1953.
  • MAYER U, WAGENAAR E, DOROBEK B, BEIJNEN JH, BORST P, SCHINKEL AH: Full blockade of intestinal P-glycoprotein and extensive inhibition of blood–brain barrier P-glycoprotein by oral treatment of mice with PSC833. J. Clin. Invest. (1997) 100(10):2430-2436.
  • RUPNIAK NM, FISHER A, BOYCE S et al.: P-glycoprotein efflux reduces the brain concentration of the substance P (NK1 receptor) antagonists SR140333 and GR205171: a comparative study using mdr1 a-/- and mdr1a+/+ mice. Behav. Pharmacol. (2003) 14(5-6):457-63.
  • OHE T, SATO M, TANAKA S et al.: Effect of P-glycoprotein-mediated efflux on cerebrospinal fluid/plasma concentration ratio. Drug Metab. Dispos. (2003) 31(10):1251-1254.
  • CHEN C, LIU X, SMITH BJ: Utility of Mdr1-gene deficient mice in assessing the impact of P-glycoprotein on pharmacokinetics and pharmacodynamics in drug discovery and development. Curr. Drug Metab. (2003) 4(4):272-291.
  • HOLLADAY JW, DEWEY MJ, YOO SD: Steady-state kinetics of imipramine in transgenic mice with elevated serum AAG levels. Pharm. Res. (1996) 13(9):1313-1316.
  • MANO Y, HIGUCHI S, KAMIMURA H: Investigation of the high partition of YM992, a novel antidepressant, in rat brain – in vitro and in vivo evidence for the high binding in brain and the high permeability at the BBB. Biopharm. Drug Dispos. (2002) 23(9):351-360.
  • KALVASS JC, MAURER TS: Influence of non-specific brain and plasma binding on CNS exposure: implications for rational drug discovery. Biopharm. Drug Dispos. (2002) 23:327-338.
  • MAURER TS, DEBARTOLO DB, TESS DA, SCOTT DO: Relationship between exposure and nonspecific binding of thirty-three central nervous system drugs in mice. Drug Metab. Dispos. (2005) 33:175-181.
  • MANNILA A, RAUTIO J, LEHTONEN M, JARVINEN T, SAVOLAINEN J: Inefficient central nervous system delivery limits the use of ibuprofen in neurodegenerative diseases. Eur J Pharm. Sci. (2005) 24(1):101-105.
  • KOBER A, SJOHOLM I: The binding sites on human serum albumin for some nonsteroidal anti-inflammatory drugs. Mol. Pharmacol. (1980) 18(3):421-426.
  • BANNWARTH B, LAPICQUE F, PEHOURCQ F et al.: Stereoselective disposition of ibuprofen enantiomers in human cerebrospinal fluid. Br. J. Clin. Pharmacol. (1995) 40(3):266-269.
  • PAREPALLY JM, MANDULA H, SMITH QR: Brain uptake of nonsteroidal anti-inflammatory drugs: Ibuprofen, flurbiprofen, and indometacin. Pharm. Res. (2006) 23(5):873-881.
  • WALKER MC, TONG X, PERRY H, ALAVIJEH MS, PATSALOS PN: Comparison of serum, cerebrospinal fluid and brain extracellular fluid pharmacokinetics of lamotrigine. Br. J. Pharmacol. (2000) 130(2):242-248.
  • WANG X, RATNARAJ N, PATSALOS PN: The pharmacokinetic inter-relationship of tiagabine in blood, cerebrospinal fluid and brain extracellular fluid (frontal cortex and hippocampus). Seizure. (2004) 13(8):574-581.
  • LIU X, SMITH BJ, CHEN C et al.: Evaluation of cerebrospinal fluid concentration and plasma free concentration as a surrogate measurement for brain free concentration. Drug Metab. Dispos. (2006) 34(9):1443-1447.
  • THOMAS SA, SEGAL MB: The transport of the anti-HIV drug, 2´,3´-didehydro-3´-deoxythymidine (D4T), across the blood-brain and blood-cerebrospinal fluid barriers. Br. J. Pharmacol. (1998) 125(1):49-54.
  • KATRITZKY AR, KUANAR M, SLAVOV S et al.: Correlation of blood–brain penetration using structural descriptors. Bioorg. Med. Chem. (2006) 14(14):4888-4917.
  • CLARK DE: In silico prediction of blood–brain barrier permeation. Drug Discov. Today. (2003) 8(20):927-933.
  • PLATTS JA, ABRAHAM MH, ZHAO YH, HERSEY A, IJAZ L, BUTINA D: Correlation and prediction of a large blood-brain distribution data set – an LFER study. Eur J. Med. Chem. (2001) 36(9):719-730.
  • GRATTON JA, ABRAHAM MH, BRADBURY MW, CHADHA HS: Molecular factors influencing drug transfer across the blood–brain barrier. J Pharm. Pharmacol. (2004) 49:1211-1216.
  • LIU X, TU M, KELLY RS, CHEN C, SMITH BJ: Development of a computational approach to predict blood–brain barrier permeability. Drug Metab. Dispos. (2004) 32:132-139.
  • LUI X, SMITH BJ, CHEN C et al.: Use of a physiologically based pharmacokinetics model to study the time to reach brain equilibrium: An experimental analysis if the role of blood–brain barrier permeability, plasma protein binding, and brain tissue binding. J. Pharmacol. Exp. Ther. (2006) 313:1254-1262.
  • MAYER S, MAICKEL RP, BRODIE BB: Kinetics of penetration of drugs and other foreign compounds into cerebrospinal fluid and brain. J Pharm. Exp Ther. (1959) 127(3):205-211.
  • LOSCHER W, FREY HH: Kinetics of penetration of common antiepileptic drugs into cerebrospinal fluid. Epilepsia. (1984) 25(3):346-352.
  • ENDRES CJ, KOLACHANA BS, SAUNDERS RC et al.: Kinetic modelling of [11C]raclopride: combined PET-microdialysis studies. J. Cereb. Blood Flow Metab. (1997) 17:932-942.
  • ABBOTT NJ: Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem. Int. (2004) 45(4):545-552.
  • BAUDRIE V, ROULLET JB, GOUREAU Y, CHAOULOFF F, ELGHOZI JL: Determination of cerebrospinal fluid production rate using a push-pull perfusion procedure in the conscious rat. Fundam. Clin. Pharmacol. (1990) 4:269-274.
  • DAVSON H, SEGAL MB: Physiology of the CSF and Blood–brain barriers. CRC Press, Boca Press, USA (1995).
  • WATSON JM, COGGON SA, CLARKE KL et al.: The relationship between D2 antagonist receptor occupancy and brain free fraction. (In Press).
  • JEZEQUEL SG: Central nervous system penetration: importance of physicochemical properties. In: Progress in Drug Metabolism. GG Gibson (Ed.), Taylor and Francis, London, UK (1992) 13:141-178.
  • MORPHY R: The influence of target family and functional activity on the physicochemical properties of preclinical compounds. J. Med. Chem. (2006) 49(10):2969-2978.
  • VAN DER GRAAF PH, VAN SCHAICK EA, VISSER SA, DE GRAAF HJ, LJZERMAN AP, DANHOF M: Mechanism-based pharmacokinetic modelling of antipolytic effects of adenosine A(1) agonists in rats: prediction of tissue dependent efficacy in vivo. J. Pharmacol. Exp. Ther. (1999) 290:702-709.
  • TANAKA H, MIZOJIRI K: Drug binding and blood–brain barrier permeability. J. Pharmacol. Exp. Ther. (1999) 288:912-918.
  • VISSER SA, WOLTERS FL, GUBBENS-STIBBE JM et al.: Mechanism-based pharmacokinetic/pharmacodynamic modeling of the electroencephalogram effects of GABAA receptor modulators: in vitro-in vivo correlations. J Pharmacol Exp Ther. (2003) 304:88-101.
  • ZUIDEVELD KP, VAN DER GRAAF PH, NEWGREEN D et al.: Mechanism-based pharmacokinetic-pharmacodynamic modeling of 5-HT1A receptor agonists: estimation of in vivo affinity and intrinsic efficacy on body temperature in rats. J. Pharmacol. Exp. Ther. (2004) 308:1012-20.
  • SAM E, SARRE S, MICHOTTE Y, VERBEKE N: Distribution of apomorphine enantiomers in plasma, brain tissue and striatal extracellular fluid. Eur. J. Pharmacol. (1997) 329(1):9-15.
  • BARRAUD DE LAGERIE S, COMETS E, GAUTRAND C et al.: Cerebral uptake of mefloquine enantiomers with and without the P-gp inhibitor elacridar (GF1210918) in mice. Br. J. Pharmacol. (2004) 141(7):1214-22.
  • GUPTA A, CHATELAIN P, MASSINGHAM R, JONSSON EN, HAMMARLUND-UDENAES: Brain distribution of cetirizine enantiomers: comparison of three different tissue-to-plasma partition coefficients: K(p), K(p,u), and K(p,uu). Drug Metab. Dispos. 2006 34(2):318-23.
  • HANADA K, AKIMOTO S, MITSUI K, MIHARA K, OGATA H.: Enantioselective tissue distribution of the basic drugs disopyramide, flecainide and verapamil in rats: role of plasma protein and tissue phosphatidylserine binding. Pharm. Res. (1998) 15(8):1250-6.
  • TAKAHASHI H, OGATA H, KANNO S, TAKEUCHI H: Plasma protein binding of propranolol enantiomers as a major determinant of their stereoselective tissue distribution in rats. J. Pharmacol. Exp. Ther. (1990) 252(1):272-8.
  • PRENTIS RA, LIS Y, WALKER SR: Pharmaceutical innovation by the seven UK-owned pharmaceutical companies (1964-1985). Br. J. Clin. Pharmacol. (1988) 25(3):387-96.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.