508
Views
57
CrossRef citations to date
0
Altmetric
Reviews

In vivo brain microdialysis: advances in neuropsychopharmacology and drug discovery

, , , , , & show all
Pages 109-127 | Published online: 22 Jan 2011

Bibliography

  • Bourne JA. Intracerebral microdialysis: 30 years as a tool for the neuroscientist. Clin Exp Pharmacol Physiol 2003;30:16-24
  • Ungerstedt U. Measurement of neurotransmitter release by intracranial dialysis. Measurement of neurotransmitter release in vivo. In: Marsden CA, editor, John Wiley & Sons, New York; 1984. p. 81-105
  • Ungerstedt U, Pycock C. Functional correlates of dopamine neurotransmission. Bull Schweitz Akad Med Wiss 1974;1278:1-13
  • Ungerstedt U. Microdialysis-principles and applications for studies in animals and man. J Int Med 1991;230:365-73
  • Benveniste H. Brain microdialysis. J Neurochem 1989;52:1667-79
  • Chaurasia CS. In vivo microdialysis sampling: theory and applications. Biomed Chromatogr 1999;13:317-32
  • Hansen DK, Davies MI, Lunte SM, Pharmacokinetic and metabolism studies using microdialysis sampling. J Pharm Sci 1999;88:14-27
  • Chen KC, Hoistad M, Kehr J, Theory relating in vitro and in vivo microdialysis with one or two probes. J Neurochem 2002;81:108-21
  • Hocht C, Opezzo JAW, Taira CA. Applicability of reverse microdialysis in pharmacological and toxicological studies. J Pharmacol Toxicol Methods 2007;55:3-15
  • Pan YF, Feng J, Cheng QY, Intracerebral microdialysis technique and its application on brain pharmacokinetic-pharmacodynamic study. Arch Pharm Res 2007;30:1635-45
  • Schultz KN, Kennedy RT. Time-resolved microdialysis for in vivo neurochemical measurements and other applications. Annu Rev Anal Chem 2008;1:627-61
  • Chefer VI, Thompson AC, Zapata A. Overview of brain microdialysis. Curr Prot Neurosci 2009;7:1-28
  • Van der Zeyden M, Oldenziel WH, Rea K, Microdialysis of GABA and glutamate: analyziz, interpretation and comparison with microsensors. Pharmacol Biochem Behav 2008;90:135-47
  • Lanckmans K, Sarre S, Smolders I, Quatitative liquid chromatography/mass spectrometry for the analysis of microdialysates. Talanta 2008;74:458-69
  • Cheng GW, Hsu KC, Lee CF, On-line microdialysis coupled with liquid chromatography for biomedical analysis. J Chromat Sci 2009;47:624-30
  • Perry M, Li Q, Kennedy RT. Review of recent advances in analytical techniques for the determination of neurotransmitters. Anal Chim Acta 2009;653:1-22
  • Bourin M, David DJ, Jolliet P, Mechanism of action of antidepressants and therapeutic perspectives. Therapie 2002;57:385-96
  • Guiard BP, Lanfumey L, Gardier AM. Microdialysis approach to study serotonin outflow in mice following selective serotonin reuptake inhibitors and substance P (neurokinin 1) receptor antagonist administration: a review. Curr Drug Targets 2006;7:187-201
  • Beyer CE, Cremers TI. Do selective serotonin reuptake inhibitors acutely increase frontal cortex levels of serotonin? Eur J Pharmacol 2008;580:350-54
  • Kennedy SH, Rizvi SJ. Emerging drugs for major depressive disorder. Expert Opin Emerg Drugs 2009;14:439-53
  • Racagni G, Popoli M. The pharmacological properties of antidepressants. Int Clin Psychopahrmacol 2010;25:117-31
  • National Institute on Drug Abuse. NIDA InfoFacts. 2010. Available from: http://nida.nih.gov/DrugPages
  • Yamamoto BK, Moszczynska A, Gudelsky GA. Amphetamine toxicities classical and emerging mechanisms. Ann NY Acad Sci 2010;1187:101-21
  • Sulzer D, Chen TK, Lau YY, Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J Neurosci 1995;15:4102-8
  • Sulzer D, Sonders MS, Poulsen NW, Galli A. Mechanisms of neurotransmitter release by amphetamines: a review. Prog Neurobiol 2005;75:406-33
  • Rothman RB, Baumann MH. Monoamine transporters and psychostimulant drugs. Eur J Pharmacol 2003;479:23-40
  • Yamamoto BK, Nash JF, Gudelsky GA. Modulation of methylenedioxymethamphetamine-induced striatal dopamine release by the interaction between serotonin and GABA in the substantia nigra. J Pharmacol Exp Ther 1995;273:1063-70
  • Shankaran M, Yamamoto BK, Gudelsky GA. Mazindol attenuates the 3,4-methylenedioxymethamphetamine-induced formation of hydroxyl radicals and long-term depletion of serotonin in the striatum. J Neurochem 1999;72:2516-22
  • Bowyer JF, Newport GD, Slikker W Jr, An evaluation of l-ephedrine neurotoxicity with respect to hyperthermia and caudate/putaman microdialysate levels of ephedrine, dopamine, serotonin, and glutamate. Toxicol Sci 2000;55:133-42
  • Gough B, Imam SZ, Blough B, Comparative effects of substituted amphetamines (PMA, MDMA, and METH) on monoamines in rat caudate. A microdialysis study. Ann NY Acad Sci 2002;965:410-20
  • Shoblock JR, Sulliven EB, Maisonneuve IM, Glick SD. Neurochemical and behavioral differences between d-methamphetamine and d-amphetamine in rats. Psychopharmacol 2003;165:359-69
  • Shankaran M, Gudelsky GA. Effect of 3,4-methylenedioxymethamphetamine (MDMA) on hippocampal dopamine and serotonin. Pharmcol Biochem Behav 1998;61:361-66
  • Bankson MG, Yamamoto BK. Serotonin-GABA interactions modulate MDMA-induced mesolimbic dopamine release. J Neurochem 2004;91:852-59
  • Nair SG, Gudelsky GA. Protein kinase c inhibition differentially affects 3,4-methylenedioxymethamphetamine-induced dopamine release in the striatum and prefrontal cortex of the rat. Brain Res 2004;1013:168-73
  • Gudelsky GA, Yamamoto BK. Actions of 3,4-methylenedioxiymethamphetamine (MDMA) on cerebral dopaminergic, serotonergic and cholinergic neurons. Pharmacol Biochem Behav 2008;90:198-207
  • Shioda K, Nisijima K, Yoshino T, Kato S. Effect of risperidone on acute methamphetaime-induced hyperthermia in rats. Drug Alcohol Depend 2010;111:241-9
  • Kuczenski R, Segal DS, Cho AK, Hippocampal norepinephrine, caudate dopamine and serotonin, and behavioral responses to the stereoisomers of amphetamine and methamphetamine. J Neurosci 1995;15:1308-17
  • Gough B, Ali SF, Slikker W Jr, Acute effects of 3,4-methylenedioxymethamphetamine (MDMA) on monoamines in rat caudate. Pharmacol Biochem Behav 1991;39:619-23
  • Gudelsky GA, Nash JF. Carrier-mediated release of serotonin by 3,4-methylenedioxymethamphetamine: implications for serotonin-dopamine interactions. J Neurochem 1996;66:243-49
  • Baumann MH, Clark RD, Rothman RB. Locomotor stimulation produced by 3,4-methylenedioxymethamphetamine (MDMA) is correlated with dialysate levels of serotonin and dopamine in rat brain. Pharmacol Biochem Behav 2008;90:208-17
  • Rothman RB, Baumann MH. Balance between dopamine and serotonin release modulates behavioral effects of amphetamine-type drugs. Ann NY Acad Sci 2006;1074:245-60
  • Rothman RB, Blough BE, Baumann MH. Dual dopamine/serotonin releasers: potential treatment agents for stimulant addiction. Exp Clin Psychopharmacol 2008;16:458-74
  • Rothman RB, Blough BE, Baumann MH. Dual dopamine-5-HT releasers: potential treatment agents for cocaine addiction. Trends Pharmacol Sci 2006;27:612-18
  • Rothman RB, Partilla JS, Baumann MH, Neurochemical neutralization of methamphetamine with high-affinity nonselective inhibitors of biogenic amine transporters: a pharmacological strategy for treating stimulant abuse. Synapse 2000;35:222-7
  • Dackis CA, Gold MS. New concepts in cocaine addiction: the dopamine depletion hypothesis. Neurosci Biobehav Rev 1985;9:469-77
  • Czoty PW, Ginsberg BC, Howell LL. Serotonergic attenuation of the reinforcing and neurochemical effects of cocaine in squirrel monkeys. J Pharmacol Exp Ther 2002;300:831-7
  • Negus SS, Mello NK, Blough BE, Monoamine releasers with varying selectivity for dopamine/norepinephrine versus serotonin release as candidate “agonist” medications for cocaine dependence: studies in assays of cocaine discrimination and cocaine self-administration in rhesus monkeys. J Pharmacol Exp Ther 2007;320:627-36
  • Durston S. A review of the biological bases of ADHD: what have we learned from imaging studies? Ment Retard Dev Disabil Res Rev 2003;9:184-95
  • Durston S, Tottenham NT, Thomas KM, Differential patterns of striatal activation in young children with and without ADHD. Biol Psychiatry 2003;53:871-8
  • Solanto MV. Dopamine dysfunction in AD/HD: integrating clinical and basic neuroscience research. Behav Brain Res 2002;130:65-71
  • Berridge CW, Devilbiss DM, Andrzejewski ME, methylphenidate preferentially increases catecholamine neurotransmission with the prefrontal cortex at low doses that enhance cognitive function. Biol Psychiatry 2006;60:1111-20
  • Bymaster FP, Katner JS, Nelson DL, Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 2002;27:699-711
  • Swanson CJ, Perry KW, Koch-Krueger S, Effect of the attention deficit/hyperactivity disorder. Drug atomoxetine on extracellular concentrations of norepinephrine and dopamine in several brain regions of the rat. Neuropharmacology 2006;50:755-60
  • Horner WE, Johnson DE, Schmidt AW, Methylphenidate and atomoxetine increase histamine release in rat prefrontal cortex. Eur J Pharmacol 2007;558:96-7
  • Liu LL, Yang J, Lei GF, Atomoxetine increases histamine release and improves learning deficits in an animal model of attention deficit hyperactivity disorder: the spontaneously hypertensive rat. Basic Clin Pharmacol Toxicol 2008;102:527-32
  • Heal DJ, Smith SL, Kulkarni RS, New perspectives from microdialysis studies in freely-moving, spontaneously hypertensive rats in the pharmacology of drugs in the treatment of ADHD. Pharmacol Biochem Behav 2008;90:184-87
  • Heal DJ, Cheetham SC, Smith SL. The neuropharmacology of ADHD drugs in vivo: insights on efficacy and safety. Neuropharmacol 2009;57:608-18
  • Moreland RB, Patel M, Hsieh GC, A-412997 is a selective dopamine D4 agonist in rats. Pharmacol Biochem Behav 2005;82:140-47
  • Woolley ML, Waters KA, Reavill C, Selective dopamine D4 receptor agonist (A-412997) improves cognitive performance and stimulates motor activity without influencing reward-related behavior in rat. Behav Pharmacol 2008;19:765-76
  • Carroll RT Jr, Sharmeen L. Combination of atomoxetine and a 5HT1A receptor agonist for treating adhd and other disorders. Available from: http://www.freepatentsonline.com/y2007/0219201.html United States, WARNER-LAMBERT LLC 9201 Tabor Road, Morris Plains, NJ, US
  • Dounay AB, Barta NS, Campbell BM, Design, synthesis, and pharmacological evaluation of phenoxy pyridyl derivatives as dual norepinephrine reuptake inhibitors and 5-HT1A partial agonists. Bioorg Med Chem Lett 2010;20:1114-17
  • Ichikawa J, Meltzer HY. Relationship between dopaminergic and serotonergic neuronal activity in the frontal cortex and the action of typical and atypical antipsychotic drugs. Eur Arch Psychiatry Clin Neurosci 1999;249S:90-8
  • Kuroki T, Nagao N, Nakahara T. Neuropharmacology of second-generation antipsychotic drugs: a validity of the serotonin-dopamine hypothesis. In: Di Giovanni G, Di Matteo V, Esposito E, editors, Serotonin-dopamine interaction: experimental evidence and therapeutic relevance, Progress in Brain Research. Volume 172. Elsevier Science BV, Amsterdam; 2008. p. 199-212
  • Lopez-Gil X, Artigas F, Adell A. Unraveling monoamine receptors involved in the action of typical and atypical antipsychotics on glutamatergic and serotonergic transmission in prefrontal cortex. Curr Pharm Des 2010;16:502-15
  • Davis KL, Kahn RS, Ko G, Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry 1991;148:1474-86
  • Meltzer HT, Huang M. In vivo actions of atypical antipsychotic drug on serotonergic and dopaminergic systems. In: Di Giovanni G, Di Matteo V, Esposito E, editors, Serotonin-dopamine interaction: experimental evidence and therapeutic relevance, Progress in Brain Research. Volume 172. Elsevier Science BV, Amsterdam; 2008. p. 177-97
  • Moghaddam B, Bunney BS. Acute effects of typical and atypical antipsychotic drugs on the release of dopamine from prefrontal cortex, nucleus accumbens, and striatum of the rat: an in vivo microdialysis study. J Neurochem 1990;54:1755-60
  • Pehek EA, Yamamoto BK. Differential effects of locally administered clozapine and haloperidol on dopamine efflux in the rat prefrontal cortex and caudate-putamen. J Neurochem 1994;63:2118-24
  • Kuroki T, Meltzer HY, Ichikawa J. Effects of antipsychotic drugs on extracellular dopamine levels in rat medial prefrontal cortex and nucleus accumbens. J Pharmacol Exp Ther 1999;288:774-81
  • Deutch AY, Cameron DS. Pharmacological characterization of dopamine systems in the nucleus accumbens core and shell. Neurosci 1992;46:49-56
  • Liegeois JF, Ichikawa J, Meltzer HY. 5-HT2A receptor antagonism potentiates haloperidol-induced dopamine release in rat medial prefrontal cortex and inhibits that in the nucleus accumebns in a dose-dependent manner. Brain Res 2002;947:157-65
  • Li Z, ichikawa J, Huang M, ACP-103, a 5-HT2A/2C inverse agonist, potentiates haloperidol-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens. Pyschopharmacol 2005;183:144-53
  • Bonaccorso S, Meltzer HY, Li Z, SR46349-B, a 5-HT2A/2C receptor antagonist, potentiates haloperidol-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens. Neuropsychopharmacology 2002;27:430-41
  • Ichikawa J, Ishii H, Bonaccorso S, 5-HT(2A) and D92 receptor blockade increases cortical DA release via 5-HT91A receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release. J Neurochem 2001;76:1521-31
  • Youngren KD, Inglis FM, Pivirotto PJ, Clozapine preferentially increases dopamine release in the rhesus monkey prefrontal cortex compared with the caudate nucleus. Neuropsychopharmacol 1999;20:403-12
  • Hagger C, Buckley P, Kenny JT, Improvement in cognitive functions and psychiatric symptoms in treatment-refractory schizophrenic patients receiving clozapine. Biol Psychiatry 1993;34:702-12
  • Shirazi-Southall S, Rodroguez DE, Nomikos GG. Effects of typical and atypical antipsychotics and receptor selective compounds on acetylcholine efflux in the hippocampus of the rat. Neuropsychopharmacol 2002;26:583-94
  • Ichikawa J, Dai J, O'Laughlin IA, Atypical, but not typical, antipsychotic drugs increase cortical acetylcholine release without an effect in the nucleus accumbens or striatum. Neuropsychopharmacol 2002;26:325-39
  • Huang M, Li Z, Ichikawa J, Effects of divalproex and atypical antipsychotic drugs on dopamine and acetylcholine efflux in rat hippocampus and prefrontal cortex. Brain Res 2006;1099:44-55
  • Amargos-Bosch M, Lopez-Gil X, Artigas F, Clozapine and olanzapine, but not haloperidol, suppress serotonin efflux in the medial prefrontal cortex elicited by phencyclidine and ketamine. Int J Neuropsychopharmacol 2006;9:565-73
  • Lopez-Gil X, Babot Z, Amargos-Bosch M, Clozapine and haloperidol differently suppress the MK-801-increased glutamatergic and serotonergic transmission in the medial prefrontal cortex of the rat. Neuropsychopharmacol 2007;32:2087-97
  • Linn GS, Negi S, Gerum SV, Reversal of phencyclidine-induced prepulse inhibition deficits by clozapine in monkeys. Psychopharmacol 2003;169:234-39
  • Bourdelais AJ, Deutch AY. The effects of haloperidol and clozapine on extracellular GABA levels in the prefrontal cortex of the rat: an in vivo microdialysis study. Cereb Cortex 1994;4:69-77
  • See RE, Berglind WJ, Krentz L, Convergent evidence from microdialysis and presynaptic immunolabeling for the regulation of gamma aminobutyric acid release in the globus pallidus following acute clozapine or haloperidol administration in rats. J Neurochem 2002;82:172-80
  • Freund TF, Powell JF, Smith AD. Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines. Neurosci 1984;13:1189-215
  • Lacey CJ, Boyes J, Gerlach O, GABA-B receptors at glutamatergic synapses in the rat striatum. Neurosci 2005;136:1083-95
  • Meshul CK, Stallbaumer RK, Taylor B, Haloperidol-induced synaptic changes in striatum are associated with glutamate synapses. Brain Res 1994;648:181-95
  • Lindefors N, Ungerstedt U. Bilateral regulation of glutamate tissue and extracellular levels in caudate-putamen by midbrain dopamine neurons. Neurosci Lett 1990;115:248-52
  • Reid MS, Herrera-Marschitz M, Kehr J, Striatal dopamine and glutamate release: effects of intranigral injections of substance P. Acta Physiol Scand 1990;140:527-37
  • Touchon JC, Holmer HK, Moore C, Apomorphine-induced alterations in striatal and substantia nigra glutamate following unilateral loss of striatal dopamine. Exp Neurol 2005;193:131-40
  • Calabresi P, Mercuri NB, Sancesario G, Electrophysiology of dopamine-denervated striatal neurons. Brain 1993;116:433-52
  • Schultz W, Ungerstedt U. Short-term increase and long-term reversion of striatal cell activity after degeneration of the nigrostriatal dopamine system. Exp Brain Res 1978;33:159-71
  • Meshul CK, Emre N, Nakamura CM, Time-dependent changes in striatal glutamate synapses following a 6-hydroxydopamine lesion. Neurosci 1999;88:1-16
  • Garcia-Arencibia M, Ferraro L, Tanganelli S, Enhanced striatal glutamate release after the administration of rimonabant to 6-hydroxydopamine-lesioned rats. Neurosci Lett 2008;438:10-3
  • Jonkers N, Sarre S, Ebinger G, MK801 suppresses the L-DOPA-induced increase of glutamate in striatum of hemi-Parkinson rats. Brain Res 2002;926:149-55
  • Walker RH, Koch RJ, Sweeney JE, Effects of subthalamic nucleus lesions and stimulation upon glutamate levels in the dopamine-depleted rat striatum. Neuroreport 2009;20:770-75
  • Bianchi L, Galeffi F, Bolam JP, The effect of 6-hydroxydopamine lesions on the release of amino acids in the direct and indirect pathways of the basal ganglia: a dual microdialysis probe analysis. Eur J Neurosci 2003;18:856-68
  • Marti M, Mela F, Bianchi C, Striatal dopamine-NMDA receptor interactions in the modulation of glutamate release in the substantia nigra pars reticulata in vivo: opposite role for D1 and D2 receptors. J Neurochem 2002;83:635-44
  • Robelet S, Melon C, Guillet B, Chronic L-DOPA treatment increases extracellular glutamate levels and GLT1 expression in the basal ganglia in a rat model of Parkinson's disease. Eur J Neurosci 2004;20:1255-66
  • Holmer HK, Keyghobadi M, Moore C, L-Dopa-induced reversal in striatal glutamate following partial depletion of nigrostriatal dopamine with MPTP. Neurosci 2005;136:333-41
  • Robinson S, Freeman P, Moore C, Acute and subchronic MPTP administration differentially affects striatal glutamate synaptic function. Exp Neurol 2003;180:73-86
  • Petroske E, Meredith GE, Callen S, Mouse model of Parkinsonism: a comparison between subacute MPTP and chronic MPTP/probenecid treatment. Neurosci 2001;106:589-601
  • Dervan AG, Meshul CK, Beales M, Astroglial plasticity and glutamate function in a chronic mouse model of Parkinson's disease. Exp Neurol 2004;190:145-56
  • Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci 1989;12:366-75
  • Raju DV, Shah DJ, Wright TM, Differential synaptology of vGluT2-containing thalamostriatal afferents between the patch and matrix compartments. J Comp Neurol 2006;499:231-43
  • Fremeau RT Jr, Troyer MD, Pahner I, The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 2001;31:247-60
  • Bacci JJ, Kachidian P, Kerkerian-Le Goff L, Intralaminar thalamic nuclei lesions: widespread impact on dopamine denervation-mediated cellular defects in the rat basal ganglia. J Neuropath Exp Neurol 2004;63:20-31
  • Raju DV, Ahern TH, Shah DJ, Differential synaptic plasticity of the corticostriatal and thalamostriatal systems in an MPTP-treated monkey model of parkinsonism. Eur J Neurosci 2008;27:1647-58
  • Touchon JC, Moore C, Frederickson J, Meshul CK. Lesion of subthalamic or motor thalamic nucleus in 6-hydroxydopamine treated rats: effects on striatal glutamate and apomorphine-induced contralateral rotations. Synapse 2004;51:287-98
  • Holmer HK, Keyghobadi M, Moore C, Dietary restriction affects striatal glutamate in the MPTP-induced mouse model of nigrostriatal degeneration. Synapse 2005;57:100-12
  • Persike M, Zimmermann M, Klein J, Quantitative determination of acetylcholine and choline in microdialysis samples by MALDI-TOF-MS. Anal Chem 2010;82:922-9
  • Loffelholz K, Klein J. Precursors: choline and glucose. In: Giacobini E, Pepeu G, editors, The brain cholinergic system. Informa/Taylor and Francis, London; 2006. p. 99-105
  • Sarter M, Parikh V. Choline transporters, cholinergic transmission and cognition. Nat Rev Neurosci 2005;6:48-56
  • Day JC, Kornecook TJ, Quirion R. Application of in vivo microdialysis to the study of cholinergic systems. Methods 2001;23:21-39
  • Phillis JW. Acetylcholine release from the central nervous system:a 50-year retrospective. Crit Rev Neurobiol 2005;17:161-217
  • Gold P. Acetylcholine modulation of neural systems involved in learning and memory. Neurobiol Learn Mem 2003;80:194-210
  • Henn C, Loffelholz K, Klein J. Stimulatory and inhibitory effects of ethanol on hippocampal acetylcholine reelase. Naunyn Schmiedebergs Arch Pharmacol 1998;357:640-47
  • Buchholzer M, Dvorak C, Chatterjee SS, Dual modulation of striatal acetylcholine release by hyperforin, a constituent of St. John's wort. J Pharmacol Exp Ther 2002;301:714-19
  • Westerink BHC. Brain microdialysis and its application for the study of animal behavior. Behav Brain Res 1995;70:103-24
  • Pepeu G, Giovannini MG. Changes in acetylcholine extracellular levels during cognitive processes. Learn Mem 2004;11:21-7
  • Kopf SR, Buchholzer ML, Hilgert M, Glucose plus choline improve passive avoidance behavior and increase hippocampal acetylcholine release in mice. Neurosci 2001;103:365-71
  • Klein J. Phenserine. Expert Opin Investig Drugs 2007;16:1087-97
  • Hilgert M, Noldner M, Chatterjee SS, KA-672 inhibits rat brain acetylcholinesterase in vitro, but not in vivo. Neurosci Lett 1999;263:193-6
  • Liu JK, Kato T. Effect of physostigmine on relative acetylcholine output induced by systemic treatment with scopolamine in in vivo microdialysis of rat frontal cortex. Neurochem Int 1994;24:589-6
  • Giacobini E. Cholinesterase inhibitors: new roles and therapeutic alternatives. Pharmacol Res 2004;50:433-40
  • Naik RS, Hartmann J, Kiewert C, Effects of rivastigmine and donepezil on brian acetylcholine levels in acetylcholinesterase-deficient mice. J Pharm Pharm Sci 2009;12:79-85
  • Pepeu G, Giovannini MG. Cholinesterase inhibitors and memory. Chem Biol Interact 2009;187:403-8
  • Hartmann J, Kiewert EG, Duysen EG, Excessive hippocampal acetylcholine levels in acetylcholinesterase-deficient mice are moderated by butyrylcholinesterase activity. J Neurochem 2007;100:1421-9
  • Yu QS, Holloway HW, Utsuki T, Synthesis of novel phenserine-based selective inhibitors of butyrylcholinesterase for Alzheimer's disease. J Med Chem 1999;42:1855-61
  • Greig NH, Utsuki T, Ingram DK, Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer beta-amyloid peptide in rodent brain. Proc Natl Acad Sci USA 2005;102:17213-18
  • Toda N, Kaneko T, Kogen H. Development of an efficient therapeutic agent for Alzheimer's disease: design and synthesis of dual inhibitors of acetylcholinesterase and serotonin transporter. Chem Pharm Bull 2010;58:273-87
  • Van der Schyf CJ, Geldenhuys WJ, Youdim MB. Multifunctional drugs with different CNS targets for neuropsychiatric disorders. J Neurochem 2006;99:1033-48
  • Cassel JC, Jeltsch H. Serotonergic modulation of cholinergic function in the central nervous system: cognitive implications. Neurosci 1995;69:1-41
  • Carey GJ, Billard W, Binch H III, SCH 57790, a selective muscarinic (M2) receptor antagonist, releases acetylcholine and produces cognitive enhancement in laboratory animals. Eur J Pharmacol 2001;431:189-200
  • Wang Y, Chackalamannil S, Hu Z, Improving the oral efficacy of CNS drug candidates: discovery of highly orally efficacious piperidinyl piperidine M2 muscarinic receptor antagonists. J Med Chem 2002;45:5415-18
  • Emmerling MR, Gregor VE, Schwarz RD, PD 142676 (CI 1002), a novel anticholinesterase and muscarinic antagonist. Mol Neurobiol 1994;9:93-106
  • Bontempi B, Whelan KT, Risbrough VB, SIB-1553A, (+/-)-4-[[2-(1-methyl-2-pyrrolidinyl)ethyl]thio]phenol hydrochloride, a subtype-selective ligand for nicotinic acetylcholine receptors with putative cognitive-enhancing properties: effects on working and reference memory performances in aged rodents and nonhuman primates. J Pharmacol Exp Ther 2001;299:297-306
  • Rao TS, Reid RT, Correa LD, In vivo pharmacological characterization of (+/-)-4-[2-(1-methyl-2-pyrrolidinyl)ethyl]thiophenol hydrochloride (SIB-1553A), a novel cholinergic ligand: microdialysis studies. Brain Res 2003;986:71-81
  • Gatto GJ, Bohme GA, Calfwell WS, TC-1734: an orally active neuronal nicotinic acetylcholine receptor modulator with antidepressant, neuroprotective and long lasting cognitive effects. CNS Drug Rev 2004;10:147-66
  • Biton B, Bergis OE, Galli F, SSR180711, a novel selective alpha7 nicotinic receptor partial agonist: (1) binding and functional profile. Neuropsychopharmacology 2007;32:1-16
  • Sydserff S, Sutton EJ, Song D, Selective alpha7 nicotinic receptor activation by AZD0328 enhances cortical dopamine release and improves learning and attentional processes. Biochem Pharmacol 2009;78:880-8
  • Hirst WD, Andree TH, Aschmies S, Correlating efficacy in rodent cognition models with in vivo 5-hydroxytryptamine1a receptor occupancy by a novel antagonist, (R)-N-(2-methyl-(4-indolyl-1-piperazinyl)ethyl)-N-(2-pyridinyl)-cyclohexane carboxamide (WAY-101405). J Pharmacol Exp Ther 2008;325:134-45
  • Liao Y, Bottcher H, Harting J, New selective and potent 5-HT (1B/1D) antagonists: chemistry and pharmacological evaluation on N-piperazinylphenyl biphenylcarboxamides and biphenylsulfonamides. J Med Chem 2000;43:517-25
  • Riemer C, Borroni E, Lever-Trafit B, Influence of the 5-HT6 receptor on acetylcholine release in the cortex: pharmacological characterization of 4-(2-bromo-6-pyrrolidin-1-ylpyridine-4-sulfonyl)phenylamine, a potent and selective 5-HT6 receptor antagonist. J Med Chem 2003;46:1273-6
  • Hirst WD, Stean TO, Rogers DC, SB-399885 is a potent selective 5-HT6 receptor antagonist with cognitive enhancing properties in aged rat water maze and novel object recognition models. Eur J Pharmacol 2006;553:109-19
  • Geldenhuys WJ, Van der Schyf CJ. The serotonin 5-HT6 receptor: a viable drug target for treating cognitive deficits in Alzheimer's disease. Expert Rev Neurother 2009;9:1073-85
  • Fox GB, Esbenshade TA, Pan JB, Pharmacological properties of ABT-239 [4-(2-{2-[(2R)-2-Methylpyrrolidinyl]ethyl}-benzofuran-5-yl)benzonitrile]: II. Neurophysiological characterization and broad preclinical efficacy in cognition and schizophrenia of a potent and selective histamine H3 receptor antagonist. J Pharmacol Exp Ther 2005;313:176-90
  • Medhurst AD, Atkins AR, Beresford IJ. GSK189254, a novel H3 receptor antagonist that binds to histamine H3 receptors in Alzheimer's disease brain and improves cognitive performance in preclinical models. J Pharmacol Exp Ther 2007;321:1032-45
  • Galici R, Boggs JD, Alusio L, JNJ-10181457, a selective non-imidazole histamine H(3) receptor antagonist, normalizes acetylcholine neurotransmission and has efficacy in translational rat models of cognition. Neuropharmacology 2009;56:1131-7
  • Fadel JR. Regulation of cortical acetylcholine release: insights from in vivo microdialysis studies. Behav Brain Res 2010. [Epub ahead of print]
  • Earl RA, Zaczek R, Teleha CA, 2-fluoro-4-pyridinylmethyl analogues of linopirdine as orally active acetylcholine release-enhancing agents with good efficacy and duration of action. J Med Chem 1998;41:4615-22
  • Hilgert M, Hartmann J, Jeltsch H, Modulation of hippocampal acetylcholine release after 192IgG-saporin lesions and neuronal grafting. Neurochem Res 2003;28:467-72

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.