230
Views
37
CrossRef citations to date
0
Altmetric
Reviews

Nicotinic receptors as targets for therapeutic discovery

, PhD, , PhD, , , PhD, , PhD & , PhD
Pages 1185-1203 | Published online: 29 Aug 2007

Bibliography

  • ISHII M, KURACHI Y: Muscarinic acetylcholine receptors. Curr. Pharm. Des. (2006) 12:3573-3581.
  • DANI JA, BERTRAND D: Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu. Rev. Pharmacol. Toxicol. (2007) 47:699-729.
  • GOTTI C, ZOLI M, CLEMENTI F: Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol. Sci. (2006) 27:482-491.
  • LUKAS RJ, CHANGEUX JP, LE NOVERE N et al.: International union of pharmacology. XX. Current status of the nomenclature for nicotinic acetylcholine receptors and their subunits. Pharmacol. Rev. (1999) 51:397-401.
  • BENCHERIF M, SCHMITT JD: Targeting neuronal nicotinic receptors: a path to new therapies. Curr. Drug Targets CNS Neurol. Disord. (2002) 1:349-357.
  • ASTLES PC, BAKER SR, BOOT JR, BROAD LM, DELL CP, KEENAN M: Recent progress in the development of subtype selective nicotinic acetylcholine receptor ligands. Curr. Drug Targets CNS Neurol. Disord. (2002) 1:337-348.
  • BREINING SR: Recent developments in the synthesis of nicotinic acetylcholine receptor ligands. Curr. Top. Med. Chem. (2004) 4:609-629.
  • GATTO GJ, BOHME GA, CALDWELL WS et al.: TC-1734: an orally active neuronal nicotinic acetylcholine receptor modulator with antidepressant, neuroprotective and long-lasting cognitive effects. CNS Drug Rev. (2004) 10:147-166.
  • MARTIN LF, FREEDMAN R: Schizophrenia and the α7 nicotinic acetylcholine receptor. Int. Rev. Neurobiol. (2007) 78:225-246.
  • PAVLOV VA, TRACEY KJ: Controlling inflammation: the cholinergic anti-inflammatory pathway. Biochem. Soc. Trans. (2006) 34:1037-1040.
  • QUIK M, MCINTOSH JM: Striatal α6* nicotinic acetylcholine receptors: potential targets for Parkinsson's disease therapy. J. Pharmacol. Exp. Ther. (2006) 316:481-489.
  • SCOTT DA, MARTIN M: Exploitation of the nicotinic anti-inflammatory pathway for the treatment of epithelial inflammatory diseases. World J. Gastroenterol. (2006) 12:7451-7459.
  • MERRETT MN, MORTENSEN N, KETTLEWELL M, JEWELL DO: Smoking may prevent pouchitis in patients with restorative proctocolectomy for ulcerative colitis. Gut (1996) 38:362-364.
  • SOPORI ML, KOZAK W, SAVAGE SM, GENG Y, KLUGER MJ: Nicotine-induced modulation of T cell function. Implications for inflammation and infection. Adv. Exp. Med. Biol. (1998) 437:279-289.
  • WEHRWEIN E, THOMPSON SA, COULIBALY SF, LINN DM, LINN CL: Acetylcholine protection of adult pig retinal ganglion cells from glutamate-induced excitotoxicity. Invest. Ophthalmol.Vis. Sci. (2004) 45:1531-1543.
  • LEE SJ, NAKAMURA Y, DE GROAT WC: Effect of (+/-)-epibatidine, a nicotinic agonist, on the central pathways controlling voiding function in the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. (2003) 285:R84-R90.
  • MISERY L: Nicotine effects on skin: are they positive or negative? Exp. Dermatol. (2004) 13:665-670.
  • NGUYEN VT, ARREDONDO J, CHERNYAVSKY AI, PITTELKOW MR, KITAJIMA Y, GRANDO SA: Pemphigus vulgaris acantholysis ameliorated by cholinergic agonists. Arch. Dermatol. (2004) 140:327-334.
  • HARRIST A, BEECH RD, KING SL et al.: Alteration of hippocampal cell proliferation in mice lacking the β2 subunit of the neuronal nicotinic acetylcholine receptor. Synapse (2004) 54:200-206.
  • LEVIN ED, MCCLERNON FJ, REZVANI AH: Nicotinic effects on cognitive function: behavioral characterization, pharmacological specification, and anatomic localization. Psychopharmacology (Berl.) (2006) 184(3-4):523-539.
  • LEVIN ED, CHRISTOPHER NC: Persistence of nicotinic agonist RJR 2403-induced working memory improvement in rats. Drug Dev. Res. (2002) 55:97-103.
  • MARTI BARROS DM, RAMIREZ MR, DOS REIS EA, IZQUIERDO I: Participation of hippocampal nicotinic receptors in acquisition, consolidation and retrieval of memory for one trial inhibitory avoidance in rats. Neuroscience (2004) 126:651-656.
  • BUCCAFUSCO JJ, BENCHERIF M, LETCHWORTH SR, LIPPIELLO PM: Long-lasting cognitive improvement with nicotinic receptor agonists: mechanisms of pharmacokinetic-pharmacodynamic discordance. Trends Pharm. Sci. (2005) 26:352-360.
  • HAHN B, SHARPLES CG, WONNACOTT S, SHOAIB M, STOLERMAM IP: Attentional effects of nicotinic agonists in rats. Neuropharmacology (2003) 44:1054-1067.
  • LEVIN ED, CONNERS CK, SILVA D, CANU W, MARCH J: Effects of chronic nicotine and methylphenidate in adults with attention deficit/hyperactivity disorder. Exp. Clin. Psychopharmacol. (2001) 9:83-90.
  • RADCLIFF KA, DANI JA: Nicotinic stimulation produces multiple forms of increased glutamatergic synaptic transmission. J. Neurosci. (1998) 18:7075-7083.
  • MANN EO, GREENFIELD SA: Novel modulatory mechanisms revealed by the sustained application of nicotine in the guinea-pig hippocampus in vitro. J. Physiol. (2003) 551:539-550.
  • MATSUYAMA S, MATSUMOTO A: Epibatidine induces long-term potentiation (LTP) via activation of α4β2 nicotinic acetylcholine receptors (nAChRs) in vivo in the intact mouse dentate gyrus: both a7 and α4β2 nAChRs essential to nicotinic LTP. J. Pharm. Sci. (2003) 93:180-187.
  • FUJII S, JI Z, MORITA N, SUMIKAWA K: Acute and chronic nicotine exposure differentially facilitate the induction of LTP. Brain Res. (1999) 846:137-143.
  • KENNY PJ, FILE SE, RATTRAY M: Acute nicotine decreases, and chronic nicotine increases the expression of brain-derived neurotrophic factor mRNA in rat hippocampus. Brain Res. Mol. Brain Res. (2000) 85:234-238.
  • BELLUARDO N, MUDO G, BLUM M, AMATO G, FUXE K: Neurotrophic effects of central nicotinic receptor activation. J. Neural. Trans. Supp. (2000) 60:227-245.
  • JONNALA RR, TERRY AV Jr, BUCCAFUSCO JJ: Nicotine increases the expression of high affinity nerve growth factor receptors in both in vitro and in vivo. Life Sci. (2002) 70:1543-1554.
  • HERNANDEZ CM, TERRY AV JR: Repeated nicotine exposure in rats: effects on memory function, cholinergic markers and nerve growth factor. Neuroscience (2005) 130:997-1012.
  • HEISENBERG CP, COOPER JD, BERKE J, SOFRONIEW MV: NMDA potentiates NGF-induced sprouting of septal cholinergic fibres. Neuroreport (1994) 5:413-416.
  • LAPCHAK PA, ARAUJO DM, HEFTI F: Effects of chronic nerve growth factor treatment on hippocampal [3H]cytisine/nicotinic binding sites and presynaptic nicotinic receptor function following fimbrial transections. Neuroscience (1994) 60:293-298.
  • WANG H, SUN X: Desensitized nicotinic receptors in brain. Brain Res. Brain Res. Rev. (2005) 48:420-437.
  • FUJII S, JI Z, SUMIKAWA K: Inactivation of α7 ACh receptors and activation of non-a7 ACh receptors both contribute to long term potentiation induction in the hippocampal CA1 region. Neurosci. Lett. (2000) 286:134-138.
  • JI D, LAPE R, DANI JA: Timing and location of nicotinic activity enhances or depresses hippocampal synaptic plasticity. Neuron (2001) 31:131-141.
  • WHITEHOUSE PJ: The cholinergic deficit in Alzheimer's disease. J. Clin. Psychiat. (1998) 59:19-22.
  • NEWHOUSE PA, POTTER A, SINGH A: Effects of nicotinic stimulation on cognitive performance. Curr. Opin. Pharmacol. (2004) 4:36-46.
  • SACCO KA, BANNON KL, GEORGE TP: Nicotinic receptor mechanisms and cognition in normal states and neuropsychiatric disorders. J. Psychopharm. (2004) 18:457-474.
  • WEVERS A, MONTEGGIA L, NOWACKI S et al.: Expression of nicotinic acetylcholine receptor subunits in the cerebral cortex in Alzheimer's disease: histotopographical correlation with amyloid plaques and hyperphosphorylated-tau protein. Eur. J. Neurosci. (1999) 11:2551-2565.
  • NAGELE RG, D'ANDREA MR, WANG H-Y: intraneuronal accumulation of β-amyloid 1-42 is mediated by the α7 nicotinic acetylcholine receptor in Alzheimer's disease. Neuroscience (2002) 110:199-211.
  • D'ANDREA MR, NAGELE RG: Targeting the α7 ncitonic acetylcholine receptor to reduce amyloid accumulation in Alzheimer's disease pyramidal neurons. Curr. Pharmaceut. Des. (2006) 12:677-684.
  • WU J, KUO Y-P, GEORGE AA, XU L, HU J, LUKAS RJ: β-Amyloid directly inhibits human α4β2-nicotinic acetylcholine receptors heterologously expressed in human SH-EP1 cells. J. Biol. Chem. (2004) 279:37842-37851.
  • NORDBERG A, HELLSTROM-LINDAHL E, LEE M et al.: Chronic nicotine treatment reduces β-amyloidosis in the brain of a mouse model of Alzheimer's disease (APPsw). J. Neurochem. (2002) 81:655-658.
  • LLEO A, GREENBERG SM, GROWDON JH: Current pharmacotherapy for Alzheimer's disease. Annu. Rev. Med. (2006) 57:513-533.
  • SAMANTA MK, WILSON B, SANTHI K, KUMAR KP, SURESH B: Alzheimer disease and its management: a review. Am. J. Ther. (2006) 13:516-526.
  • DUNBAR GC, INGLIS F, KUCHIBHATLA R, SHARMA T, TOMLINSON M, WAMSLEY J: Effect of ispronicline, a neuronal nicotinic acetylcholine receptor partial agonist, in subjects with age associated memory impairment (AAMI). J. Psychopharmacol. (2007) 21:171-178.
  • HELLSTROM-LINDAHL E, COURT J, KEVERNE J et al.: Nicotine reduces A β in the brain and cerebral vessels of APPsw mice. Eur. J. Neurosci. (2004) 19:2703-2710.
  • PARAIN K, HAPDEY C, ROUSSELET E, MARCHAND V, DUMERY B, HIRSCH EC: Cigarette smoke and nicotine protect dopaminergic neurons against the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine Parkinsonian toxin. Brain Res. (2003) 984:224-232.
  • TAKADA Y, YONEZAWA A, KUME T et al.: Nicotinic acetylcholine receptor-mediated neuroprotection by donepezil against glutamate neurotoxicity in rat cortical neurons. J. Pharmacol. Exp. Ther. (2003) 306:772-777.
  • O'NEILL MJ, MURRAY TK, LAKICS V, VISANJI NP, DUTY S: The role of neuronal nicotinic acetylcholine receptors in acute and chronic neurodegeneration. Curr. Drug Targets CNS Neurol. Disord. (2002) 1:399-411.
  • FLORES CM, HARGREAVES KM: Neuronal nicotinic receptors: new targets in the treatment of pain. In: Neuronal Nicotinic Receptors: Pharmacology and Therapeutic Opportunities. Arneric SP, Brioni JD (Eds), Wiley-Liss, New York, USA (1998):359-378.
  • CORDERO-ERAUSQUIN M, CHANGEUX JP: Tonic nicotinic modulation of serotonergic transmission in the spinal cord. Proc. Natl. Acad. Sci. USA (2001) 98:2803-2807.
  • RUETER LE, MEYER MD, DECKER MW: Spinal mechanisms underlying A-85380-induced effects on acute thermal pain. Brain Res. (2000) 872:93-101.
  • FLORES CM: The promise and pitfalls of a nicotinic cholinergic approach to pain management. Pain (2000) 88:1-6.
  • CAGGIULA AR, EPSTEIN LH, PERKINS KA, SAYLOR S: Different methods of assessing nicotine-induced antinociception may engage different neural mechanisms. Psychopharmacology (1995) 122:301-306.
  • BANNON AW, DECKER MW, HOLLADAY MW et al.: Broad spectrum, non-opioid analgesic activity by selective modulation of neuronal nicotinic acetylcholine receptors. Science (1998) 279:77-81.
  • SATKUNANATHAN N, LIVETT B, GAYLER K, SANDALL K, DOWN J, KHALIL Z: α-conotoxin Vc1.1 alleviates neuropathic pain and accelerates functional recovery of injured neurons. Brain Res. (2005) 1059:149-158.
  • GENZEN J, D MCGEHEE: Nicotinic modulation of GABAergic synaptic transmission in the spinal cord dorsal horn. Brain Res. (2005) 1031:229-237.
  • DECKER MW, RUETER LE, BITNER RS: Nicotinic acetylcholine receptor agonists: a potential new class of analgesics. Curr. Top. Med. Chem. (2004) 4:369-384.
  • BITNER RS, NIKKEL AL, CURZON P et al.: Reduced nicotinic receptor-mediated antinociception following in vivo antisense knock-down in rat. Brain Res. (2000) 871:66-74.
  • LESTER HA, FONCK C, TAPPER AR et al.: Hypersensitive knock-in mouse strains identify receptors and pathways for nicotine action. Curr. Opin. Drug Dis. Dev. (2003) 6:633-639.
  • RUETER LE, DECKER MW, BITNER RS: Improving the therapeutic window in the treatment of pain with nicotinic ligands. Drug Disc. Today Ther. Strat. (2004) 1:89-96.
  • VINCLER MA, EISENACH JC: Plasticity of spinal nicotinic acetylcholine receptors following spinal nerve ligation. Neurosci. Res. (2004) 48:139-145.
  • VINCLER MA, EISENACH JC: Knock down of the α5 nicotinic acetylcholine receptor in spinal nerve-ligated rats alleviates mechanical allodynia. Pharmacol. Biochem. Behav. (2005) 80:135-143.
  • RAMIREZ-LATORRE J, YU CR, QU X, PERIN F, KARLIN A, ROLE L: Functional contributions of α5 subunit to neuronal acetylcholine receptor channels. Nature (1996) 380:347-351.
  • DAMAJ MI, MEYER EM, MARTIN BR: The antinociceptive effects of a7 nicotinic agonists in an acute pain model. Neuropharmacology (2000) 39:2785-2791.
  • WANG Y, SU DM, WANG RH, LIU Y, WANG H: Antinociceptive effects of choline against acute and inflammatory pain. Neuroscience (2005) 132:49-56.
  • MORIOKA N, ABJIN J, MORITA K et al.: Antinociceptive effect of nicotine on tibial nerve transection-induced neuropathic pain. Soc. Neurosci. Abstr. (2006) 803:13.
  • DAMAJ MI, MARUBIO L, MARTIN BR: Involvement of α7 nicotinic receptors in acute and chronic pain transmission. Soc. Neurosci. Abstr. (2003) 693:12.
  • DE JONGE WJ, VAN DER ZANDEN EP, THE FO et al.: Stimulation of the vagus nerve attenuates macrophage activation by activating the JAK2-STAT3 signaling pathway. Nat. Immunol. (2005) 6:844-851.
  • VAN WESTERLOO DJ, GIEBELEN IA, FLORQUIN S et al.: The vagus nerve and nicotinic receptors modulate experimental pancreatitis severity in mice. Gastroenterology (2006) 130:1822-1830.
  • VINCLER M, WITTENAUER S, PARKER R, ELLISON M, OLIVERA BM, MCINTOSH JM: Molecular mechanism for analgesia involving specific antagonism of α9α10 nicotinic acetylcholine receptors. Proc. Natl. Acad. Sci. USA (2006) 103:17780-17784.
  • CLARK RJ, FISCHER H, NEVIN ST, ADAMS DJ, CRAIK DJ: The synthesis, structural characterization, and receptor specificity of the α-conotoxin Vc1.1. J. Biol. Chem. (2006) 281:23254-23263.
  • ELLISON M, HABERLANDT C, GOMEZ-CASATI ME et al.: α-RgIA: a novel conotoxin that specifically and potently blocks the α9α10 nAChR. Biochemistry (2006) 45:1511-1517.
  • LIPS KS, PFEIL U, KUMMER W: Coexpression of α9 and α10 nicotinic acetylcholine receptors in rat dorsal root ganglion neurons. Neuroscience (2002) 15:1-5.
  • PENG H, FERRIS RL, MATTHEWS T, HIEL H, LOPEZ-ALBAITERO A, LUSTIG LR: Characterization of the human nicotinic acetylcholine receptor subunit α (alpha) 9 (CHRNA9) and α (alpha) 10 (CHRNA10) in lymphocytes. Life Sci. (2004) 76:263-280.
  • JAIN KK: Modulators of nicotinic acetylcholine receptors as analgesics. Curr. Opin. Investig. Drugs (2004) 5:76-81.
  • JANOWSKY DS, EL-YOUSEF MK, DAVIS JM, SEKERKE HJ: A cholinergic-adrenergic hypothesis of mania and depression. Lancet (1972) 2:632-635.
  • AUBIN HJ, TILIKETE S, BARRUCAND D: Depression and Smoking. Encephale (1996) 22:17-22.
  • SEMBA J, MATAKI C, YAMADA S, NANKAI M, TORU M: Antidepressant-like effects of chronic nicotine on learned helplessness paradigm in rats. Biol. Psychiatry (1998) 43:389-391.
  • VAZQUEZ-PALACIOS G, BONILLA-JAIME H, VELAZQUEZ-MOCTEZUMA J: Antidepressant-like effects of the acute and chronic administration of nicotine in the rat forced swimming test and its interaction with fluoxetine. Pharmacol. Biochem. Behav. (2004) 78:165-169.
  • TIZABI Y, OVERSTREET DH, REZVANI AH et al.: Antidepressant effects of nicotine in an animal model of depression. Psychopharmacology (Berl.) (1999) 142:193-199.
  • SALIN-PASCUAL RJ, ROSAS M, JIMENEZ-GENCHI A, RIVERA-MEZA BL, DELGADO-PARRA V: Antidepressant effect of transdermal nicotine patches in nonsmoking patients with major depression. J. Clin. Psychiatry (1996) 57:387-389.
  • SLEMMER JE, MARTIN BR, DAMAJ MI: Bupropion is a nicotinic antagonist. J. Pharmacol. Exp. Ther. (2000) 295:321-327.
  • FRYER JD, LUKAS RJ: Noncompetitive functional inhibition at diverse, human nicotinic acetylcholine receptor subtypes by bupropion, phencyclidine, and ibogaine. J. Pharmacol. Exp. Ther. (1999) 288:88-92.
  • RABENSTEIN RL, CALDARONE BJ, PICCIOTTO MR: The nicotinic antagonist mecamylamine has antidepressant-like effects in wild-type but not β2- or α7-nicotinic acetylcholine receptor subunit knockout mice. Psychopharmacology (Berl.) (2006) 189:395-401.
  • SHYTLE RD, SILVER AA, LUKAS RJ, NEWMAN MB, SHEEHAN DV, SANBERG PR: Nicotinic acetylcholine receptors as targets for antidepressants. Mol. Psychiatry (2002) 7:525-535.
  • SACCO KA, VESSICCHIO JC, GEORGE TP: Nicotinic antagonist augmentation of SSRI antidepressants: preliminary results. 59th Annual Convention and Scientific Program of the Society of Biological Psychiatry, New York, NY. (29 April – 1 May 2004). (Abstract).
  • CALDARONE BJ, HARRIST A, CLEARY MA, BEECH RD, KING SL, PICCIOTTO MR: High-affinity nicotinic acetylcholine receptors are required for antidepressant effects of amitriptyline on behavior and hippocampal cell proliferation. Biol. Psychiatry (2004) 56:657-664.
  • LABARCA C, SCHWARZ J, DESHPANDE P et al.: Point mutant mice with hypersensitive α4 nicotinic receptors show dopaminergic deficits and increased anxiety. Proc. Natl. Acad. Sci. USA (2001) 98:2786-2791.
  • MINEUR YS, SOMENZI O, PICCIOTTO MR: Cytisine, a partial agonist of high-affinity nicotinic acetylcholine receptors, has antidepressant-like properties in male C57BL/6J mice. Neuropharmacology (2007) [Epub ahead of print].
  • WONG AHC, VAN TOL HHM: Schizophrenia: from phenomenology to neurobiology. Neurosci. Biobehav. Rev. (2003) 27:269-306.
  • LEONARD S, ADLER LE, BENHAMMOU K et al.: Smoking and mental illness. Pharmacol. Biochem. Behav. (2001) 70:561-570.
  • FREEDMAN F, HALL M, ADLER LE, LEONARD S: Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia Biol. Psychiatry (1995) 38:22-33.
  • GUAN ZZ, ZHANG X, BLENNW K et al.: Decreased protein level of nicotinic acetylcholine receptor α7 subunit in the frontal cortex from schizophrenic brain. Neuroreport (1999) 10:1779-1782.
  • BREESE CR, ADAMS C, LOGEL J et al.: Comparison of the regional expression of nicotinic acetylcholine receptor α7 mRNA and [125I]-α-bungarotoxin binding in human postmortem brain. J. Comp. Neurol. (1997) 387:385-398.
  • MANSVELDER HD, MCGEHEE DS: Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron (2000) 27:349-357.
  • EGEA J, ROSA AO, SOBRADO M, GANDIA L, LOPEZ MG, GARCIA AG: Neuroprotection afforded by nicotine against oxygen and glucose deprivation in hippocampal slices is lost in α7 nicotinic receptor knockout mice. Neuroscience (2007) 145:866-872.
  • LEONARD S, FREEDMAN R: Genetics of chromosome 15q13-q14 in schizophrenia. Biol. Psychiatry (2006) 60:115-122.
  • WALKER E, KESTLER L, BOLLINI A, HOCHMAN KM: Schizophrenia: etiology and course. Annu. Rev. Psychol. (2004) 55:401-430.
  • FENTON WS, STOVER EL, INSEL TR: Breaking the log-jam in treatment development for cognition in schizophrenia: NIMH perspective. Psychopharmacology (2003) 169:365-366.
  • MEYER EM, DE FIEBRE DM, HUNTER BE, SIMPKINS CE, FRAUWORTH N, DE FIEBRE NE: Effects of anabaseine-related analogs on rat brain nicotinic receptor binding and on avoidance behaviors. Drug Dev. Res. (1994) 31:127-134.
  • ARENDASH GW, SENGSTOCK GJ, SANBERG PR, KEM WR: Improved learning and memory in aged rats with chronic administration of nicotinic receptor agonist GTS-21. Brain Res. (1995) 674:252-259.
  • WOODRUFF-PAK DS, LI YT, KAZMI A, KEM WR: Nicotinic cholinergic system involvement in eyeblink classical conditioning in rabbits. Behav. Neurosci. (1994) 108:486-493.
  • BRIGGS CA, ANDERSON DJ, BRIONI JD et al.: Functional characterization of a novel neuronal nicotinic acetylcholine receptor ligand GTS-21 in vitro and in vivo. Pharmacol. Biochem. Behav. (1997) 57:231-241.
  • SIMOSKY JK, STEVENS KE, KEM WR, FREEDMAN R: Intragastric DMXB-A, an α7 nicotinic agonist, improves deficient sensory inhibition in DBA/2 mice. Biol. Psychiatry (2001) 50:493-500.
  • HURST RS, HAJÓS M, RAGGENBASS M et al.: A novel positive allosteric modulator of the α7 neuronal nicotinic acetylcholine receptor: in vitro and in vivo characterization. J. Neurosci. (2005) 25:4396-4405.
  • HAJÓS M, HURST RS, HOFFMANN WE et al.: The selective α7 nicotinic acetylcholine receptor agonist PNU-282987 [N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide hydrochloride] enhances GABAergic synaptic activity in brain slices and restores auditory gating deficits in anesthetized rats. JPET (2005) 312:1213-1222.
  • BETTANY JH, LEVIN ED: Ventral hippocampal α7 nicotinic receptor blockade and chronic nicotine effects on memory performance in the radial-arm maze. Pharmacol. Biochem. Behav. (2001) 70:467-474.
  • ADDY NA, NAKIJAMA A, LEVIN ED: Nicotinic mechanisms of memory: effects of acute local DhβE and MLA infusions in the basolateral amygdala. Brain Res. Cogn. Brain Res. (2003) 16:51-57.
  • ADLER LE, OLINCY A, WALDO MC et al.: Schizophrenia, sensory gating and nicotinic receptors. Schizophr. Bull. (1998) 24:189-202.
  • ROSS RG, OLINCY A, HARRIS JG et al.: Anticipatory saccades during smooth pursuit eye movements and familial transmission of schizophrenia. Biol. Psychiatry (1998) 44:690-697.
  • CILIA J, CLUDERAY JE, ROBBINS MJ et al.: Reversal of isolation-rearing-induced PPI deficits by an α7 nicotinic receptor agonist. Psychopharmacology (2005) 182:214-219.
  • VAN KAMPEN M, SELBACH K, SCHNEIDER R, SCHIEGEL E, BOESS F, SCHREIBER R: AR-R 17779 improves social recognition in rats by activation of nicotinic α7 receptors. Psychopharmacology (2004) 172:375-383.
  • LEVIN ED, BETTEGOWDA C, BLOSSER J, GORDON J: AR-R 17779, an α7 nicotinic agonist, improves learning and memory in rats. Behav. Pharmacol. (1999) 10:675-680.
  • PICHAT P, BERGIS OE, TERRANOVA JP et al.: SSR180711A, a novel selective α7 nicotinic receptor partial agonist. III. Effects in models predictive of therapeutic activity on cognitive symptoms of schizophrenia. Soc. Neurosci. Abstr. (2004) 34:583.3.
  • BERGIS OE, PICHAT P, SANTAMARIA R et al.: SSR180711A, a novel selective α7 nicotinic receptor partial agonist. II. Effects in models predictive of therapeutic activity on cognitive symptoms of Alzheimer's disease. Soc. Neurosci. Abstr. (2004) 34:583.2.
  • OLINCY A, HARRIS JG, JOHNSON LL et al.: Proof-of-concept trial of an α7 nicotinic agonist in schizophrenia. Arch. Gen. Psychiatry (2006) 63:630-638.
  • QUIK M: Smoking, nicotine and Parkinson's disease. Trends Neurosci. (2004) 27:561-568.
  • ALLAM MF, CAMPBELL MJ, HOFMAN A, DEL CASTILLO AS, FERNANDEZ-CREHUET NAVAJAS R: Smoking and Parkinson's disease: systematic review of prospective studies. Mov. Disord. (2004) 19:614-621.
  • BALFOUR DJ, FAGERSTROM KO: Pharmacology of nicotine and its therapeutic use in smoking cessation and neurodegenerative disorders. Pharmacol. Ther. (1996) 72:51-81.
  • WONNACOTT S: Presynaptic nicotinic ACh receptors. Trends Neurosci. (1997) 20:92-98. 127.
  • SALMINEN O, MURPHY KL, MCINTOSH JM et al.: Subunit composition and pharmacology of two classes of striatal presynaptic nicotinic acetylcholine receptors mediating dopamine release in mice. Mol. Pharmacol. (2004) 65:1526-1535.
  • LE NOVERE N, ZOLI M, LENA C et al.: Involvement of α6 nicotinic receptor subunit in nicotine-elicited locomotion, demonstrated by in vivo antisense oligonucleotide infusion. Neuroreport (1999) 10:2497-2501.
  • LUETJE CW: Getting past the asterisk: the subunit composition of presynaptic nicotinic receptors that modulate striatal dopamine release. Mol. Pharmacol. (2004) 65:1333-1335.
  • GRINEVICH VP, LETCHWORTH SR, LINDENBERGER KA et al.: Heterologous expression of human {α}6{β}4{β}3{α}5 nicotinic acetylcholine receptors: binding properties consistent with their natural expression require quaternary subunit assembly including the {α}5 subunit. J. Pharmacol. Exp. Ther. (2005) 312:619-626.
  • KAISER S, WONNACOTT S: α-bungarotoxin-sensitive nicotinic receptors indirectly modulate [(3)H]dopamine release in rat striatal slices via glutamate release. Mol. Pharmacol. (2000) 58:312-318.
  • GOTTI C, MORETTI M, BOHR I et al.: Selective nicotinic acetylcholine receptor subunit deficits identified in Alzheimer's disease, Parkinson's disease and dementia with Lewy bodies by immunoprecipitation. Neurobiol. Dis. (2006) 23:481-489.
  • KULAK JM, MCINTOSH JM, QUIK M: Loss of nicotinic receptors in monkey striatum after 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine treatment is due to a decline in α-conotoxin MII sites. Mol. Pharmacol. (2002) 61:230-238.
  • ABIN-CARRIQUIRY JA, MCGREGOR-ARMAS R, COSTA G, URBANAVICIUS J, DAJAS F: Presynaptic involvement in the nicotine prevention of the dopamine loss provoked by 6-OHDA administration in the substantia nigra. Neurotox. Res. (2002) 4:133-139.
  • DOMINO EF, NI L, ZHANG H: Nicotine alone and in combination with L-DOPA methyl ester or the D(2) agonist N-0923 in MPTP-induced chronic hemiparkinsonian monkeys. Exp. Neurol. (1999) 158:414-421.
  • SCHNEIDER JS, POPE-COLEMAN A, VAN VELSON M, MENZAGHI F, LLOYD GK: Effects of SIB-1508Y, a novel neuronal nicotinic acetylcholine receptor agonist, on motor behavior in parkinsonian monkeys. Mov. Disord. (1998) 13:637-642.
  • PICCIOTTO MR, ZOLI M: Nicotinic receptors in aging and dementia. J. Neurobiol. (2002) 53:641-655.
  • JEYARASASINGAM G, TOMPKINS L, QUIK M: Stimulation of non-α7 nicotinic receptors partially protects dopaminergic neurons from 1-methyl-4-phenylpyridinium-induced toxicity in culture. Neuroscience (2002) 109:275-285.
  • JANSON AM, FUXE K, AGNATI LF et al.: Chronic nicotine treatment counteracts the disappearance of tyrosine-hydroxylase-immunoreactive nerve cell bodies, dendrites and terminals in the mesostriatal dopamine system of the male rat after partial hemitransection. Brain Res. (1988) 455:332-345.
  • FUXE K, JANSON AM, JANSSON A, ANDERSSON K, ENEROTH P, AGNATI LF: Chronic nicotine treatment increases dopamine levels and reduces dopamine utilization in substantia nigra and in surviving forebrain dopamine nerve terminal systems after a partial di-mesencephalic hemitransection. Naunyn Schmiedebergs Arch. Pharmacol. (1990) 341:171-181.
  • RYAN RE, ROSS SA, DRAGO J, LOIACONO RE: Dose-related neuroprotective effects of chronic nicotine in 6-hydroxydopamine treated rats, and loss of neuroprotection in α4 nicotinic receptor subunit knockout mice. Br. J. Pharmacol. (2001) 132:1650-1656.
  • COSTA G, ABIN-CARRIQUIRY JA, DAJAS F: Nicotine prevents striatal dopamine loss produced by 6-hydroxydopamine lesion in the substantia nigra. Brain Res. (2001) 888:336-342.
  • QUIK M, PARAMESWARAN N, MCCALLUM SE et al.: Chronic oral nicotine treatment protects against striatal degeneration in MPTP-treated primates. J. Neurochem. (2006) 98:1866-1875.
  • QUIK M, CHEN L, PARAMESWARAN N, XIE X, LANGSTON JW, MCCALLUM SE: Chronic oral nicotine normalizes dopaminergic function and synaptic plasticity in 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine-lesioned primates. J. Neurosci. (2006) 26:4681-4689.
  • KELTON MC, KAHN HJ, CONRATH CL, NEWHOUSE PA: The effects of nicotine on Parkinson's disease. Brain Cogn. (2000) 43:274-282.
  • COSFORD ND, BLEICHER L, HERBAUT A et al.: (S)-(-)-5-ethynyl-3-(1-methyl-2-pyrrolidinyl)pyridine maleate (SIB-1508Y): a novel anti-parkinsonian agent with selectivity for neuronal nicotinic acetylcholine receptors. J. Med. Chem. (1996) 39:3235-3237.
  • THE PARKINSON STUDY GROUP: Randomized placebo-controlled study of the nicotinic agonist SIB-1508Y in Parkinson disease. Neurology (2006) 66:408-410.
  • MCGILLIGAN VE, WALLACE JMW, HEAVEY PM, RIDLEY DL, ROWLAND IR: Hypothesis about mechanisms through which nicotine might exert its effect on the interdependence of inflammation and gut barrier function in ulcerative colitis. Inflamm. Bowel Dis. (2007) 13:108-115.
  • MIAO FJP, GREEN P, BENOWITZ N, LEVINE JD: Vagal modulation of spinal nicotine-induced inhibition of the inflammatory response mediated by descending antinociceptive controls. Neuropharmacology (2003) 45:605-611.
  • BOROVIKOVA LV, IVANOVA S, NARDI D et al.: Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation. Autonomic Neurosci. Basic Clin. (2000) 85:141-147.
  • BOROVIKOVA LV, IVANOVA S, ZHANG M et al.: Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature (2000) 405:458-462.
  • WANG H, YU M, OCHANI M et al.: Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature (2003) 421:384-387.
  • HUSTON JM, OCHANI M, ROSAS-BALLINA M et al.: Splenectomy inactivates the cholinergic anti-inflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J. Exp. Med. (2006) 203:1623-1628.
  • WANG H, LIAO H, OCHANI M et al.: Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat. Med. (2004) 10:1216-1221.
  • VAN WESTERLOO DJ, GIEBELEN IAJ, FLORQUIN S et al.: The cholinergic anti-inflammatory pathway regulates the host response during septic peritonitis. J. Infect. Dis. (2005) 191:2138-2148.
  • SHAW S, BENCHERIF M, MARRERO MB: Janus kinase 2, an early target of α7 nicotinic acetylcholine receptor-mediated neuroprotection against Aβ-(1-42) amyloid. J. Biol. Chem. (2002) 277:44920-44924.
  • MARRERO MB, PAPKE RL, BHATTI BS, SHAW S, BENCHERIF M: The neuroprotective effect of 2-(3-pyridyl)-1-azabicyclo[3.2.2]nonane (TC-1698), a novel α7 ligand, is prevented through angiotensin II activation of a tyrosine phosphatase. J. Pharmacol. Exp. Ther. (2003) 309:16-27.
  • YOSHIKAWA H, KUROKAWA M, OZAKI N et al.: Nicotine inhibits the production of proinflammatory mediators in human monocytes by suppression of I-κB phosphorylation and NF-κB transcriptional activity through nicotinic acetylcholine receptor α7. Clin. Exp. Immunol. (2006) 146:116-123.
  • SAEED RW, VARMA S, PENG-NEMEROFF T et al.: Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation. J. Exp. Med. (2005) 201:1113-1123.
  • PAVLOV VA, OCHANI M, YANG LH et al.: Selective α7-nicotinic acetylcholine receptor agonist GTS-21 improves survival in murine endotoxemia and severe sepsis. Crit. Care Med. (2007) 35:1-6.
  • RUSSO C, POLOSA R: TNF-α as a promising therapeutic target in chronic asthma: a lesson from rheumatoid arthritis. Clin. Sci. (2005) 109:135-142.
  • GÜNDISH D: Nicotinic acetylcholine receptors and imaging. Curr. Pharm. Design. (2000) 6:1143-1157.
  • VOLKOW ND, DING Y-S, FOWLER JS et al.: Imaging brain cholinergic activity with positron emission tomography: its role in the evaluation of cholinergic treatments in Alzheimer's dementia. Biol. Psychiatry (2001) 49:211-220.
  • SIHVER W, NORDBERG A, LÅNGSTRÖM B et al.: Development of ligands in vivo imaging of cerebral nicotinic receptors. Behaiv. Brain Res. (2000) 113:143-157.
  • GRÜNWALD F, BIERSACK H-J, KUSCHINSKY W: Nicotine receptor mapping. Eur. J. Nucl. Med. (1996) 23:1012-1013.
  • SHIVER W, FASTH K-J, ÖGREN M et al.: In vitro evaluation of 11C-labeled (S)-nicotine, (S)-3-methyl-5-(1-methyl-2-pyrrolidinyl)isoxazole, and (R,S)-1-methyl-2-(3-pyridyl)azetidine as nicotinic receptor ligands for positron emission tomography studies. J. Neurochem. (1998) 71:1750-1760.
  • VALETTE H, BOTTLAENDER M, DOLLE F, DOLCI L, SYROTA A, CROUZEL C: An attempt to visualize baboon brain nicotinic receptors with N-[11C]ABT-418 and N-[11C]methyl-cytisine. Nucl. Med. Commun. (1997) 18:164-168.
  • KOZIKOWSKI AP, CHELLAPPAN SK, HENDERSON D et al.: Acetylenic pyridines for use in PET imaging of nicotinic receptors. ChemMedChem (2007) 2:54-57.
  • FUJITA M, ICHISE M, ZOGHBI S et al.: Widespread decrease of nicotinic acetylcholine receptors in Parkinson's disease. Ann. Neurol. (2006) 59:174-177.
  • RINNE JO, MYLLYKULA T, LONNBERG P et al.: A postmortem study of brain nicotinic receptors in Parkinson's and Alzheimer's disease. Brain Res. (1991) 547:167-170.
  • QUIK M, BORDIA T, FORNO L et al.: Loss of α-conotoxinMII- and A85380-sensitive nicotinic receptors in Parkinson's disease striatum. J. Neurochem. (2004) 88:668-679.
  • RUETER LE, DONELLY-ROBERTS DL, CURZON P et al.: A-85380: A pharmacological probe for the preclinical and clinical investigation of the α4β2 neuronal nicotinic acetylcholine receptor. CNS Drug Rev. (2006) 12:100-112.
  • OWENS J, PIMLOTT S, COLLOBY S et al.: Nicotinic acetylcholine receptor distribution in vitro and in vivo in normal and disease state human brain using [5-125I or 123I]-A-85380. J. Label. Compd. Radiopharm. (2003) 46:S379.
  • KASSIOU M, EBERL S, MEIKLE SR et al.: In vivo imaging of nicotinic receptor upregulation following chronic (-)-nicotine treatment in baboon using SPECT. Nucl. Med. Biol. (2001) 28:165-175.
  • NAVARRO HA, XU H, ZHONG D et al.: In vitro and in vivo characterization of [I-125]-iodomethyllycaconitine in the rat. Synapse (2002) 44:117-123.
  • DOLLE F, VALETTE H, HINNEN F et al.: Synthesis and preliminary evaluation of a carbon-11-labelled agonist of the α7 nicotinic acetylcholine receptor. J. Label. Compd. Radiopharm. (2001) 44:785-795.
  • POMPER MG, PHILLIPS E, FAN H et al.: Synthesis and biodistribution of radiolabeled α7 nicotinic acetylcholine receptor ligands. J. Nucl. Med. (2005) 46:326-334.
  • KHAN I, OSAKA H, STANISLAUS S et al.: Nicotinic acetylcholine receptor distribution in relation to spinal neurotransmission pathways. J. Comp. Neurol. (2003) 467:44-59.
  • KHAN I, WENNERHOLM M, SINGLETARY E et al.: Ablation of primary afferent terminals reduces nicotinic receptor expression and the nociceptive responses to nicotinic agonists in the spinal cord. J. Neurocytol. (2004) 33:543-556.
  • RASHID H, UEDA H: Neuropathy-specific analgesic action of intrathecal nicotinic agonists and its spinal GABA-mediated mechanism. Brain Res. (2002) 953:53-62.
  • RASHID H, FURUE H, YOSHIMURA M, UEDA H: Tonic inhibitory role of α4β2 subtype of nicotinic acetylcholine receptors on nociceptive transmission in the spinal cord in mice. Pain (2006) 125:125-135.
  • HABERBERGER RV, BERNARDINI N, KRESS M, HARTMANN P, LIPS KS, KUMMER W: Nicotinic acetylcholine receptor subtypes in nociceptive dorsal root ganglion neurons of the adult rat. Autonomic Neurosci.: Basic and Clinical (2004) 113:32-42.
  • CORDERO-ERAUSQUIN M, PONS S, FAURE P, CHANGEUX JP: Nicotine differentially activates inhibitory and excitatory neurons in the dorsal spinal cord. Pain (2004) 109:308-318.
  • CUCCHIARO G, CHAIJALE N, COMMONS KG: The dorsal raphe nucleus as a site of action of the antinociceptive and behavioral effects of the α4 nicotinic receptor agonist epibatidine. J. Pharmacol. Exp. Ther. (2005) 313:389-394.
  • CUCCHIARO G, CHAIJALE N, COMMONS KG: The locus coeruleus as a site of action of the antinociceptive and behavioral effects of the nicotinic receptor agonist, epibatidine. Neuropharmacol. (2006) 50:769-776.
  • FREEDMAN R: Schizophrenia. N. Eng. J. Med. (2003) 349:1738-1749.
  • QUIK M, KULAK JM. Nicotine and nicotinic receptors: relevance to Parkinson's disease. Neurotoxicology (2002) 23:581-594.
  • Shaw S, Bencherif M, Marrero MB: Janus Kinase 2, an early target of α7 nicotinic acetylcholine receptor-mediated neuroprotection against Aβ-(1-42) amyloid. J. Biol. Chem. (2002) 277:44920-44924.
  • Shaw S, Bencherif M, Marrero MB: Angiotensin II blocks nicotine-mediated neuroprotection against β-Amyloid (1-42) via activation of the tyrosine phosphatase SHP-1. J. Neurosci. (2003) 23:11224-11228.

Patent

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.