154
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Advances in predicting CYP-mediated drug interactions in the drug discovery setting

, , &
Pages 677-691 | Published online: 07 Dec 2006

Bibliography

  • KOLA I, LANDIS J: Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. (2004) 3(8):711-715.
  • WHITE RE: High-throughput screening in drug metabolism and pharmacokinetic support of drug discovery. Ann. Rev. Pharmacol. Toxicol. (2000) 40:133-157.
  • JENKINS KM, ANGELES R, QUINTOS MT et al.: Automated high throughput ADME assays for metabolic stability and cytochrome P450 inhibition profiling of combinatorial libraries. J. Pharm. Biomed. Anal. (2004) 34(5):989-1004.
  • SMITH D, SCHMID E, JONES B: Do drug metabolism and pharmacokinetic departments make any contribution to drug discovery? Clin. Pharmacokinet. (2002) 41(13):1005-1019.
  • HOLLENBERG PF: Characteristics and common properties of inhibitors, inducers, and activators of CYP enzymes. Drug Metab. Rev. (2002) 34(1-2):17-35.
  • GUENGERICH FP: Role of cytochrome P450 enzymes in drug–drug interactions. Adv. Pharmacol. (1997) 43:7-35.
  • LIN JH: Sense and nonsense in the prediction of drug–drug interactions. Curr. Drug Metab. (2000) 1(4):305-331.
  • SHAH RR: Mechanistic basis of adverse drug reactions: the perils of inappropriate dose schedules. Expert Opin. Drug Saf. (2005) 4(1):103-128.
  • TANG C, LIN JH, LU AY: Metabolism-based drug–drug interactions: what determines individual variability in cytochrome P450 induction? Drug Metab. Dispos. (2005) 33(5):603-613.
  • MADABUSHI R, FRANK B, DREWELOW B, DERENDORF H, BUTTERWECK V: Hyperforin in St. John’s wort drug interactions. Eur. J. Clin. Pharmacol. (2006) 62(3):225-233.
  • MOODY GC, GRIFFIN SJ, MATHER AN, MCGINNITY DF, RILEY RJ: Fully automated analysis of activities catalysed by the major human liver cytochrome P450 (CYP) enzymes: assessment of human CYP inhibition potential. Xenobiotica (1999) 29(1):53-75.
  • DELAPORTE E, SLAUGHTER DE, EGAN MA et al.: The potential for CYP2D6 inhibition screening using a novel scintillation proximity assay-based approach. J. Biomol. Screen. (2001) 6(4):225-231.
  • CRESPI CL, MILLER VP, PENMAN BW: Microtiter plate assays for inhibition of human, drug-metabolizing cytochromes P450. Anal. Biochem. (1997) 248(1):188-190.
  • STRESSER DM, BLANCHARD AP, TURNER SD et al.: Substrate-dependent modulation of CYP3A4 catalytic activity: analysis of 27 test compounds with four fluorometric substrates. Drug Metab. Dispos. (2000) 28(12):1440-1448.
  • FRIDEN M, VANAJA K, NANDI VN: Drug–drug interactions of anti-infective drugs: utility of fluorescence cyp inhibition assays in drug discovery. Drug Metabol. Drug Interact. (2006) 21(3-4):163-185.
  • TRUBETSKOY OV, GIBSON JR, MARKS BD: Highly miniaturized formats for in vitro drug metabolism assays using vivid fluorescent substrates and recombinant human cytochrome P450 enzymes. J. Biomol. Screen. (2005) 10(1):56-66.
  • CALI JJ, MA D, SOBOL M et al.: Luminogenic cytochrome P450 assays. Expert Opin. Drug Metab. Toxicol. (2006) 2(4):629-645.
  • DIDENKO VV, HORNSBY PJ: A quantitative luminescence assay for nonradioactive nucleic acid probes. J. Histochem. Cytochem. (1996) 44(6):657-660.
  • HUMMEL MA, TRACY TS, HUTZLER JM et al.: Influence of fluorescent probe size and cytochrome b5 on drug–drug interactions in CYP2C9. J. Biomol. Screen. (2006) 11(3):303-309.
  • TURPEINEN M, KORHÔNEN LE, TOLONEN A et al.: Cytochrome P450 (CYP) inhibition screening: comparison of three tests. Eur. J. Pharm. Sci. (2006) 29(2):130-138.
  • COHEN LH, REMLEY MJ, RAUNIG D, VAZ AD: In vitro drug interactions of cytochrome P450: an evaluation of fluorogenic to conventional substrates. Drug Metab. Dispos. (2003) 31(8):1005-1015.
  • AHMED SS, NAPOLI KL, STROBEL HW: Oxygen radical formation during cytochrome P450-catalyzed cyclosporine metabolism in rat and human liver microsomes at varying hydrogen ion concentrations. Mol. Cell. Biochem. (1995) 151(2):131-140.
  • ATKINS WM, SLIGAR SG: Deuterium isotope effects in norcamphor metabolism by cytochrome P450cam: kinetic evidence for the two-electron reduction of a high-valent iron-oxo intermediate. Biochemistry (1988) 27(5):1610-1616.
  • DENISOV IG, GRINKOVA YV, BAAS BJ, SLIGAR SG: The ferrous-dioxygen intermediate in human cytochrome P450 3A4. Substrate dependence of formation and decay kinetics. J. Biol. Chem. (2006) 281(33):23313-23318.
  • WIENKERS LC, HEATH TG: Predicting in vivo drug interactions from in vitro drug discovery data. Nat. Rev. Drug Discov. (2005) 4(10):825-833.
  • FRYE RF, MATZKE GR, ADEDOYIN A, PORTER JA, BRANCH RA: Validation of the five-drug ‘Pittsburgh cocktail’ approach for assessment of selective regulation of drug-metabolizing enzymes. Clin. Pharmacol. Ther. (1997) 62(4):365-376.
  • TURPEINEN M, UUSITALO J, JALONEN J, PELKONEN O: Multiple P450 substrates in a single run: rapid and comprehensive in vitro interaction assay. Eur. J. Pharm. Sci. (2005) 24(1):123-132.
  • WEAVER R, GRAHAM KS, BEATTIE IG, RILEY RJ: Cytochrome P450 inhibition using recombinant proteins and mass spectrometry/multiple reaction monitoring technology in a cassette incubation. Drug Metab. Dispos. (2003) 31(7):955-966.
  • DIERKS EA, STAMS KR, LIM HK et al.: A method for the simultaneous evaluation of the activities of seven major human drug-metabolizing cytochrome P450s using an in vitro cocktail of probe substrates and fast gradient liquid chromatography tandem mass spectrometry. Drug Metab. Dispos. (2001) 29(1):23-29.
  • ZIMMER D, PICKARD V, CZEMBOR W, MULLER C: Comparison of turbulent-flow chromatography with automated solid-phase extraction in 96-well plates and liquid-liquid extraction used as plasma sample preparation techniques for liquid chromatography-tandem mass spectrometry. J. Chromatogr. A (1999) 854(1-2):23-35.
  • LINDQVIST A, HILKE S, SKOGLUND E: Generic three-column parallel LC-MS/MS system for high-throughput in vitro screens. J. Chromatogr. A (2004) 1058(1-2):121-126.
  • BRIEM S, PETTERSSON B, SKOGLUND E: Description and validation of a four-channel staggered LC-MS/MS system for high-throughput in vitro screens. Anal. Chem. (2005) 77(6):1905-1910.
  • FUNG EN, CHU I, LI C et al.: Higher-throughput screening for Caco-2 permeability utilizing a multiple sprayer liquid chromatography/tandem mass spectrometry system. Rapid Commun. Mass Spectrom. (2003) 17(18):2147-2152.
  • WHITESIDES GM: The origins and the future of microfluidics. Nature (2006) 442(7101):368-373.
  • HATAKEYAMA T, CHEN DL, ISMAGILOV RF: Microgram-scale testing of reaction conditions in solution using nanoliter plugs in microfluidics with detection by MALDI-MS. J. Am. Chem. Soc. (2006) 128(8):2518-2519.
  • OZBAL CC, LAMARR WA, LINTON JR et al.: High throughput screening via mass spectrometry: a case study using acetylcholinesterase. Assay Drug Dev. Technol. (2004) 2(4):373-381.
  • CRESPI CL, PENMAN BW: Use of cDNA-expressed human cytochrome P450 enzymes to study potential drug–drug interactions. Adv. Pharmacol. (1997) 43:171-188.
  • LI AP: Overview: hepatocytes and cryopreservation – a personal historical perspective. Chem. Biol. Interact. (1999) 121(1):1-5.
  • PONSODA X, DONATO MT, PEREZ-CATALDO G, GOMEZ-LECHON MJ, CASTELL JV: Drug metabolism by cultured human hepatocytes: how far are we from the in vivo reality? Altern. Lab. Anim. (2004) 32(2):101-110.
  • CRESPI CL, MILLER VP: The R144C change in the CYP2C9*2 allele alters interaction of the cytochrome P450 with NADPH:cytochrome P450 oxidoreductase. Pharmacogenetics (1997) 7(3):203-210.
  • MCGINNITY DF, TUCKER J, TRIGG S, RILEY RJ: Prediction of CYP2C9-mediated drug–drug interactions: a comparison using data from recombinant enzymes and human hepatocytes. Drug Metab. Dispos. (2005) 33(11):1700-1707.
  • KUMAR V, ROCK DA, WARREN CJ, TRACY TS, WAHLSTROM JL: Enzyme source effects on CYP2C9 kinetics and inhibition. Drug Metab. Dispos. (2006) 34(11):1903-1908.
  • AUSTIN RP, BARTON P, MOHMED S, RILEY RJ: The binding of drugs to hepatocytes and its relationship to physicochemical properties. Drug Metab. Dispos. (2005) 33(3):419-425.
  • OBACH RS: The importance of nonspecific binding in in vitro matrices, its impact on enzyme kinetic studies of drug metabolism reactions, and implications for in vitro–in vivo correlations. Drug Metab. Dispos. (1996) 24(10):1047-1049.
  • MARGOLIS JM, OBACH RS: Impact of nonspecific binding to microsomes and phospholipid on the inhibition of cytochrome P4502D6: implications for relating in vitro inhibition data to in vivo drug interactions. Drug Metab. Dispos. (2003) 31(5):606-611.
  • TRAN TH, VON MOLTKE LL, VENKATAKRISHNAN K et al.: Microsomal protein concentration modifies the apparent inhibitory potency of CYP3A inhibitors. Drug Metab. Dispos. (2002) 30(12):1441-1445.
  • GRUNAU A, PAINE MJ, LADBURY JE, GUTIERREZ A: Global effects of the energetics of coenzyme binding: NADPH controls the protein interaction properties of human cytochrome P450 reductase. Biochemistry (2006) 45(5):1421-1434.
  • DAVYDOV DR, KARIAKIN AA, PETUSHKOVA NA, PETERSON JA: Association of cytochromes P450 with their reductases: opposite sign of the electrostatic interactions in P450BM-3 as compared with the microsomal 2B4 system. Biochemistry (2000) 39(21):6489-6497.
  • VENKATAKRISHNAN K, VON MOLTKE LL, COURT MH et al.: Comparison between cytochrome P450 (CYP) content and relative activity approaches to scaling from cDNA-expressed CYPs to human liver microsomes: ratios of accessory proteins as sources of discrepancies between the approaches. Drug Metab. Dispos. (2000) 28(12):1493-1504.
  • GUENGERICH FP: Reduction of cytochrome b5 by NADPH-cytochrome P450 reductase. Arch Biochem. Biophys. (2005) 440(2):204-211.
  • JUSHCHYSHYN MI, HUTZLER JM, SCHRAG ML, WIENKERS LC: Catalytic turnover of pyrene by CYP3A4: evidence that cytochrome b5 directly induces positive cooperativity. Arch Biochem. Biophys. (2005) 438(1):21-28.
  • PROCTOR NJ, TUCKER GT, ROSTAMI-HODJEGAN A: Predicting drug clearance from recombinantly expressed CYPs: intersystem extrapolation factors. Xenobiotica (2004) 34(2):151-178.
  • SHIRAN MR, CHOWDRY J, ROSTAMI-HODJEGAN A et al.: A discordance between cytochrome P450 2D6 genotype and phenotype in patients undergoing methadone maintenance treatment. Br. J. Clin. Pharmacol. (2003) 56(2):220-224.
  • RODRIGUES AD, RUSHMORE TH: Cytochrome P450 pharmacogenetics in drug development: in vitro studies and clinical consequences. Curr. Drug Metab. (2002) 3(3):289-309.
  • ROWLAND M, MATIN SB: Kinetics of drug–drug interactions. J. Pharmacokinet. Biopharm. (1973) 1:553-567.
  • ITO K, HALLIFAX D, OBACH RS, HOUSTON JB: Impact of parallel pathways of drug elimination and multiple cytochrome P450 involvement on drug-drug interactions: CYP2D6 paradigm. Drug Metab. Dispos. (2005) 33(6):837-844.
  • SHIMIZU T, OCHIAI H, ASELL F et al.: Bioinformatics research on inter-racial difference in drug metabolism I. Analysis on frequencies of mutant alleles and poor metabolizers on CYP2D6 and CYP2C19. Drug Metab. Pharmacokinet. (2003) 18(1):48-70.
  • HUMMEL MA, DICKMANN LJ, RETTIE AE, HAINING RL, TRACY TS: Differential activation of CYP2C9 variants by dapsone. Biochem. Pharmacol. (2004) 67(10):1831-1841.
  • KIRCHHEINER J, BROCKMOLLER J: Clinical consequences of cytochrome P450 2C9 polymorphisms. Clin. Pharmacol. Ther. (2005) 77(1):1-16.
  • DE LEON J, ARMSTRONG SC, COZZA KL: Clinical guidelines for psychiatrists for the use of pharmacogenetic testing for CYP450 2D6 and CYP450 2C19. Psychosomatics (2006) 47(1):75-85.
  • JAIN KK: Applications of AmpliChip CYP450. Mol. Diagn. (2005) 9(3):119-127.
  • MARKS BD, THOMPSON DV, GOOSSENS TA, TRUBETSKOY OV: High-throughput screening assays for the assessment of CYP2C9*1, CYP2C9*2, and CYP2C9*3 metabolism using fluorogenic Vivid substrates. J. Biomol. Screen. (2004) 9(5):439-449.
  • KUMAR V, WAHLSTROM JL, ROCK DA et al.: CYP2C9 Inhibition: impact of probe selection and pharmacogenetics on in vitro inhibition profiles. Drug Metab. Dispos. (2006) (In Press).
  • LIN JH: CYP induction-mediated drug interactions: in vitro assessment and clinical implications. Pharm. Res. (2006) 23(6):1089-1116.
  • KATO M, CHIBA K, HORIKAWA M, SUGIYAMA Y: The quantitative prediction of in vivo enzyme-induction caused by drug exposure from in vitro information on human hepatocytes. Drug Metab. Pharmacokinet. (2005) 20(4):236-243.
  • RIPP SL, MILLS JB, FAHMI OA et al.: Use of immortalized human hepatocytes to predict the magnitude of clinical drug–drug interactions caused by CYP3A4 induction. Drug Metab. Dispos. (2006) 34(10):1742-1748.
  • STANLEY LA, HORSBURGH BC, ROSS J, SCHEER N, ROLAND WOLF C: PXR and CAR: nuclear receptors which play a pivotal role in drug disposition and chemical toxicity. Drug Metab. Rev. (2006) 38(3):515-597.
  • PERSSON KP, EKEHED S, OTTER C et al.: Evaluation of human liver slices and reporter gene assays as systems for predicting the cytochrome P450 induction potential of drugs in vivo in humans. Pharm. Res. (2006) 23(1):56-69.
  • ZHU Z, KIM S, CHEN T et al.: Correlation of high-throughput pregnane X receptor (PXR) transactivation and binding assays. J. Biomol. Screen. (2004) 9(6):533-540.
  • SINZ M, KIM S, ZHU Z et al.: Evaluation of 170 xenobiotics as transactivators of human pregnane X receptor (hPXR) and correlation to known CYP3A4 drug interactions. Curr. Drug Metab. (2006) 7(4):375-388.
  • NORACHARTTIYAPOT W, NAGAI Y, MATSUBARA T et al.: Construction of several human-derived stable cell lines displaying distinct profiles of CYP3A4 induction. Drug Metab. Pharmacokinet. (2006) 21(2):99-108.
  • WALSKY RL, OBACH RS: Validated assays for human cytochrome P450 activities. Drug Metab. Dispos. (2004) 32(6):647-660.
  • MCGINNITY DF, BERRY AJ, KENNY JR, GRIME K, RILEY RJ: Evaluation of time-dependent cytochrome P450 inhibition using cultured human hepatocytes. Drug Metab. Dispos. (2006) 34(8):1291-1300.
  • GOMEZ-LECHON MJ, LAHOZ A, JIMENEZ N, VICENTE CASTELL J, DONATO MT: Cryopreservation of rat, dog and human hepatocytes: influence of preculture and cryoprotectants on recovery, cytochrome P450 activities and induction upon thawing. Xenobiotica (2006) 36(6):457-472.
  • GRAHAM RA, TYLER LO, KROL WL et al.: Temporal kinetics and concentration-response relationships for induction of CYP1A, CYP2B, and CYP3A in primary cultures of beagle dog hepatocytes. J. Biochem. Mol. Toxicol. (2006) 20(2):69-78.
  • PRUEKSARITANONT T, KUO Y, TANG C et al.: In vitro and in vivo CYP3A64 induction and inhibition studies in rhesus monkeys: a preclinical approach for CYP3A-mediated drug interaction studies. Drug Metab. Dispos. (2006) 34(9):1546-1555.
  • KATOH M, WATANABE M, TABATA T et al.: In vivo induction of human cytochrome P450 3A4 by rifabutin in chimeric mice with humanized liver. Xenobiotica (2005) 35(9):863-875.
  • GONG H, SINZ MW, FENG Y et al.: Animal models of xenobiotic receptors in drug metabolism and diseases. Methods Enzymol. (2005) 400:598-618.
  • RESCHLY EJ, KRASOWSKI MD: Evolution and function of the NR1I nuclear hormone receptor subfamily (VDR, PXR, and CAR) with respect to metabolism of xenobiotics and endogenous compounds. Curr. Drug Metab. (2006) 7(4):349-365.
  • ELORANTA JJ, KULLAK-UBLICK GA: Coordinate transcriptional regulation of bile acid homeostasis and drug metabolism. Arch Biochem. Biophys. (2005) 433(2):397-412.
  • ULRICH RG: The toxicogenomics of nuclear receptor agonists. Curr. Opin. Chem. Biol. (2003) 7(4):505-510.
  • TIRONA RG, KIM RB: Nuclear receptors and drug disposition gene regulation. J. Pharm. Sci. (2005) 94(6):1169-1186.
  • DIXIT SG, TIRONA RG, KIM RB: Beyond CAR and PXR. Curr. Drug Metab. (2005) 6(4):385-397.
  • BLEASBY K, CASTLE J, ROBERTS CJ et al.: Expression profiles of 50 xenobiotic transporter genes in humans and pre-clinical species; a resource for investigations into drug disposition. Xenobiotica Special Issue ‘The ADME Transcriptome’ (2006) (In Press).
  • SLATTER JG, TEMPLETON IE, CASTLE JC et al.: A compendium of gene expression profiles comprising a baseline model of the human liver drug metabolism transcriptome. Xenobiotica Special Issue ‘The ADME Transcriptome’ (2006) (In Press).
  • MEADOR V, JORDAN W, ZIMMERMANN J: Increasing throughput in lead optimization in vivo toxicity screens. Curr. Opin. Drug Discov. Devel. (2002) 5(1):72-78.
  • COE KJ, NELSON SD, ULRICH RG et al.: Profiling the hepatic effects of flutamide in rats: a microarray comparison with classical aryl hydrocarbon receptor ligands and atypical CYP1A inducers. Drug Metab. Dispos. (2006) 34(7):1266-1275.
  • SLATTER JG, CHENG O, CORNWELL PD et al.: A microarray-based compendium of hepatic gene expression profiles for prototypical ADME gene inducing compounds in rats and mice in vivo. Xenobiotica Special Issue ‘The ADME Transcriptome’ (2006) (In Press).
  • EKINS S, KIRILLOV E, RAKHMATULIN EA, NIKOLSKAYA T: A novel method for visualizing nuclear hormone receptor networks relevant to drug metabolism. Drug Metab. Dispos. (2005) 33(3):474-481.
  • GANTER B, TUGENDREICH S, PEARSON CI et al.: Development of a large-scale chemogenomics database to improve drug candidate selection and to understand mechanisms of chemical toxicity and action. J. Biotechnol. (2005) 119(3):219-244.
  • MATTES WB, PETTIT SD, SANSONE SA, BUSHEL PR, WATERS MD: Database development in toxicogenomics: issues and efforts. Environ. Health Perspect. (2004) 112(4):495-505.
  • MARGOLIS RN, EVANS RM, O’MALLEY BW: The Nuclear Receptor Signaling Atlas: development of a functional atlas of nuclear receptors. Mol. Endocrinol. (2005) 19(10):2433-2436.
  • DUTTON G: Drug Discovery: In Silico Tools Streamline Drug Design. In: Genetic Engineering News. (2006) 26(4):1.
  • FUKUNISHI Y, KUBOTA S, KANAI C, NAKAMURA H: A virtual active compound produced from the negative image of a ligand-binding pocket, and its application to in silico drug screening. J. Comput. Aided Mol. Des. (2006) 20(4):237-248.
  • HODEK P, SOPKO B, ANTONOVIC L et al.: Evaluation of comparative cytochrome P450 2B4 model by photoaffinity labeling. Gen. Physiol. Biophys. (2004) 23(4):467-488.
  • STIBOROVA M, SOPKO B, HODEK P et al.: The binding of aristolochic acid I to the active site of human cytochromes P450 1A1 and 1A2 explains their potential to reductively activate this human carcinogen. Cancer Lett. (2005) 229(2):193-204.
  • YAO H, COSTACHE AD, SEM DS: Chemical proteomic tool for ligand mapping of CYP antitargets: an NMR-compatible 3D QSAR descriptor in the Heme-Based Coordinate System. J. Chem. Inf. Comput. Sci. (2004) 44(4):1456-1465.
  • YU J, PAINE MJ, MARECHAL JD et al.: In silico prediction of drug binding to CYP2D6: identification of a new metabolite of metoclopramide. Drug Metab. Dispos. (2006) 34(8):1386-1392.
  • SCHOCH GA, YANO JK, WESTER MR et al.: Structure of human microsomal cytochrome P450 2C8. Evidence for a peripheral fatty acid binding site. J. Biol. Chem. (2004) 279(10):9497-9503.
  • WILLIAMS PA, COSME J, VINKOVIC DM et al.: Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science (2004) 305(5684):683-686.
  • WILLIAMS PA, COSME J, WARD A et al.: Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature (2003) 424(6947):464-468.
  • WESTER MR, YANO JK, SCHOCH GA et al.: The structure of human cytochrome P450 2C9 complexed with flurbiprofen at 2.0-A resolution. J. Biol. Chem. (2004) 279(34):35630-35637.
  • ROWLAND P, BLANEY FE, SMYTH MG et al.: Crystal structure of human cytochrome P450 2D6. J. Biol. Chem. (2006) 281(11):7614-7622.
  • WATKINS RE, WISELY GB, MOORE LB et al.: The human nuclear xenobiotic receptor PXR: structural determinants of directed promiscuity. Science (2001) 292(5525):2329-2333.
  • YANO JK, HSU MH, GRIFFIN KJ, STOUT CD, JOHNSON EF: Structures of human microsomal cytochrome P450 2A6 complexed with coumarin and methoxsalen. Nat. Struct. Mol. Biol. (2005) 12(9):822-823.
  • MESTRES J: Structure conservation in cytochromes P450. Proteins (2005) 58(3):596-609.
  • PEI J, WANG Q, LIU Z et al.: PSI-DOCK: towards highly efficient and accurate flexible ligand docking. Proteins (2006) 62(4):934-946.
  • LINDSTROM A, PETTERSSON F, ALMQVIST F et al.: Hierarchical PLS modeling for predicting the binding of a comprehensive set of structurally diverse protein–ligand complexes. J. Chem. Inf. Model. (2006) 46(3):1154-1167.
  • GIORDANETTO F, COTESTA S, CATANA C et al.: Novel scoring functions comprising QXP, SASA, and protein side-chain entropy terms. J. Chem. Inf. Comput. Sci. (2004) 44(3):882-893.
  • WATKINS RE, DAVIS-SEARLES PR, LAMBERT MH, REDINBO MR: Coactivator binding promotes the specific interaction between ligand and the pregnane X receptor. J. Mol. Biol. (2003) 331(4):815-828.
  • SHERMAN W, DAY T, JACOBSON MP, FRIESNER RA, FARID R: Novel procedure for modeling ligand/receptor induced fit effects. J. Med. Chem. (2006) 49(2):534-553.
  • EKINS S, DE GROOT MJ, JONES JP: Pharmacophore and three-dimensional quantitative structure– activity relationship methods for modeling cytochrome P450 active sites. Drug Metab. Dispos. (2001) 29(7):936-944.
  • AFZELIUS L, ZAMORA I, RIDDERSTROM M et al.: Competitive CYP2C9 inhibitors: enzyme inhibition studies, protein homology modeling, and three-dimensional quantitative structure–activity relationship analysis. Mol. Pharmacol. (2001) 59(4):909-919.
  • EKINS S, BRAVI G, BINKLEY S et al.: Three- and four-dimensional-quantitative structure activity relationship (3D/4D-QSAR) analyses of CYP2C9 inhibitors. Drug Metab. Dispos. (2000) 28(8):994-1002.
  • LOCUSON CW, 2ND, ROCK DA, JONES JP: Quantitative binding models for CYP2C9 based on benzbromarone analogues. Biochemistry (2004) 43(22):6948-6958.
  • RAO S, AOYAMA R, SCHRAG M et al.: A refined 3-dimensional QSAR of cytochrome P450 2C9: computational predictions of drug interactions. J. Med. Chem. (2000) 43(15):2789-2796.
  • EKINS S, ERICKSON JA: A pharmacophore for human pregnane X receptor ligands. Drug Metab. Dispos. (2002) 30(1):96-99.
  • MAO B, GOZALBES R, BARBOSA F et al.: QSAR modeling of in vitro inhibition of cytochrome P450 3A4. J. Chem. Inf. Model. (2006) 46(5):2125-2134.
  • ROSTAMI-HODJEGAN A, TUCKER GT: ‘In silico’ simulations to assess the ‘in vivo’ consequences of ‘in vitro’ metabolic drug-drug interactions. Drug Discovery Today: Technologies (2004) 1:441-448.
  • BROWN HS, GALETIN A, HALLIFAX D, HOUSTON JB: Prediction of in vivo drug–drug interactions from in vitro data: factors affecting prototypic drug–drug interactions involving CYP2C9, CYP2D6 and CYP3A4. Clin. Pharmacokinet. (2006) 45(10):1035-1050.
  • BROWN HS, ITO K, GALETIN A, HOUSTON JB: Prediction of in vivo drug–drug interactions from in vitro data: impact of incorporating parallel pathways of drug elimination and inhibitor absorption rate constant. Br. J. Clin. Pharmacol. (2005) 60(5):508-518.
  • HOWGATE EM, ROWLAND YEO K, PROCTOR NJ, TUCKER GT, ROSTAMI-HODJEGAN A: Prediction of in vivo drug clearance from in vitro data. I: impact of inter-individual variability. Xenobiotica (2006) 36(6):473-497. 7th Simcyp Consortium meeting, Sheffield,2006.
  • CORREIA MA: Cytochrome P450 turnover. Methods Enzymol. (1991) 206:315-325. Accessed November 2006: XenoTech provides high quality GLP in vitro drug metabolism and drug-drug interaction services and an extensive selection of products for drug metabolism-related research.

Websites

  • http://www.fda.gov/Cder/drug/drug interactions/Accessed November 2006: the United States FDA center for drug evaluation and research web page on drug interactions for drug developers with a link to the new draft guidance published in September 2006.
  • http://www.bdbioscience.comAccessed November 2006: BD Biosciences provides premium products and instrumentation for research and clinical applications in the fields of immunology, oncology, and drug discovery including a variety of special tools and reagents for ADME-Tox research.
  • http://www.xenotechllc.comAccessed November 2006: XenoTech provides high quality GLP in vitro drug metabolism and drug-drug interaction services and an extensive selection of products for drug metabolism-related research
  • http:///www.cellzdirect.comAccessed November 2006: Cellzdirect offers a variety of cell products for research, including fresh human and animal cells and subcellular fractions and in vitro drug metabolism and drug-drug interaction services.
  • http://www.ingenuity.comAccessed November 2006: Ingenuity Systems products include pathways analysis software and knowledge bases for biologists and bioinformaticians, and enterprise knowledge management infrastructure, content and services for leading pharmaceutical and biotech companies. Ingenuity Pathways Analysis enables biologists and bioinformaticians to model, analyze and understand complex biological systems
  • http://www.iconixpharm.comAccessed November 2006: Iconix Biosciences provides reference systems and toxicogenomic know-how to predict toxic liabilities and side effects of drug candidates and determine if they are on or off target, to enable pharmaceutical companies to increase the odds of advancing the right compounds to the clinic, reduce attrition rates and the reduce costs of drug discovery
  • http://www.genelogic.comAccessed November 2006. Gene Logic provides a broad portfolio of preclinical services to assist drug developers with compound safety evaluation.
  • http://www/simcyp.comAccessed November 2006. The Simcyp package offers: software, consultancy and education for in silico in vitro–in vivo extrapolation, prediction of fraction absorbed, volume of distribution, clearance, modeling of oral drug absorption, full PBPK modeling of drug–drug interactions and trial design for clinical development.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.