825
Views
94
CrossRef citations to date
0
Altmetric
Reviews

Peptide and peptoid foldamers in medicinal chemistry

Pages 1247-1262 | Published online: 02 Nov 2011

Bibliography

  • Schueler-Furman O, Wang C, Bradley P, Progress on modeling of protein structures and interactions. Science 2005;310:638-42
  • Gellman SH. Foldamers: a manifesto. Acc Chem Res 1998;31:173-80
  • Leader B, Baca QJ, Golan DE. Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov 2008;7:21-39
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001;46:3-26
  • Hecht S, Huc I. editors. Foldamers: Structure, Properties, and Applications. Wiley-VCH; Weinheim: 2007
  • Hill DJ, Mio MJ, Prince RB, A field guide to foldamers. Chem Rev 2001;101:3893-4011
  • Appella DH, Christianson LA, Karle IL, beta-Peptide foldamers: robust helix formation in a new family of beta-amino acid oligomers. J Am Chem Soc 1996;118:13071-2
  • Seebach D, Ciceri PE, Overhand M, Probing the helical secondary structure of short-chain beta-peptides. Helv Chim Acta 1996;79:2043-66
  • Appella DH, Christianson LA, Klein DA, Residue-based control of helix shape in beta-peptide oligomers. Nature 1997;387:381-4
  • Armand P, Kirshenbaum K, Goldsmith RA, NMR determination of the major solution conformation of a peptoid pentamer with chiral side chains. Proc Natl Acad Sci USA 1998;95:4309-14
  • Zuckermann RN, Kirshenbaum K, Barron AE, Sequence-specific polypeptoids: a diverse family of heteropolymers with stable secondary structure. Proc Natl Acad Sci USA 1998;95:4303-8
  • Hamper BC, Kolodziej SA, Scates AM, Solid phase synthesis of beta-peptoids: N-Substituted beta-aminopropionic acid oligomers. J Org Chem 1998;63:708-18
  • Horne WS, Gellman SH. Foldamers with heterogeneous backbones. Acc Chem Res 2008;41:1399-408
  • Olsen CA. Peptoid-peptide hybrid backbone architectures. ChemBioChem 2010;11:152-60
  • Cheng RP, Gellman SH, DeGrado WF. beta-Peptides: from structure to function. Chem Rev 2001;101:3219-32
  • De Pol S, Zorn C, Klein CD, Surprisingly stable helical conformations in alpha/beta-peptides by incorporation of cis-beta-aminocyclopropane carboxylic acids. Angew Chem Int Ed 2004;43:511-14
  • Hayen A, Schmitt MA, Ngassa FN, Two helical conformations from a single foldamer backbone: “Split personality” in short alpha/beta-peptides. Angew Chem Int Ed 2004;43:505-10
  • Wu CW, Kirshenbaum K, Sanborn TJ, Structural and spectroscopic studies of peptoid oligomers with alpha-chiral aliphatic side chains. J Am Chem Soc 2003;125:13525-30
  • Kirshenbaum K, Yoo B. Peptoid architectures: elaboration, actuation, and application. Curr Opin Chem Biol 2008;12:714-21
  • Stringer JR, Crapster JA, Guzei IA, Blackwell HE. Extraordinarily robust polyproline type I peptoid helices generated via the incorporation of alpha-chiral aromatic N-1-naphthylethyl side chains. J Am Chem Soc 2011;133:15559-67
  • Gorske BC, Bastian BL, Geske GD, Blackwell HE. Local and tunable n-pi* interactions regulate amide isomerism in the peptoid backbone. J Am Chem Soc 2007;129:8928-9
  • Sui Q, Borchardt D, Rabenstein DL. Kinetics and equilibria of cis/trans isomerization of backbone amide bonds in peptoids. J Am Chem Soc 2007;129:12042-8
  • Shah NH, Butterfoss GL, Nguyen K, Oligo(N-aryl glycines): a new twist on structured peptoids. J Am Chem Soc 2008;130:16622-32
  • Butterfoss GL, Renfrew PD, Kuhlman B, A preliminary survey of the peptoid folding landscape. J Am Chem Soc 2009;131:16798-807
  • Gorske BC, Stringer JR, Bastian BL, New strategies for the design of folded peptoids revealed by a survey of noncovalent interactions in model systems. J Am Chem Soc 2009;131:16555-67
  • Krauthauser S, Christianson LA, Powell DR, Gellman SH. Antiparallel sheet formation in beta-peptide foldamers: effects of beta-amino acid substitution on conformational preference. J Am Chem Soc 1997;119:11719-20
  • Seebach D, Abele S, Gademann K, Jaun B. Pleated sheets and turns of beta-peptides with proteinogenic side chains. Angew Chem Int Ed 1999;38:1595-7
  • Karle IL, Gopi HN, Balaram P. Peptide hybrids containing alpha- and beta-amino acids: structure of a decapeptide beta-hairpin with two facing beta-phenylalanine residues. Proc Natl Acad Sci USA 2001;98:3716-19
  • Lengyel GA, Frank RC, Horne WS. Hairpin folding behavior of mixed alpha/beta-peptides in aqueous solution. J Am Chem Soc 2011;133:4246-9
  • Nam KT, Shelby SA, Choi PH, Free-floating ultrathin two-dimensional crystals from sequence-specific peptoid polymers. Nat Mater 2010;9:454-60
  • Qiu JX, Petersson EJ, Matthews EE, Schepartz A. Toward beta-amino acid proteins: a cooperatively folded beta-peptide quaternary structure. J Am Chem Soc 2006;128:11338-9
  • Daniels DS, Petersson EJ, Qiu JX, Schepartz A. High-resolution structure of a beta-peptide bundle. J Am Chem Soc 2007;129:1532-3
  • Horne WS, Price JL, Keck JL, Gellman SH. Helix bundle quaternary structure from alpha/beta-peptide foldamers. J Am Chem Soc 2007;129:4178-80
  • Horne WS, Price JL, Gellman SH. Interplay among side chain sequence, backbone composition, and residue rigidification in polypeptide folding and assembly. Proc Natl Acad Sci USA 2008;105:9151-6
  • Cohen FE, Burkoth TS, Beausoleil E, Toward the synthesis of artificial proteins: the discovery of an amphiphilic helical peptoid assembly. Chem Biol 2002;9:647-54
  • Zuckermann RN, Lee BC, Dill KA. Folding a nonbiological polymer into a compact multihelical structure. J Am Chem Soc 2005;127:10999-1009
  • Zasloff M. Antimicrobial peptides of multicellular organisms. Nature 2002;415:389-95
  • Hamuro Y, Schneider JP, DeGrado WF. De novo design of antibacterial beta-peptides. J Am Chem Soc 1999;121:12200-1
  • Porter EA, Wang XF, Lee HS, Antibiotics: Non-haemolytic beta-amino-acid oligomers. Nature 2000;404:565
  • Arvidsson PI, Frackenpohl J, Ryder NS, On the antimicrobial and hemolytic activities of amphiphilic beta-peptides. ChemBioChem 2001;2:771-3
  • Liu DH, DeGrado WF. De novo design, synthesis, and characterization of antimicrobial beta-peptides. J Am Chem Soc 2001;123:7553-9
  • Porter EA, Weisblum B, Gellman SH. Mimicry of host-defense peptides by unnatural oligomers: Antimicrobial beta-peptides. J Am Chem Soc 2002;124:7324-30
  • Epand RF, Umezawa N, Porter EA, Interactions of the antimicrobial beta-peptide beta-17 with phospholipid vesicles differ from membrane interactions of magainins. Eur J Biochem 2003;270:1240-8
  • Arvidsson PI, Ryder NS, Weiss HM, Antibiotic and hemolytic activity of a beta2/beta3 peptide capable of folding into a 12/10-helical secondary structure. ChemBioChem 2003;4:1345-7
  • Epand RF, Raguse TL, Gellman SH, Epand RM. Antimicrobial 14-helical beta-peptides: potent bilayer disrupting agents. Biochemistry 2004;43:9527-35
  • Porter EA, Weisblum B, Gellman SH. Use of parallel synthesis to probe structure-activity relationships among 12-helical beta-peptides: evidence of a limit on antimicrobial activity. J Am Chem Soc 2005;127:11516-29
  • Schmitt MA, Weisblum B, Gellman SH. Unexpected relationships between structure and function in alpha,beta-peptides: Antimicrobial foldamers with heterogeneous backbones. J Am Chem Soc 2004;126:6848-9
  • Epand RF, Schmitt MA, Gellman SH, Epand RM. Role of membrane lipids in the mechanism of bacterial species selective toxicity by two alpha/beta-antimicrobial peptides. BBA Biomembranes 2006;1758:1343-50
  • Epand RF, Schmitt MA, Gellman SH, Bacterial species selective toxicity of two isomeric alpha/beta-peptides: role of membrane lipids. Mol Membr Biol 2005;22:457-69
  • Arvidsson PI, Ryder NS, Weiss HM, Exploring the antibacterial and hemolytic activity of shorter- and longer-chain beta- alpha,beta-, and gamma-peptides, and of beta-peptides from beta2-3-aza- and beta3-2-methylidene-amino acids bearing proteinogenic side chains: a survey. Chem Biodivers 2005;2:401-20
  • Schmitt MA, Weisblum B, Gellman SH. Interplay among folding, sequence, and lipophilicity in the antibacterial and hemolytic activities of alpha/beta-peptides. J Am Chem Soc 2007;129:417-28
  • Patch JA, Barron AE. Helical peptoid mimics of magainin-2 amide. J Am Chem Soc 2003;125:12092-3
  • Chongsiriwatana NP, Patch JA, Czyzewski AM, Peptoids that mimic the structure, function, and mechanism of helical antimicrobial peptides. Proc Natl Acad Sci USA 2008;105:2794-9
  • Shuey SW, Delaney WJ, Shah MC, Scialdone MA. Antimicrobial beta-peptoids by a block synthesis approach. Bioorg Med Chem Lett 2006;16:1245-8
  • Ryge TS, Hansen PR. Novel lysine-peptoid hybrids with antibacterial properties. J Pept Sci 2005;11:727-34
  • Olsen CA, Ziegler HL, Nielsen HM, Antimicrobial, hemolytic, and cytotoxic activities of beta-peptoid–peptide hybrid oligomers: improved properties compared to natural AMPs. ChemBioChem 2010;11:1356-60
  • Olsen CA, Bonke G, Vedel L, alpha-Peptide/beta-peptoid chimeras. Org Lett 2007;9:1549-52
  • Divita G, Heitz F, Morris MC. Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol 2009;157:195-206
  • Foged C, Nielsen HM. Cell-penetrating peptides for drug delivery across membrane barriers. Expert Opin Drug Deliv 2007;5:105-17
  • Murphy JE, Uno T, Hamer JD, A combinatorial approach to the discovery of efficient cationic peptoid reagents for gene delivery. Proc Natl Acad Sci USA 1998;95:1517-22
  • Wender PA, Mitchell DJ, Pattabiraman K, The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci USA 2000;97:13003-8
  • Umezawa N, Gelman MA, Haigis MC, Translocation of a beta-peptide across cell membranes. J Am Chem Soc 2002;124:368-9
  • Rueping M, Mahajan Y, Sauer M, Seebach D. Cellular uptake studies with beta-peptides. ChemBioChem 2002;3:257-9
  • Potocky TB, Menon AK, Gellman SH. Cytoplasmic and nuclear delivery of a TAT-derived peptide and a beta-peptide after endocytic uptake into HeLa cells. J Biol Chem 2003;278:50188-94
  • Seebach D, Namoto K, Mahajan YR, Chemical and biological investigations of beta-oligoarginines. Chem Biodivers 2004;1:65-97
  • Potocky TB, Menon AK, Gellman SH. Effects of conformational stability and geometry of guanidinium display on cell entry by beta-peptides. J Am Chem Soc 2005;127:3686-7
  • Potocky TB, Silvius J, Menon AK, Gellman SH. HeLa cell entry by guanidinium-rich beta-peptides: importance of specific cation-cell surface interactions. ChemBioChem 2007;8:917-26
  • Shimanouchi T, Walde P, Gardiner J, Inversion of the configuration of a single stereocenter in a beta-heptapeptide leads to drastic changes in its interaction with phospholipid bilayers. ChemBioChem 2009;10:1978-81
  • Renslo AR, McKerrow JH. Drug discovery and development for neglected parasitic diseases. Nat Chem Biol 2006;2:701-10
  • Jaynes J, Burton C, Barr S, In vitro cytocidal effect of novel lytic peptides on Plasmodium falciparum and Trypanosoma cruzi. FASEB J 1988;2:2878-83
  • Vedel L, Bonke G, Foged C, Antiplasmodial and prehemolytic activities of alpha-peptide–beta-peptoid chimeras. ChemBioChem 2007;8:1781-4
  • Sheng C, Zhang W. New lead structures in antifungal drug discovery. Curr Med Chem 2011;18:733-66
  • Karlsson AJ, Pomerantz WC, Weisblum B, Antifungal activity from 14-helical beta-peptides. J Am Chem Soc 2006;128:12630-1
  • Karlsson AJ, Pomerantz WC, Neilsen KJ, Effect of sequence and structural properties on 14-helical beta-peptide activity against Candida albicans planktonic cells and biofilms. ACS Chem Biol 2009;4:567-79
  • Karlsson AJ, Flessner RM, Gellman SH, Polyelectrolyte multilayers fabricated from antifungal beta-peptides: design of surfaces that exhibit antifungal activity against Candida albicans. Biomacromolecules 2010;11:2321-8
  • Hansen PR, Ryge TS, Frimodt-Moller N. Antimicrobial activities of twenty lysine-peptoid hybrids against clinically relevant bacteria and fungi. Chemotherapy 2008;54:152-6
  • Hauser H, Dyer JH, Nandy A, Identification of a receptor mediating absorption of dietary cholesterol in the intestine. Biochemistry 1998;37:17843-50
  • Boffelli D, Compassi S, Werder M, The uptake of cholesterol at the small-intestinal brush border membrane is inhibited by apolipoproteins. FEBS Lett 1997;411:7-11
  • Werder M, Hauser H, Abele S, Seebach D. beta-Peptides as inhibitors of small-intestinal cholesterol and fat absorption. Helv Chim Acta 1999;82:1774-83
  • Imamura Y, Watanabe N, Umezawa N, Inhibition of gamma-secretase activity by helical beta-peptide foldamers. J Am Chem Soc 2009;131:7353-9
  • Barron AE, Brown NJ, Johansson J. Biomimicry of surfactant protein C. Acc Chem Res 2008;41:1409-17
  • Barron AE, Brown NJ, Wu CW, Seurynck-Servoss SL. Effects of hydrophobic helix length and side chain chemistry on biomimicry in peptoid analogues of SP-C. Biochemistry 2008;47:1808-18
  • Seurynck SL, Patch JA, Barron AE. Simple, helical peptoid analogs of lung surfactant protein B. Chem Biol 2005;12:77-88
  • Weeks KM, Ampe C, Schultz SC, Fragments of the HIV-1 Tat protein specifically bind Tar RNA. Science 1990;249:1281-5
  • Hamy F, Felder ER, Heizmann G, An inhibitor of the Tat/TAR RNA interaction that effectively suppresses HIV-1 replication. Proc Natl Acad Sci USA 1997;94:3548-53
  • Gelman MA, Richter S, Cao H, Selective binding of TAR RNA by a Tat-derived beta-peptide. Org Lett 2003;5:3563-5
  • Bultmann H, Brandt CR. Peptides containing membrane-transiting motifs inhibit virus entry. J Biol Chem 2002;277:36018-23
  • Akkarawongsa R, Potocky TB, English EP, Inhibition of herpes simplex virus type 1 infection by cationic beta-peptides. Antimicrob Agents Chemother 2008;52:2120-9
  • Pabo CO, Sauer RT. Transcription factors: structural families and principles of DNA recognition. Annu Rev Biochem 1992;61:1053-95
  • Namoto K, Gardiner J, Kimmerlin T, Seebach D. Investigation of the interactions of beta-peptides with DNA duplexes by circular dichroism spectroscopy. Helv Chim Acta 2006;89:3087-103
  • David R, Gunther R, Baumann L, Artificial chemokines: combining chemistry and molecular biology for the elucidation of interleukin-8 functionality. J Am Chem Soc 2008;130:15311-17
  • Arkin MR, Wells JA. Small-molecule inhibitors of protein-protein interactions: Progressing towards the dream. Nat Rev Drug Discov 2004;3:301-17
  • Weckbecker G, Lewis I, Albert R, Opportunities in somatostatin research: biological, chemical and therapeutic aspects. Nat Rev Drug Discov 2003;2:999-1017
  • Gademann K, Ernst M, Hoyer D, Seebach D. Synthesis and biological evaluation of a cyclo-beta-tetrapeptide as a somatostatin analogue. Angew Chem Int Ed 1999;38:1223-6
  • Gademann K, Ernst M, Seebach D, Hoyer D. The cyclo-beta-tetrapeptide (beta-HPhe-beta-HThr-beta-HLys-beta-HTrp): synthesis, NMR structure in methanol solution, and affinity for human somatostatin receptors. Helv Chim Acta 2000;83:16-33
  • Nunn C, Rueping M, Langenegger D, beta2/beta3-Di- and alpha/beta3-tetrapeptide derivatives as potent agonists at somatostatin sst4 receptors. Naunyn Schmiedebergs Arch Pharmacol 2003;367:95-103
  • Vousden KH, Lane DP. p53 in health and disease. Nat Rev Mol Cell Biol 2007;8:275-83
  • Murray JK, Gellman SH. Targeting protein-protein interactions: lessons from p53/MDM2. Biopolymers 2007;88:657-86
  • Kussie PH, Gorina S, Marechal V, Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 1996;274:948-53
  • Kritzer JA, Lear JD, Hodsdon ME, Schepartz A. Helical beta-peptide inhibitors of the p53–hDM2 interaction. J Am Chem Soc 2004;126:9468-9
  • Kritzer JA, Hodsdon ME, Schepartz A. Solution structure of a beta-peptide ligand for hDM2. J Am Chem Soc 2005;127:4118-19
  • Harker EA, Daniels DS, Guarracino DA, Schepartz A. beta-Peptides with improved affinity for hDM2 and hDMX. Biorg Med Chem 2009;17:2038-46
  • Michel J, Harker EA, Tirado-Rives J, In silico improvement of beta3-peptide inhibitors of p53•hDM2 and p53•hDMX. J Am Chem Soc 2009;131:6356-7
  • Harker EA, Schepartz A. Cell-Permeable beta-peptide inhibitors of p53/hDM2 complexation. ChemBioChem 2009;10:990-3
  • Bautista AD, Appelbaum JS, Craig CJ, Bridged beta3-peptide inhibitors of p53-hDM2 complexation: correlation between affinity and cell permeability. J Am Chem Soc 2010;132:2904-6
  • Henchey LK, Jochim AL, Arora PS. Contemporary strategies for the stabilization of peptides in the alpha-helical conformation. Curr Opin Chem Biol 2008;12:692-7
  • Hara T, Durell SR, Myers MC, Appella DH. Probing the structural requirements of peptoids that inhibit HDM2-p53 interactions. J Am Chem Soc 2006;128:1995-2004
  • Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 2007;26:1324-37
  • Sattler M, Liang H, Nettesheim D, Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science 1997;275:983-6
  • Sadowsky JD, Schmitt MA, Lee HS, Chimeric (alpha/beta+alpha)-peptide ligands for the BH3-recognition cleft of Bcl-xL: critical role of the molecular scaffold in protein surface recognition. J Am Chem Soc 2005;127:11966-8
  • Sadowsky JD, Fairlie WD, Hadley EB, (alpha/beta+alpha)-Peptide antagonists of BH3 domain/Bcl-xL recognition: toward general strategies for foldamer-based inhibition of protein-protein interactions. J Am Chem Soc 2007;129:139-54
  • Lee EF, Sadowsky JD, Smith BJ, High-resolution structural characterization of a helical alpha/beta-peptide foldamer bound to the anti-apoptotic protein Bcl-xL. Angew Chem Int Ed 2009;48:4318-22
  • Murray JK, Sadowsky JD, Scalf M, Exploration of structure–activity relationships among foldamer ligands for a specific protein binding site via parallel and split-and-mix library synthesis. J Comb Chem 2008;10:204-15
  • Sadowsky JD, Murray JK, Tomita Y, Gellman SH. Exploration of backbone space in foldamers containing alpha- and beta-amino acid residues: developing protease-resistant oligomers that bind tightly to the BH3-recognition cleft of Bcl-xL. ChemBioChem 2007;8:903-16
  • Horne WS, Boersma MD, Windsor MA, Gellman SH. Sequence-based design of alpha/beta-peptide foldamers that mimic BH3 domains. Angew Chem Int Ed 2008;47:2853-6
  • Lee EF, Smith BJ, Horne WS, Structural basis of Bcl-xL recognition by a BH3-mimetic alpha/beta-peptide generated by sequence-based design. ChemBioChem 2011;12:2025-32
  • Gallo SA, Finnegan CM, Viard M, The HIV Env-mediated fusion reaction. Biochim Biophys Acta 2003;1614:36-50
  • Weissenhorn W, Dessen A, Harrison SC, Atomic structure of the ectodomain from HIV-1 gp41. Nature 1997;387:426-30
  • Matthews T, Salgo M, Greenberg M, Enfuvirtide: The first therapy to inhibit the entry of HIV-1 into host CD4 lymphocytes. Nat Rev Drug Discov 2004;3:215-25
  • Stephens OM, Kim S, Welch BD, Inhibiting HIV fusion with a beta-peptide foldamer. J Am Chem Soc 2005;127:13126-7
  • Bautista AD, Stephens OM, Wang LG, Identification of a beta3-peptide HIV fusion inhibitor with improved potency in live cells. Bioorg Med Chem Lett 2009;19:3736-8
  • Johnson LM, Horne WS, Gellman SH. Broad distribution of energetically important contacts across an extended protein interface. J Am Chem Soc 2011;133:10038-41
  • Horne WS, Johnson LM, Ketas TJ, Structural and biological mimicry of protein surface recognition by alpha/beta-peptide foldamers. Proc Natl Acad Sci USA 2009;106:14751-6
  • Horne WS, Johnson LM, Gellman SH. Unpublished - coordinates and structure factors deposited as PDB 3O42
  • Lopper M, Compton T. Coiled-coil domains in glycoproteins B and H are involved in human cytomegalovirus membrane fusion. J Virol 2004;78:8333-41
  • English EP, Chumanov RS, Gellman SH, Compton T. Rational development of beta-peptide inhibitors of human cytomegalovirus entry. J Biol Chem 2006;281:2661-7
  • Giancotti FG, Ruoslahti E. Integrin signaling. Science 1999;285:1028-33
  • Shandler SJ, Korendovych IV, Moore DT, Computational design of a beta-peptide that targets transmembrane helices. J Am Chem Soc 2011;133:12378-81
  • Zuckermann RN, Kerr JM, Kent SBH, Moos WH. Efficient method for the preparation of peptoids [oligo(N-substituted glycines)] by submonomer solid-phase synthesis. J Am Chem Soc 1992;114:10646-7
  • Simon RJ, Kania RS, Zuckermann RN, Peptoids: a modular approach to drug discovery. Proc Natl Acad Sci USA 1992;89:9367-71
  • Wrenn SJ, Weisinger RM, Halpin DR, Harbury PB. Synthetic ligands discovered by in vitro selection. J Am Chem Soc 2007;129:13137-43
  • Alluri PG, Reddy MM, Bachhawat-Sikder K, Isolation of protein ligands from large peptoid libraries. J Am Chem Soc 2003;125:13995-4004
  • Lim HS, Archer CT, Kodadek T. Identification of a peptoid inhibitor of the proteasome 19S regulatory particle. J Am Chem Soc 2007;129:7750-1
  • Lim HS, Cai D, Archer CT, Kodadek T. Periodate-triggered cross-linking reveals Sug2/Rpt4 as the molecular target of a peptoid inhibitor of the 19S proteasome regulatory particle. J Am Chem Soc 2007;129:12936-7
  • Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003;9:669-76
  • Udugamasooriya DG, Dineen SP, Brekken RA, Kodadek T. A peptoid “antibody surrogate” that antagonizes VEGF receptor 2 activity. J Am Chem Soc 2008;130:5744-52
  • Udugamasooriya DG, Dunham G, Ritchie C, The pharmacophore of a peptoid VEGF Receptor 2 antagonist includes both side chain and main chain residues. Bioorg Med Chem Lett 2008;18:5892-4
  • Udugamasooriya DG, Ritchie C, Brekken RA, Kodadek T. A peptoid antagonist of VEGF Receptor 2 recognizes a ‘hotspot’ in the extracellular domain distinct from the hormone-binding site. Biorg Med Chem 2008;16:6338-43
  • Bray BL. Large-scale manufacture of peptide therapeutics by chemical synthesis. Nat Rev Drug Discov 2003;2:587-93

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.