130
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Computational methods for the discovery of mood disorder therapies

, , &
Pages 1227-1245 | Published online: 15 Nov 2011

Bibliography

  • Thase ME. Treatment of severe depression. J Clin Psychiatry 2000;61:17-25
  • Scharinger C, Rabl U, Sitte HH, Pezawas L. Imaging genetics of mood disorders. Neuroimage 2010;53(3):810-21
  • Tsankova N, Renthal W, Kumar A, Nestler EJ. Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 2007;8(5):355-67
  • Valenstein ES. The discovery of chemical neurotransmitters. Brain Cogn 2002;49(1):73-95
  • Baker CB, Johnsrud MT, Crismon ML, Quantitative analysis of sponsorship bias in economic studies of antidepressants. Br J Psychiatry 2003;183:498-506
  • Castren E. Is mood chemistry? Nat Rev Neurosci 2005;6:241-6
  • Manly CJ, Chandrasekhar J, Ochterski JW, Strategies and tactics for optimizing the hit-to-lead process and beyond - a computational chemistry perspective. Drug Discov Today 2008;13(3-4):99-109
  • Ban TA. The role of serendipity in drug discovery. Dialogues Clin Neurosci 2006;8(3):335-44
  • Gillman PK. Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br J Pharmacol 2007;151(6):737-48
  • Chen Z, Skolnick P. Triple uptake inhibitors: Therapeutic potential in depression and beyond. Expert Opin Investing Drugs 2007;16(9):1365-76
  • Fatima dA, Lapis A, Pilli R. A concise total synthesis of (r)-fluoxetine, a potent and selective serotonin reuptake inhibitor. J Mex Chem Soc 2005;49(2):257-61
  • Caccia S, Gobbi M. St. John's wort components and the brain: uptake, concentrations reached and the mechanisms underlying pharmacological effects. Curr Drug Metab 2009;10(9):1055-65
  • Linde K, Berner MM, Kriston L. St John's wort for major depression. Cochrane Database Syst Rev 2009;4:CD000448
  • Hypericum Depression Trial Study Group. Effect of hypericum perforatum (St John's wort) in major depressive disorder. JAMA 2002;287(14):1807-14
  • Gorby HE, Brownawell AM, Falk MC. Do specificy dietary constituents and supplements affect mental energy? Review of evidence. Nutr Rev 2010;68:697-718
  • Janet B. Psychological effects of dietary components of tea: caffenine and l-theanine. Nutr Rev 2008;66:82-90
  • Bruinsma K, Taren DL. Chocolate: Food or drug? J Am Diet Assoc 1999;99(10):1249-56
  • Parker G, Parker I, Brotchie H. Mood state effects of chocolate. J Affect Disord 2006;92:149-59
  • Jellinek JS. Aroma-chology: a status review. Perfum Flavor 1994;19:25-49
  • Kaneda H, Kojima H, Watari J. Novel psychological and neurophysiological significance of beer aromas. Part i: Measurement of changes in human emotions during the smelling of hop and ester aromas using a measurement system for brainwaves. J Am Soc Brew Chem 2011;69(2):67-74
  • Kaneda H, Kojima H, Watari J. Novel psychological and neurophysiological significance of beer aromas. Part ii: Effects of beer aromas on brainwaves related to changes in human emotions. J Am Soc Brew Chem 2011;69(2):75-80
  • Gaulton A, Bellis LJ, Bento AP, Chembl: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 2011. Published online: September 23, 2011; doi: 10.1093/nar/gkr777
  • Burdock GA. The gras process. Food Tech 2003;57:17
  • Dunkel M, Schmidt U, Struck S, Superscent – a database of flavors and scents. Nucleic Acids Res 2009;37(Database):D291-D4
  • Martinez-Mayorga K, Peppard TL, Yongye AB, Characterization of a comprehensive flavor database. J Chemometr 2011;25:550-60
  • Goodwin JT. In silico predictions of blood-brain barrier penetration: considerations to “keep in mind”. J Pharmacol Exp Ther 2005;315(2):477-83
  • Pajouhesh H, Lenz GR. Medicinal chemical properties of successful central nervous sytem drugs. NeuroRx 2005;2:541-53
  • Kelder J, Grootenhuis PDJ, Bayada DM, Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharm Res 1999;16(10):1514-19
  • van de Waterbeemd H, Camenisch G, Folkers G, Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors. J Drug Target 1998;6(2):151-65
  • Garg P, Verma J, Roy N. In silico modeling for blood—brain barrier permeability predictions. In: Ehrhardt C, Kim K-J, editors. Drug absorption studies. Springer; US: 2008. p. 510-56
  • Hert J, Irwin JJ, Laggner C, Quantifying biogenic bias in screening libraries. Nat Chem Biol 2009;5(7):479-83
  • Hert J, Keiser MJ, Irwin JJ, Quantifying the relationships among drug classes. J Chem Inf Model 2008;48(4):755-65
  • Xu YJ, Johnson M. Using molecular equivalence numbers to visually explore structural features that distinguish chemical libraries. J Chem Inf Comput Sci 2002;42(4):912-26
  • Marcason W. What is the bottom line for dietary when taking monoamine oxidase inhibitors? J Am Diet Assoc 2005;105(1):163
  • Amsterdam JD. A double-blind, placebo-controlled trial of the safety and efficacy of selegline transdermal system without dietary restriction in patients with major depressive disorder. J Clin Psychiatry 2003;64(2):208-14
  • Son SY, Ma A, Kondou Y, Structure of human monoamine oxidase a at 2.2-angstrom resolution: the control of opening the entry for substrates/inhibitors. Proc Natl Acad Sci USA 2008;105(15):5739-44
  • Bonivento D, Milczek EM, McDonald GR, Potentiation of ligand binding through cooperative effects in monoamine oxidase B. J Biol Chem 2010;285(47):36849-56
  • Shelke SM, Bhosale SH, Dash RC, Exploration of new scaffolds as potential mao-a inhibitors using pharmacophore and 3D-QSAR based in silico screening. Bioorg Med Chem Lett 2011;21(8):2419-24
  • Hoyer D, Clarke DE, Fozard JR, International union of pharmacology classification of receptors for 5-hydroxytryptamine (serotonine) Pharmacol Rev. 1994;46(2):157-203
  • Palczewski K, Kumasaka T, Hori T, Crystal structure of rhodopsin: a G protein-coupled receptor. Science 2000;289(5480):739-45
  • Choe HW, Kim YJ, Park JH, Crystal structure of metarhodopsin ii. Nature 2011;471(7340):651-U137
  • Kobilka B, Schertler GFX. New G-protein-coupled receptor crystal structures: insights and limitations. Trends Pharmacol Sci 2008;29(2):79-83
  • Jaakola VP, Griffith MT, Hanson MA, The 2.6 angstrom crystal structure of a human a(2a) adenosine receptor bound to an antagonist. Science 2008;322(5905):1211-17
  • Botelho AV, Huber T, Sakmar TP, Brown MF. Curvature and hydrophobic forces drive oligomerization and modulate activity of rhodopsin in membranes. Biophys J 2006;91(12):4464-77
  • Lau PW, Grossfield A, Feller SE, Dynamic structure of retinylidene ligand of rhodopsin probed by molecular simulations. J Mol Biol 2007;372(4):906-17
  • Grossfield A, Pitman MC, Feller SE, Internal hydration increases during activation of the G-protein-coupled receptor rhodopsin. J Mol Biol 2008;381(2):478-86
  • Martinez-Mayorga K, Pitman MC, Grossfield A, Retinal counterion switch mechanism in vision evaluated by molecular simulations. J Am Chem Soc 2006;128:16502-3
  • Kanagarajadurai K, Malini M, Bhattacharya A, Molecular modeling and docking studies of human 5-hydroxytryptamine 2A (5-HT2a) receptor for the identification of hotspots for ligand binding. Mol BioSyst 2009;5(12):1877-88
  • Kim SK, Li YY, Abrol R, Predicted structures and dynamics for agonists and antagonists bound to serotonin 5-HT2b and 5-HT2c receptors. J Chem Inf Model 2011;51(2):420-33
  • Cornette JL, Cease KB, Margalit H, Hydrophobicity scales and computational techniques for detecting amphipathic structures in proteins. J Mol Biol 1987;195(3):659-85
  • Shacham S, Marantz Y, Bar-Haim S, Predict modeling and in-silico screening for G-protein coupled receptors. Proteins 2004;57(1):51-86
  • Vaidehi N, Floriano WB, Trabanino R, Prediction of structure and function of G protein-coupled receptors. Proc Natl Acad Sci USA 2002;99(20):12622-7
  • Czopek A, Byrtus H, Kolaczkowski M, Synthesis and pharmacological evaluation of new 5-(cyclo)alkyl-5-phenyl- and 5-spiroimidazolidine-2,4-dione derivatives. Novel 5-ht1a receptor agonist with potential antidepressant and anxiolytic activity. Eur J Med Chem 2010;45(4):1295-303
  • Becker OM, Dhanoa DS, Marantz Y, An integrated in silico 3D model-driven discovery of a novel, potent, and selective amidosulfonamide 5-HT1a agonist (prx-00023) for the treatment of anxiety and depression. J Med Chem 2006;49(11):3116-35
  • Katritch V, Abagyan R. GPCR agonist binding revealed by modeling and crystallography. Trends Pharmacol Sci 2011;32:637-43
  • Zhou Z, Zhen J, Karpowich NK, Antidepressant specificity of serotonin transporter suggested by three leut-ssri structures. Nat Struct Mol Biol 2009;16(6):652-U96
  • Ravna AW, Edvardsen O. A putative three-dimensional arrangement of the human serotonin transporter transmembrane helices: a tool to aid experimental studies. J Mol Graph Model 2001;20(2):133-44
  • Andersen J, Taboureau O, Hansen KB, Location of the antidepressant binding site in the serotonin transporter. Importance of Ser-438 in recognition of citalopram and tricyclic antidepressants. J Biol Chem 2009;284(15):10276-84
  • Sinning S, Musgaard M, Jensen M, Binding and orientation of tricyclic antidepressants within the central substrate site of the human serotonin transporter. J Biol Chem 2010;285(11):8363-74
  • Ravna AW, Sylte I, Dahl SG. Structure and localisation of drug binding sites on neurotransmitter transporters. J Mol Model 2009;15(10):1155-64
  • Yamashita A, Singh SK, Kawate T, Crystal structure of a bacterial homologue of na+/cl–dependent neurotransmitter transporters. Nature 2005;437(7056):215-23
  • Huang X, Zhan CG. How dopamine transporter interacts with dopamine: insights from molecular modeling and simulation. Biophys J 2007;93:3627-39
  • Petukhov PA, Zhang JR, Wang CZ, Synthesis, molecular modeling, and biological studies of novel piperidine-based analogues of cocaine: evidence of unfavorable interactions proximal to the 3 alpha-position of the piperidine ring. J Med Chem 2004;47(12):3009-18
  • Smid P, Coolen H, Keizer HG, Synthesis, structure-activity relationships, and biological properties of 1-heteroaryl-4-omega-(1H-indol-3-yl)alkyllpiperazines, novel potential antipsychotics combining potent dopamine D-2 receptor antagonism with potent serotonin reuptake inhibition. J Med Chem 2005;48(22):6855-69
  • Zhang SJ, Fernandez F, Hazeldine S, Further structural exploration of trisubstituted asymmetric pyran derivatives (2S,4R,5R)-2-benzhydryl-5-benzylamino-tetrahydropyran-4-ol and their corresponding disubstituted (3S,6S) pyran derivatives: a proposed pharmacophore model for high-affinity interaction with the dopamine, serotonin, and norepinephrine transporters. J Med Chem 2006;49(14):4239-47
  • Medina-Franco JL, Yongye AB, Perez-Villanueva J, Multi-target structure activity relationships characterized by activity-difference maps and consensus similarity measure. J Chem Inf Model 2011;51(9):2427-39
  • Whittle M, Gillet VJ, Willett P, Analysis of data fusion methods in virtual screening: Similarity and group fusion. J Chem Inf Model 2006;46:2206-19
  • Jahn A, Hinselmann G, Fechner N, Zell A. Optimal assignment methods for ligand-based virtual screening. J Chem 2009;1:14
  • Maldonado AG, Doucet JP, Petitjean M, Fan B-T. Molecular similarity and diversity in chemoinformatics: From theory to applications. Mol Divers 2006;1039:39-79
  • Villoutreix BO, Renault N, Lagorce D, Free resources to assist structure-based virtual ligand screening experiments. Curr Protein Pept Sci 2007;8(4):381-411
  • Kurczab R, Nowak M, Chilmonczyk Z, The development and validation of a novel virtual screening cascade protocol to identify potential serotonin 5-HT7r antagonists. Bioorg Med Chem Lett 2010;20(8):2465-8
  • Geppert H, Vogt M, Bajorath J Jr. Current trends in ligand-based virtual screening: Molecular representations, data mining methods, new application areas, and performance evaluation. J Chem Inf Model 2010;50(2):205-16
  • Miteva M. Hierarchical structure-based virtual screening for drug design. Biotechnol Biotechnol Equine 2008;22:634-8
  • Schlosser J, Rarey M. Beyond the virtual screening paradigm: structure-based searching for new lead compounds. J Chem Inf Model 2009;49:800-9
  • Mishra N, Sasmal D. Development of selective and reversible pyrazoline based MAO-B inhibitors: virtual screening, synthesis and biological evaluation. Bioorg Med Chem Lett 2011;21(7):1969-73
  • Santana L, Uriarte E, Gonzalez-Diaz H, A qsar model for in silico screening of MAO-A inhibitors. Prediction, synthesis, and biological assay of novel coumarins. J Med Chem 2006;49:1149-56
  • Koyama M, Hasegawa K, Arakawa M, Funatsu K. Application of rough set theory to high throughput screening data for rational selection of lead compounds. Chem Bio Inf J 2008;8:85-95
  • Ahmed A, Choo H, Cho YS, Identification of novel serotonin 2C receptor ligands by sequential virtual screening. Bioorg Med Chem 2009;17:4559-68
  • MacDougall IJA, Griffith R. Pharmacophore design and database searching for selective monoamine neurotransmitter transporter ligands. J Mol Graph Model 2008;26(7):1113-24
  • Khanfar Ma, Asal BA, Mudit M, The marine natural-derived inhibitors of glycogen synthase kinase-3beta phenylmethylene hydantoins: in vitro and in vivo activities and pharmacophore modeling. Bioorg Med Chem 2009;17:6032-9
  • Kang NS, Lee GN, Kim CH, Identification of small molecules that inhibit GSK-3beta through virtual screening. Bioorg Med Chem Lett 2009;19:533-7
  • Vadivelan S, Sinha BN, Tajne S, Jagarlapudi SaRP. Fragment and knowledge-based design of selective GSK-3beta inhibitors using virtual screening models. Eur J Med Chem 2009;44:2361-71
  • Lepp Z, Kinoshita T, Chuman H. Screening for new antidepressant leads of multiple activities by support vector machines. J Chem Inf Model 2006;46:158-67
  • El-Kerdawy MM, El-Bendary ER, Abdel-Aziz AAM, Synthesis and pharmacological evaluation of novel fused thiophene derivatives as 5-HT2a receptor antagonists: Molecular modeling study. Eur J Med Chem 2010;45(5):1805-20
  • Micheli F, Pasquarello A, Tedesco G, Diaryl substituted pyrrolidinones and pyrrolones as 5-HT2c inhibitors: Synthesis and biological evaluation. Bioorg Med Chem Lett 2006;16(15):3906-12
  • Weber KC, Salum LB, Honorio KM, Pharmacophore-based 3D QSAR studies on a series of high affinity 5-HT1a receptor ligands. Eur J Med Chem 2010;45(4):1508-14
  • Dessalew N. Qsar study on dual 5-HT1a and 5-HT1b antagonists: an insight into the structural requirement for antidepressant activity. Arch Pharm 2008;341(5):314-22
  • Manepalli S, Geffert LM, Surratt CK, Madura JD. Discovery of novel selective serotonin reuptake inhibitors through development of a protein-based pharmacophore. J Chem Inf Model 2011;51(9):2417-26
  • Andersen J, Olsen L, Hansen KB, Mutational mapping and modeling of the binding site for (s)-citalopram in the human serotonin transporter. J Biol Chem 2010;285(3):2051-63
  • Shan J, Javitch JA, Shi L, Weinstein H. The substrate-driven transition to an inward-facing conformation in the functional mechanism of the dopamine transporter. PLoS ONE 2011;6(1):e16350
  • Beuming T, Kniazeff J, Bergmann ML, The binding sites for cocaine and dopamine in the dopamine transporter overlap. Nat Neurosci 2008;11(7):780-9
  • Hill ER, Huang X, Zhan CG, Interaction of tyrosine 151 in norepinephrine transporter with the 2beta group of cocaine analog RTI-113. Neuropharmacology 2011;61(1-2):112-20
  • Schlessinger A, Geier E, Fan H, Structure-based discovery of prescription drugs that interact with the norepinephrine transporter, NET. Proc Natl Acad Sci USA 2011;108(38):15810-15
  • Arias HR, Feuerbach D, Targowska-Duda KM, Interaction of selective serotonin reuptake inhibitors with neuronal nicotinic acetylcholine receptors. Biochemistry (Mosc) 2010;49(27):5734-42
  • Arias HR, Targowska-Duda KM, Feuerbach D, Different interaction between tricyclic antidepressants and mecamylamine with the human alpha3beta4 nicotinic acetylcholine receptor ion channel. Neurochem Int 2010;56(4):642-9
  • Sanghvi M, Hamouda AK, Jozwiak K, Identifying the binding site(s) for antidepressants on the torpedo nicotinic acetylcholine receptor: [3H]2-azidoimipramine photolabeling and molecular dynamics studies. Biochim Biophys Acta 2008;1778(12):2690-9
  • Di Fabio R, Arban R, Bernasconi G, Dihydropyrrole 2,3-d pyridine derivatives as novel corticotropin-releasing factor-1 antagonists: Mapping of the receptor binding pocket by in silico docking studies. J Med Chem 2008;51(22):7273-86
  • Dzierba CD, Tebben AJ, Wilde RG, Dihydropyridopyrazinones and dihydropteridinones as corticotropin-releasing factor-1 receptor antagonists: structure-activity relationships and computational modeling. J Med Chem 2007;50(9):2269-72
  • Ye Y, Liao Q, Wei J, Gao Q. 3D-QSAR study of corticotropin-releasing factor 1 antagonists and pharmacophore-based drug design. Neurochem Int 2010;56(1):107-17
  • Chaudhari UP, Trivedi ND, Patil RRS, Banerjee S. Molecular docking studies of L-name with the neuronal nitric oxide synthase. Int J Chem Tech Res 2010;2:122-8
  • Liu M, He L, Hu X, 3D-QSAR, homology modeling, and molecular docking studies on spiropiperidines analogues as agonists of nociceptin/orphanin FQ receptor. Bioorg Med Chem Lett 2010;20(23):7004-10
  • Furutani K, Ohno Y, Inanobe A, Mutational and in silico analyses for antidepressant block of astroglial inward-rectifier Kir4.1 channel. Mol Pharmacol 2009;75(6):1287-95
  • Mor M, Lodola A, Rivara S, Synthesis and quantitative structure-activity relationship of fatty acid amide hydrolase inhibitors: modulation at the N-portion of biphenyl-3-yl alkylcarbamates. J Med Chem 2008;51(12):3487-98
  • Narkhede SS, Degani MS. Pharmacophore refinement and 3D-QSAR studies of histamine H3 antagonists. QSAR Comb Sci 2007;26(6):744-53
  • Ray NC, Clark RD, Clark DE, Discovery and optimization of novel, non-steroidal glucocorticoid receptor modulators. Bioorg Med Chem Lett 2007;17(17):4901-5
  • Shelke SM, Bhosale SH. Synthesis, antidepressant evaluation and qsar studies of novel 2-(5H-[1,2,4]triazino[5,6-b]indol-3-ylthio)-n-(substituted phenyl)acetamides. Bioorg Med Chem Lett 2010;20(15):4661-4
  • Jalali-Heravi M, Shahbazikhah P, Ghadiri-Bidhendi A. QSRR study of psychiatric drugs using classification and regression trees combined with adaptive neuro-ruzzy inference system. QSRR Comb Sci 2008;27(6):729-39
  • Gill R, Mohammed F, Badyal R, High-resolution structure of myo-inositol monophosphatase, the putative target of lithium therapy. Acta Crystallogr D Biol Crystallogr 2005;61(Pt 5):545-55

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.