113
Views
15
CrossRef citations to date
0
Altmetric
Reviews

Optical molecular imaging in drug discovery and clinical development

, , , &
Pages 65-85 | Published online: 16 Jan 2007

Bibliography

  • GREER LF 3RD, SZALAY AA: Imaging of light emission from the expression of luciferases in living cells and organisms: a review. Luminescence (2002) 17(1):43-74.
  • GIEPMANS BN, ADAMS SR, ELLISMAN MH, TSIEN RY: The fluorescent toolbox for assessing protein location and function. Science (2006) 312(5771):217-224.
  • GIBSON AP, HEBDEN JC, ARRIDGE SR: Recent advences in diffuses optical imaging. Phys. Med. Biol. (2005) 50R1-50R43.
  • INTES X, CHANCE B: Non-PET functional imaging techniques: optical. Radiol. Clin. North Am. (2005) 43(1):221-234, xii.
  • SIEGEL A, MAROTA J, BOSAS DA: Design and evaluation of a continuous-wave diffuse optical tomography system. Opt. Express (1999) 4287-4298.
  • NTZIACHRISTOS V, MA X, YODH AG, CHANCE B: Multichanel phton counting instrument for spatially resolved near infrared spectroscopy. Rev. Sci. Instrum. (1999) 70193-70201.
  • NTZIACHRISTOS V, WEISSLEDER R: Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media. Med. Phys. (2002) 29(5):803-809.
  • GRAVES EE, RIPOLL J, WEISSLEDER R, NTZIACHRISTOS V: A submillimeter resolution fluorescence molecular imaging system for small animal imaging. Med. Phys. (2003) 30(5):901-911.
  • TROY TL, STEARNS DG, NILSON DN, RICE BW: Development of 3D optical imaging system for in vivo detection of bioluminescence. OSA Biomedical Topical Meetings (Optical Society of America): (2002) 513-515.
  • RUDIN M, WEISSLEDER R: Molecular imaging in drug discovery and development. Nat. Rev. Drug Discov. (2003) 2(2):123-131.
  • LICHA K, OLBRICH C: Optical imaging in drug discovery and diagnostic applications. Adv. Drug Deliv. Rev. (2005) 57(8):1087-1108.
  • BLASBERG RG, GELOVANI J: Molecular-genetic imaging: a nuclear medicine-based perspective. Mol. Imaging (2002) 1(3):280-300.
  • GELOVANI TJUVAJEV J, BLASBERG RG: In vivo imaging of molecular-genetic targets for cancer therapy. Cancer Cell (2003) 3(4):327-332.
  • HOFFMAN R: Green fluorescent protein imaging of tumour growth, metastasis, and angiogenesis in mouse models. Lancet Oncol. (2002) 3(9):546-556.
  • GROSS S, PIWNICA-WORMS D: Spying on cancer: molecular imaging in vivo with genetically encoded reporters. Cancer Cell (2005) 7(1):5-15.
  • TROY T, JEKIC-MCMULLEN D, SAMBUCETTI L, RICE B: Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol. Imaging (2004) 3(1):9-23.
  • TUNG CH, ZENG Q, SHAH K, KIM DE, SCHELLINGERHOUT D, WEISSLEDER R: In vivo imaging of beta-galactosidase activity using far red fluorescent switch. Cancer Res. (2004) 64(5):1579-1583.
  • ACHILEFU S: Lighting up tumours with receptor-specific optical molecular probes. Technol. Cancer Res. Treat. (2004) 3(4):393-409.
  • NTZIACHRISTOS V, BREMER C, WEISSLEDER R: Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur. Radiol. (2003) 13(1):195-208.
  • BERLIER JE, ROTHE A, BULLER G et al.: Quantitative comparison of long-wavelength Alexa Fluor dyes to Cy dyes: fluorescence of the dyes and their bioconjugates. J. Histochem. Cytochem. (2003) 51(12):1699-1712.
  • NTZIACHRISTOS V, YODH AG, SCHNALL M, CHANCE B: Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proc. Natl. Acad. Sci. USA (2000) 97(6):2767-2772.
  • YE Y, BLOCH S, XU B, ACHILEFU S: Design, synthesis, and evaluation of near infrared fluorescent multimeric RGD peptides for targeting tumours. J. Med. Chem. (2006) 49(7):2268-2275.
  • CHEN X, CONTI PS, MOATS RA: In vivo near-infrared fluorescence imaging of integrin αvβ3 in brain tumour xenografts. Cancer Res. (2004) 64(21):8009-8014.
  • NTZIACHRISTOS V, SCHELLENBERGER EA, RIPOLL J et al.: Visualization of antitumour treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate. Proc. Natl. Acad. Sci. USA (2004) 101(33):12294-12299.
  • OKARVI SM, AL-JAMMAZ I: Synthesis, radiolabelling and biological characteristics of a bombesin peptide analog as a tumour imaging agent. Anti-Cancer Res. (2003) 23(3B):2745-2750.
  • LICHA K, HESSENIUS C, BECKER A et al.: Synthesis, characterization, and biological properties of cyanine-labelled somatostatin analogues as receptor-targeted fluorescent probes. Bioconjug. Chem. (2001) 12(1):44-50.
  • WEISSLEDER R, TUNG CH, MAHMOOD U, BOGDANOV A Jr: In vivo imaging of tumours with protease-activated near-infrared fluorescent probes. Nat. Biotechnol. (1999) 17(4):375-378.
  • BREMER C, TUNG CH, WEISSLEDER R: In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat. Med. (2001) 7(6):743-748.
  • MAHMOOD U, WEISSLEDER R: Near-infrared optical imaging of proteases in cancer. Mol. Cancer Ther. (2003) 2(5):489-496.
  • JIANG T, OLSON ES, NGUYEN QT, ROY M, JENNINGS PA, TSIEN RY: Tumour imaging by means of proteolytic activation of cell-penetrating peptides. Proc. Natl. Acad. Sci. USA (2004) 101(51):17867-17872.
  • GAO X, CUI Y, LEVENSON RM, CHUNG LW, NIE S: In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. (2004) 22(8):969-976.
  • MEDINTZ IL, UYEDA HT, GOLDMAN ER, MATTOUSSI H: Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. (2005) 4(6):435-446.
  • MICHALET X, PINAUD FF, BENTOLILA LA et al.: Quantum dots for live cells, in vivo imaging, and diagnostics. Science (2005) 307(5709):538-544.
  • LAXMAN B, HALL DE, BHOJANI MS et al.: Noninvasive real-time imaging of apoptosis. Proc. Natl. Acad. Sci. USA (2002) 99(26):16551-16555.
  • ZHANG GJ, SAFRAN M, WEI W et al.: Bioluminescent imaging of Cdk2 inhibition in vivo. Nat Med. (2004) 10(6):643-648.
  • HARADA H, KIZAKA-KONDOH S, HIRAOKA M: Optical imaging of tumour hypoxia and evaluation of efficacy of a hypoxia-targeting drug in living animals. Mol. Imaging (2005) 4(3):182-193.
  • WANG W, EL-DEIRY WS: Bioluminescent molecular imaging of endogenous and exogenous p53-mediated transcription in vitro and in vivo using an HCT116 human colon carcinoma xenograft model. Cancer Biol. Ther. (2003) 2(2):196-202.
  • LUKER GD, SHARMA V, PIWNICA-WORMS D: Visualizing protein-protein interactions in living animals. Methods (2003) 29(1):110-122.
  • GROSS S, PIWNICA-WORMS D: Monitoring proteasome activity in cellulo and in living animals by bioluminescent imaging: technical considerations for design and use of genetically encoded reporters. Methods Enzymol. (2005) 399512-399530.
  • REED JC: Apoptosis-based therapies. Nat. Rev. Drug Discov. (2002) 1(2):111-121.
  • SHAH K, TUNG CH, BREAKEFIELD XO, WEISSLEDER R: In vivo imaging of S-TRAIL-mediated tumour regression and apoptosis. Mol. Ther. (2005) 11(6):926-931.
  • MESSERLI SM, PRABHAKAR S, TANG Y et al.: A novel method for imaging apoptosis using a caspase-1 near-infrared fluorescent probe. Neoplasia (2004) 6(2):95-105.
  • SCHELLENBERGER EA, BOGDANOV A Jr, PETROVSKY A, NTZIACHRISTOS V, WEISSLEDER R, JOSEPHSON L: Optical imaging of apoptosis as a biomarker of tumour response to chemotherapy. Neoplasia (2003) 5(3):187-192.
  • UHRBOM L, NERIO E, HOLLAND EC: Dissecting tumour maintenance requirements using bioluminescence imaging of cell proliferation in a mouse glioma model. Nat. Med. (2004) 10(11):1257-1260.
  • KAELIN WG: Proline hydroxylation and gene expression. Ann. Rev. Biochem. (2005) 74115-74128.
  • VORDERMARK D, SHIBATA T, BROWN JM: Green fluorescent protein is a suitable reporter of tumour hypoxia despite an oxygen requirement for chromophore formation. Neoplasia (2001) 3(6):527-534.
  • SAFRAN M, KIM WY, O’CONNELL F et al.: Mouse model for noninvasive imaging of HIF prolyl hydroxylase activity: assessment of an oral agent that stimulates erythropoietin production. Proc. Natl. Acad. Sci. USA (2006) 103(1):105-110.
  • YANG M, BARANOV E, LI XM et al.: Whole-body and intravital optical imaging of angiogenesis in orthotopically implanted tumours. Proc. Natl. Acad. Sci. USA (2001) 98(5):2616-2621.
  • YANG M, LI L, JIANG P, MOOSSA AR, PENMAN S, HOFFMAN RM: Dual-color fluorescence imaging distinguishes tumour cells from induced host angiogenic vessels and stromal cells. Proc. Natl. Acad. Sci. USA (2003) 100(24):14259-14262.
  • AMOH Y, YANG M, LI L, REYNOSO J et al.: Nestin-linked green fluorescent protein transgenic nude mouse for imaging human tumour angiogenesis. Cancer Res. (2005) 65(12):5352-5357.
  • HOFFMAN RM: Imaging tumour angiogenesis with fluorescent proteins. Apmis (2004) 112(7-8):441-449.
  • MONTET X, NTZIACHRISTOS V, GRIMM J, WEISSLEDER R: Tomographic fluorescence mapping of tumour targets. Cancer Res. (2005) 65(14):6330-6336.
  • LYONS SK, CLERMONT AO, NEBEN TY et al.: Non-invasive in vivo bioluminescent imaging of tumour angiogenesis in mice. Proceedings of the 96th annual meeting of AACR (2005).
  • BIRCHLER M, NERI G, TARLI L, HALIN C, VITI F, NERI D: Infrared photodetection for the in vivo localisation of phage-derived antibodies directed against angiogenic markers. J. Immunol. Methods (1999) 231(1-2):239-248.
  • KARIN M, GRETEN FR: NF-κB: linking inflammation and immunity to cancer development and progression. Nat. Rev. Immunol. (2005) 5(10):749-759.
  • CARLSEN H, MOSKAUG JO, FROMM SH, BLOMHOFF R: In vivo imaging of NF-κB activity. J. Immunol. (2002) 168(3):1441-1446.
  • TILLMANNS J, CARLSEN H, BLOMHOFF R et al.: Caught in the act: in vivo molecular imaging of the transcription factor NF-κB after myocardial infarction. Biochem. Biophys. Res. Commun. (2006) 342(3):773-774.
  • ILAGAN R, ZHANG LJ, POTTRATZ J et al.: Imaging androgen receptor function during flutamide treatment in the LAPC9 xenograft model. Mol. Cancer Ther. (2005) 4(11):1662-1669.
  • CIANA P, RAVISCIONI M, MUSSI P et al.: In vivo imaging of transcriptionally active estrogen receptors. Nat. Med. (2003) 9(1):82-86.
  • NGUYEN JT, MACHADO H, HERSCHMAN HR: Repetitive, noninvasive imaging of COX-2 gene expression in living mice. Mol. Imaging Biol. (2003) 5(4):248-256.
  • ISHIKAWA TO, JAIN NK, TAKETO MM, HERSCHMAN HR: Imaging COX-2 (Cox-2) gene expression in living animals with a luciferase knock-in reporter gene. Mol. Imaging Biol. (2006) 8(3):171-187.
  • PAULMURUGAN R, UMEZAWA Y, GAMBHIR SS: Noninvasive imaging of protein-protein interactions in living subjects by using reporter protein complementation and reconstitution strategies. Proc. Natl. Acad. Sci. USA (2002) 99(24):15608-15613.
  • PAULMURUGAN R, GAMBHIR SS: Monitoring protein-protein interactions using split synthetic renilla luciferase protein-fragment-assisted complementation. Anal. Chem. (2003) 75(7):1584-1589.
  • PAULMURUGAN R, MASSOUD TF, HUANG J, GAMBHIR SS: Molecular imaging of drug-modulated protein-protein interactions in living subjects. Cancer Res. (2004) 64(6):2113-2119.
  • LUKER KE, PIWNICA-WORMS D: Optimizing luciferase protein fragment complementation for bioluminescent imaging of protein-protein interactions in live cells and animals. Methods Enzymol. (2004) 385349-385360.
  • SUGGITT M, BIBBY MC: 50 years of preclinical anticancer drug screening: empirical to target-driven approaches. Clin. Cancer Res. (2005) 11(3):971-981.
  • HOLLINGSHEAD MG, ALLEY MC, CAMALIER RF et al.: In vivo cultivation of tumour cells in hollow fibres. Life Sci. (1995) 57(2):131-141.
  • ZHANG GJ, KAELIN WG Jr: Bioluminescent imaging of ubiquitin ligase activity: measuring Cdk2 activity In vivo through changes in p27 turnover. Methods Enzymol. (2005) 399530-399549.
  • HOLLINGSHEAD MG, BONOMI CA, BORGEL SD: A potential role for imaging technology in anticancer efficacy evaluations. Eur. J. Cancer (2004) 40(6):890-898.
  • PHILLIPS RM, PEARCE J, LOADMAN PM et al.: Angiogenesis in the hollow fibre tumour model influences drug delivery to tumour cells: implications for anticancer drug screening programs. Cancer Res. (1998) 58(23):5263-5266.
  • HOFFMAN RM: Orthotopic metastatic (MetaMouse) models for discovery and development of novel chemotherapy. Methods Mol. Med. (2005) 111297-111322.
  • BREMER C, NTZIACHRISTOS V, WEITKAMP B, THEILMEIER G, HEINDEL W, WEISSLEDER R: Optical imaging of spontaneous breast tumours using protease sensing ‘smart’ optical probes. Invest. Radiol. (2005) 40(6):321-327.
  • JENKINS DE, HORNIG YS, OEI Y, DUSICH J, PURCHIO T: Bioluminescent human breast cancer cell lines that permit rapid and sensitive in vivo detection of mammary tumours and multiple metastases in immune deficient mice. Breast Cancer Res. (2005) 7(4):R444-R454.
  • JENKINS DE, OEI Y, HORNIG YS et al.: Bioluminescent imaging (BLI) to improve and refine traditional murine models of tumour growth and metastasis. Clin. Exp. Metastasis (2003) 20(8):733-744.
  • SCATENA CD, HEPNER MA, OEI YA et al.: Imaging of bioluminescent LNCaP-luc-M6 tumours: a new animal model for the study of metastatic human prostate cancer. Prostate (2004) 59(3):292-303.
  • JENKINS DE, YU SF, HORNIG YS et al.: In vivo monitoring of tumour relapse and metastasis using bioluminescent PC-3M-luc-C6 cells in murine models of human prostate cancer. Clin. Exp. Metastasis (2003) 20(8):745-756.
  • KANG Y, SIEGEL PM, SHU W et al.: A multigenic programme mediating breast cancer metastasis to bone. Cancer Cell (2003) 3(6):537-549.
  • MINN AJ, GUPTA GP, SIEGEL PM et al.: Genes that mediate breast cancer metastasis to lung. Nature (2005) 436(7050):518-524.
  • MINN AJ, KANG Y, SERGANOVA I et al.: Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumours. J. Clin. Invest. (2005) 115(1):44-55.
  • JACKS T, FAZELI A, SCHMITT EM, BRONSON RT, GOODELL MA, WEINBERG RA: Effects of an Rb mutation in the mouse. Nature (1992) 359(6393):295-300.
  • DONEHOWER LA, HARVEY M, SLAGLE BL et al.: Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature (1992) 356(6366):215-221.
  • GNARRA JR, WARD JM, PORTER FD et al.: Defective placental vasculogenesis causes embryonic lethality in VHL-deficient mice. Proc. Natl. Acad. Sci. USA (1997) 94(17):9102-9107.
  • WANG S, GAO J, LEI Q et al.: Prostate-specific deletion of the murine Pten tumour suppressor gene leads to metastatic prostate cancer. Cancer Cell (2003) 4(3):209-221.
  • MOODY SE, PEREZ D, PAN TC et al.: The transcriptional repressor Snail promotes mammary tumour recurrence. Cancer Cell (2005) 8(3):197-209.
  • MOSHITCH-MOSHKOVITZ S, TSARFATY G et al.: In vivo direct molecular imaging of early tumourigenesis and malignant progression induced by transgenic expression of GFP-Met. Neoplasia (2006) 8(5):353-363.
  • VOOIJS M, JONKERS J, LYONS S, BERNS A: Noninvasive imaging of spontaneous retinoblastoma pathway-dependent tumours in mice. Cancer Res. (2002) 62(6):1862-1867.
  • LYONS SK, MEUWISSEN R, KRIMPENFORT P, BERNS A: The generation of a conditional reporter that enables bioluminescence imaging of Cre/loxP-dependent tumourigenesis in mice. Cancer Res. (2003) 63(21):7042-7046.
  • LYONS SK, LIM E, CLERMONT AO et al.: Noninvasive bioluminescence imaging of normal and spontaneously transformed prostate tissue in mice. Cancer Res. (2006) 66(9):4701-4707.
  • SAFRAN M, KIM WY, KUNG AL, HORNER JW, DEPINHO RA, KAELIN WG Jr: Mouse reporter strain for noninvasive bioluminescent imaging of cells that have undergone Cre-mediated recombination. Mol. Imaging (2003) 2(4):297-302.
  • HINTERSTEINER M, ENZ A, FREY P, et al.: In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe. Nat. Biotechnol. (2005) 23(5):577-583.
  • GOLDSTEIN LE, MUFFAT JA, CHERNY RA et al.: Cytosolic beta-amyloid deposition and supranuclear cataracts in lenses from people with Alzheimer’s disease. Lancet (2003) 361(9365):1258-1265.
  • ZHU L, RAMBOZ S, HEWITT D, BORING L, GRASS DS, PURCHIO AF: Non-invasive imaging of GFAP expression after neuronal damage in mice. Neurosci. Lett. (2004) 367(2):210-212.
  • FUJIMOTO JG: Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat. Biotechnol. (2003) 21(11):1361-1367.
  • THOMAS D, DUGUID G: Optical coherence tomography-a review of the principles and contemporary uses in retinal investigation. Eye (2004) 18(6):561-570.
  • DOYLE TC, BURNS SM, CONTAG CH: In vivo bioluminescence imaging for integrated studies of infection. Cell Microbiol. (2004) 6(4):303-317.
  • PIWNICA-WORMS D, SCHUSTER DP, GARBOW JR: Molecular imaging of host-pathogen interactions in intact small animals. Cell Microbiol. (2004) 6(4):319-331.
  • HEUSSLER V, DOERIG C: In vivo imaging enters parasitology. Trends Parasitol. (2006) 22(5):192-195; discussion 195-196.
  • DOYLE TC, NAWOTKA KA, KAWAHARA CB, FRANCIS KP, CONTAG PR: Visualizing fungal infections in living mice using bioluminescent pathogenic Candida albicans strains transformed with the firefly luciferase gene. Microb. Pathog. (2006) 40(2):82-90.
  • LANG T, GOYARD S, LEBASTARD M, MILON G: Bioluminescent Leishmania expressing luciferase for rapid and high-throughput screening of drugs acting on amastigote-harbouring macrophages and for quantitative real-time monitoring of parasitism features in living mice. Cell Microbiol. (2005) 7(3):383-392.
  • LUKER KE, SCHULTZ T, ROMINE J, LEIB DA, LUKER GD: Transgenic reporter mouse for bioluminescence imaging of herpes simplex virus 1 infection in living mice. Virology (2006) 347(2):286-295.
  • JAFFER FA, LIBBY P, WEISSLEDER R: Molecular and cellular imaging of atherosclerosis: emerging applications. J. Am. Coll. Cardiol. (2006) 47(7):1328-1338.
  • JADVAR H, XIANKUI L, SHAHINIAN A et al.: Glucose metabolism of human prostate cancer mouse xenografts. Mol. Imaging (2005) 4(2):91-97.
  • CHEN J, TUNG CH, MAHMOOD U et al.: In vivo imaging of proteolytic activity in atherosclerosis. Circulation (2002) 105(23):2766-2771.
  • HARA M, WANG X, KAWAMURA T et al.: Transgenic mice with green fluorescent protein-labelled pancreatic beta -cells. Am. J. Physiol. Endocrinol. Metab. (2003) 284(1):E177-E183.
  • PARK SY, WANG X, CHEN Z et al.: Optical imaging of pancreatic beta cells in living mice expressing a mouse insulin I promoter-firefly luciferase transgene. Genesis (2005) 43(2):80-86.
  • ZAHEER A, LENKINSKI RE, MAHMOOD A, JONES AG, CANTLEY LC, FRANGIONI JV: In vivo near-infrared fluorescence imaging of osteoblastic activity. Nat. Biotechnol. (2001) 19(12):1148-1154.
  • SLAKTER JS, YANNUZZI LA, GUYER DR, SORENSON JA, ORLOCK DA: Indocyanine-green angiography. Curr. Opin. Ophthalmol. (1995) 6(3):25-32.
  • KAMOLZ LP, ANDEL H, AUER T, MEISSL G, FREY M: Evaluation of skin perfusion by use of indocyanine green video angiography: Rational design and planning of trauma surgery. J. Trauma (2006) 61(3):635-641.
  • JOCHAM D, WITJES F, WAGNER S et al.: Improved detection and treatment of bladder cancer using hexaminolevulinate imaging: a prospective, Phase III multicenter study. J. Urol. (2005) 174(3):862-866; discussion 866.
  • COLAK SB, VAN DER MARK MB, HOOFT GW, HOOGENRAAD JH, VAN DER LINDEN ES, KUIJPERS FA: Clinical optical tomography and NIR spectroscopy for breast cancer detection. IEEE Journal of Selected Topics in Quantum Electronics (1999) 51143-51158.
  • SCHMITZ CH, KLEMER DP, HARDIN R et al.: Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements. Appl. Opt. (2005) 44(11):2140-2153.
  • RINNEBERG H, GROSENICK D, MOESTA KT et al.: Scanning time-domain optical mammography: detection and characterization of breast tumours in vivo. Technol. Cancer Res. Treat (2005) 4(5):483-496.
  • ZHANG W, PURCHIO AF, CHEN K et al.: A transgenic mouse model with a luciferase reporter for studying in vivo transcriptional regulation of the human CYP3A4 gene. Drug Metab. Dispos. (2003) 31(8):1054-1064.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.