508
Views
35
CrossRef citations to date
0
Altmetric
Reviews

Novel directions for diabetes mellitus drug discovery

, MD, , &
Pages 35-48 | Published online: 24 Oct 2012

Bibliography

  • Maiese K, Chong ZZ, Shang YC, Novel Avenues of drug discovery and biomarkers for diabetes mellitus. J Clin Pharmacol 2011;51:128-52
  • Abdullah A, Wolfe R, Mannan H, Epidemiologic merit of obese-years, the combination of degree and duration of obesity. Am J Epidemiol 2012;176(2):99-107
  • Maiese K, Shang YC, Chong ZZ, Diabetes mellitus: channeling care through cellular discovery. Curr Neurovasc Res 2010;7:59-64
  • Reagan LP. Diabetes as a chronic metabolic stressor: causes, consequences and clinical complications. Exp Neurol 2012;233:68-78
  • Maiese K, Chong ZZ, Hou J, Oxidative stress: biomarkers and novel therapeutic pathways. Exp Gerontol 2010;45:217-34
  • Chong ZZ, Shang YC, Wang S, SIRT1: new avenues of discovery for disorders of oxidative stress. Expert Opin Ther Targets 2012;16:167-78
  • Maiese K, Chong ZZ, Shang YC, Translating cell survival and cell longevity into treatment strategies with SIRT1. Rom J Morphol Embryol 2011;52:1173-85
  • Maiese K, Chong ZZ, Shang YC, Targeting disease through novel pathways of apoptosis and autophagy. Expert Opin Ther Targets 2012; [Epub ahead of print]
  • Chong ZZ, Maiese K. Mammalian Target of rapamycin signaling in diabetic cardiovascular disease. Cardiovasc Diabetol 2012;11:45
  • Chong ZZ, Shang YC, Maiese K. Cardiovascular disease and mTOR signaling. Trends Cardiovasc Med 2011;21:151-5
  • Balduini W, Carloni S, Buonocore G. Autophagy in hypoxia-ischemia induced brain injury. J Matern Fetal Neonatal Med 2012;25(Suppl 1):30-4
  • Hyrskyluoto A, Reijonen S, Kivinen J, GADD34 mediates cytoprotective autophagy in mutant huntingtin expressing cells via the mTOR pathway. Exp Cell Res 2012;318:33-42
  • Liu Y, Shi S, Gu Z, Impaired autophagic function in rat islets with aging. Age (Dordr) 2012; [Epub ahead of print]
  • He C, Bassik MC, Moresi V, Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 2012;481:511-15
  • Hu P, Lai D, Lu P, ERK and Akt signaling pathways are involved in advanced glycation end product-induced autophagy in rat vascular smooth muscle cells. Int J Mol Med 2012;29:613-18
  • Lee Y, Hong Y, Lee SR, Autophagy contributes to retardation of cardiac growth in diabetic rats. Lab Anim Res 2012;28:99-107
  • Martino L, Masini M, Novelli M, Palmitate activates autophagy in INS-1E beta-cells and in isolated rat and human pancreatic islets. PLoS One 2012;7:e36188
  • Fu D Fau - Wu M, Wu M Fau - Zhang J, Zhang J Fau - Du M, Mechanisms of modified LDL-induced pericyte loss and retinal injury in diabetic retinopathy. Diabetologia 2012; [Epub ahead of print]
  • Wang S, Chong ZZ, Shang YC, WISP1 (CCN4) autoregulates its expression and nuclear trafficking of beta-catenin during oxidant stress with limited effects upon neuronal autophagy. Curr Neurovasc Res 2012;9:89-99
  • Troy CM, Akpan N, Jean YY. Regulation of caspases in the nervous system implications for functions in health and disease. Prog Mol Biol Transl Sci 2011;99:265-305
  • Viola G, Bortolozzi R, Hamel E, MG-2477, a new tubulin inhibitor, induces autophagy through inhibition of the Akt/mTOR pathway and delayed apoptosis in A549 cells. Biochem Pharmacol 2012;83:16-26
  • Luo S, Rubinsztein DC. Apoptosis blocks Beclin 1-dependent autophagosome synthesis: an effect rescued by Bcl-xL. Cell Death Differ 2010;17:268-77
  • Kapoor V, Zaharieva MM, Das SN, Erufosine simultaneously induces apoptosis and autophagy by modulating the Akt-mTOR signaling pathway in oral squamous cell carcinoma. Cancer Lett 2012;319:39-48
  • Maiese K, Chong ZZ, Hou J, The vitamin nicotinamide: translating nutrition into clinical care. Molecules 2009;14:3446-85
  • Chong ZZ, Lin SH, Maiese K. Nicotinamide modulates mitochondrial membrane potential and cysteine protease activity during cerebral vascular endothelial cell injury. J Vasc Res 2002;39:131-47
  • Chong ZZ, Lin SH, Maiese K. The NAD+ precursor nicotinamide governs neuronal survival during oxidative stress through protein kinase B coupled to FOXO3a and mitochondrial membrane potential. J Cereb Blood Flow Metab 2004;24:728-43
  • Chong ZZ, Maiese K. Enhanced tolerance against early and late apoptotic oxidative stress in mammalian neurons through nicotinamidase and sirtuin mediated pathways. Curr Neurovasc Res 2008;5:159-70
  • Audrito V, Vaisitti T, Rossi D, Nicotinamide blocks proliferation and induces apoptosis of chronic lymphocytic leukemia cells through activation of the p53/miR-34a/SIRT1 tumor suppressor network. Cancer Res 2011;71:4473-83
  • Ullah N, Ullah I, Lee HY, Protective function of nicotinamide against ketamine-induced apoptotic neurodegeneration in the infant rat brain. J Mol Neurosci 2012;47:67-75
  • Jang Sy Fau - Kang HT, Kang Ht Fau - Hwang ES, Hwang ES. Nicotinamide-induced mitophagy: event mediated by high NAD+/NADH ratio and SIRT1 protein activation. J Biol Chem 2012;287(23):19304-14
  • Lin SH, Vincent A, Shaw T, Prevention of nitric oxide-induced neuronal injury through the modulation of independent pathways of programmed cell death. J Cereb Blood Flow Metab 2000;20:1380-91
  • Maiese K. Triple play: promoting neurovascular longevity with nicotinamide, WNT, and erythropoietin in diabetes mellitus. Biomed Pharmacother 2008;62:218-32
  • Li F, Chong ZZ, Maiese K. Cell Life Versus Cell Longevity: the Mysteries Surrounding the NAD(+) Precursor Nicotinamide. Curr Med Chem 2006;13:883-95
  • Liu Z, Stanojevic V, Brindamour LJ, GLP1-derived nonapeptide GLP1(28-36)amide protects pancreatic beta-cells from glucolipotoxicity. J Endocrinol 2012;213:143-54
  • Olmos PR, Hodgson MI, Maiz A, Nicotinamide protected first-phase insulin response (FPIR) and prevented clinical disease in first-degree relatives of type-1 diabetics. Diabetes Res Clin Pract 2006;71:320-33
  • Crino A, Schiaffini R, Ciampalini P, A two year observational study of nicotinamide and intensive insulin therapy in patients with recent onset type 1 diabetes mellitus. J Pediatr Endocrinol Metab 2005;18:749-54
  • Eto N, Miyata Y, Ohno H, Nicotinamide prevents the development of hyperphosphataemia by suppressing intestinal sodium-dependent phosphate transporter in rats with adenine-induced renal failure. Nephrol Dial Transplant 2005;20:1378-84
  • Stevens MJ, Li F, Drel VR, Nicotinamide reverses neurological and neurovascular deficits in streptozotocin diabetic rats. J Pharmacol Exp Ther 2007;320:458-64
  • Cresto JC, Fabiano de Bruno LE, Cao GF, The association of acetyl-l-carnitine and nicotinamide remits the experimental diabetes in mice by multiple low-dose streptozotocin. Pancreas 2006;33:403-11
  • Tam D, Tam M, Maynard KI. Nicotinamide modulates energy utilization and improves functional recovery from ischemia in the in vitro rabbit retina. Ann N Y Acad Sci 2005;Aug1053:258-68
  • Kuchmerovska T, Shymanskyy I, Donchenko G, Poly(ADP-ribosyl)ation enhancement in brain cell nuclei is associated with diabetic neuropathy. J Diabetes Complications 2004;18:198-204
  • John CM, Ramasamy R, Al Naqeeb G, Enhanced CD4+CD25+ regulatory T cells with splenic proliferation and protection against oxidative stress by nicotinamide in gestational diabetes. Curr Med Chem 2012; [Epub ahead of print]
  • Swan AA, Chandrashekar R, Beare J, Preclinical efficacy testing in middle-aged rats: nicotinamide, a novel neuroprotectant, demonstrates diminished preclinical efficacy after controlled cortical impact. J Neurotrauma 2011;28:431-40
  • Zhou SS, Li D, Sun WP, Nicotinamide overload may play a role in the development of type 2 diabetes. World J Gastroenterol 2009;15:5674-84
  • Vaca P, Berna G, Araujo R, Nicotinamide induces differentiation of embryonic stem cells into insulin-secreting cells. Exp Cell Res 2008;314:969-74
  • Balan V, Miller GS, Kaplun L, Life span extension and neuronal cell protection by Drosophila nicotinamidase. J Biol Chem 2008;283:27810-19
  • Siegel C, McCullough LD. NAD+ depletion or PAR polymer formation: which plays the role of executioner in ischaemic cell death? Acta Physiol (Oxf) 2011;203:225-34
  • Gale EA, Bingley PJ, Emmett CL, European Nicotinamide Diabetes Intervention Trial (ENDIT): a randomised controlled trial of intervention before the onset of type 1 diabetes. Lancet 2004;363:925-31
  • Maiese K, Chong ZZ, Shang YC, Erythropoietin: new directions for the nervous system. Int J Mol Sci 2012;13:11102-29
  • Maiese K, Chong ZZ, Li F, Erythropoietin: elucidating new cellular targets that broaden therapeutic strategies. Prog Neurobiol 2008;85:194-213
  • Maiese K, Li F, Chong ZZ. New avenues of exploration for erythropoietin. Jama 2005;293:90-5
  • Dang J, Jia R, Tu Y, Erythropoietin prevents reactive oxygen species generation and renal tubular cell apoptosis at high glucose level. Biomed Pharmacother 2010;64:681-5
  • Hou J, Wang S, Shang YC, Erythropoietin employs cell longevity pathways of SIRT1 to foster endothelial vascular integrity during oxidant stress. Curr Neurovasc Res 2011;8:220-35
  • Pankratova S, Gu B, Kiryushko D, A new agonist of the erythropoietin receptor, Epobis, induces neurite outgrowth and promotes neuronal survival. J Neurochem 2012;121:915-23
  • Shang YC, Chong ZZ, Wang S, Prevention of beta-amyloid degeneration of microglia by erythropoietin depends on Wnt1, the PI 3-K/mTOR pathway, Bad, and Bcl-xL. Aging (Albany NY) 2012;4:187-201
  • Chong ZZ, Shang YC, Wang S, PRAS40 Is an integral regulatory component of erythropoietin mTOR signaling and cytoprotection. PLoS ONE 2012;7:e45456
  • Shang YC, Chong ZZ, Wang S, WNT1 Inducible Signaling Pathway Protein 1 (WISP1) Targets PRAS40 to Govern beta-Amyloid Apoptotic Injury of Microglia. Curr Neurovasc Res 2012; [Epub ahead of print]
  • Silverberg DS, Wexler D, Iaina A, The interaction between heart failure and other heart diseases, renal failure, and anemia. Semin Nephrol 2006;26:296-306
  • Singh DK, Winocour P, Farrington K. Erythropoietic stress and anemia in diabetes mellitus. Nat Rev Endocrinol 2009;5:204-10
  • Hamed S, Ullmann Y, Egozi D, Fibronectin potentiates topical erythropoietin-induced wound repair in diabetic mice. J Invest Dermatol 2011;131:1365-74
  • Chu Q, Zhang J, Wu Y, Differential gene expression pattern of diabetic rat retinas after intravitreal injection of erythropoietin. Clin Experiment Ophthalmol 2011;39:142-51
  • Chattopadhyay M, Walter C, Mata M, Neuroprotective effect of herpes simplex virus-mediated gene transfer of erythropoietin in hyperglycemic dorsal root ganglion neurons. Brain 2009;132:879-88
  • Choi D, Schroer SA, Lu SY, Erythropoietin protects against diabetes through direct effects on pancreatic beta cells. J Exp Med 2010;207:2831-42
  • Sinclair AM, Coxon A, McCaffery I, Functional erythropoietin receptor is undetectable in endothelial, cardiac, neuronal, and renal cells. Blood 2010;115:4264-72
  • Chong ZZ, Hou J, Shang YC, EPO Relies upon novel signaling of Wnt1 that requires Akt1, FoxO3a, GSK-3beta, and beta-catenin to foster vascular integrity during experimental diabetes. Curr Neurovasc Res 2011;8:103-20
  • Chong ZZ, Shang YC, Maiese K. Vascular injury during elevated glucose can be mitigated by erythropoietin and Wnt signaling. Curr Neurovasc Res 2007;4:194-204
  • Ghaboura N, Tamareille S, Ducluzeau PH, Diabetes mellitus abrogates erythropoietin-induced cardioprotection against ischemic-reperfusion injury by alteration of the RISK/GSK-3beta signaling. Basic Res Cardiol 2011;106:147-62
  • Kelly GS. A review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratrol: part 2. Altern Med Rev 2010;15:313-28
  • Sun C, Zhang F, Ge X, SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab 2007;6:307-19
  • Li Y, Xu S, Giles A, Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver. Faseb J 2011;25(5):1664-79
  • Frojdo S, Durand C, Molin L, Phosphoinositide 3-kinase as a novel functional target for the regulation of the insulin signaling pathway by SIRT1. Mol Cell Endocrinol 2011;335:166-76
  • Bordone L, Motta MC, Picard F, Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol 2006;4:e31
  • Sasaki T, Kitamura T. Roles of FoxO1 and Sirt1 in the central regulation of food intake. Endocr J 2010;57:939-46
  • Rodgers JT, Lerin C, Haas W, Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 2005;434:113-18
  • Purushotham A, Schug TT, Xu Q, Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab 2009;9:327-38
  • Planavila A, Iglesias R, Giralt M, Sirt1 acts in association with PPAR{alpha} to protect the heart from hypertrophy, metabolic dysregulation, and inflammation. Cardiovasc Res 2011;90(2):276-84
  • Chong ZZ, Maiese K. The Src homology 2 domain tyrosine phosphatases SHP-1 and SHP-2: diversified control of cell growth, inflammation, and injury. Histol Histopathol 2007;22:1251-67
  • Hou J, Chong ZZ, Shang YC, Early apoptotic vascular signaling is determined by Sirt1 through nuclear shuttling, forkhead trafficking, bad, and mitochondrial caspase activation. Curr Neurovasc Res 2010;7:95-112
  • Sundaresan NR, Pillai VB, Wolfgeher D, The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy. Science signaling 2011;4:ra46
  • Maiese K, Chong ZZ, Shang YC, A "FOXO" in sight: targeting Foxo proteins from conception to cancer. Med Res Rev 2009;29:395-418
  • Storz P. Forkhead homeobox type O transcription factors in the responses to oxidative stress. Antioxid Redox Signal 2011;14:593-605
  • Kousteni S. FoxO1, the transcriptional chief of staff of energy metabolism. Bone 2012;50:437-43
  • Maiese K, Chong ZZ, Shang YC. OutFOXOing disease and disability: the therapeutic potential of targeting FoxO proteins. Trends Mol Med 2008;14:219-27
  • Wang F, Chan CH, Chen K, Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation. Oncogene 2012;31:1546-57
  • Ferrara N, Rinaldi B, Corbi G, Exercise training promotes SIRT1 activity in aged rats. Rejuvenation Res 2008;11(1):139-50
  • Xiong S, Salazar G, Patrushev N, FoxO1 Mediates an Autofeedback Loop Regulating SIRT1 Expression. J Biol Chem 2011;286:5289-99
  • Surjana D, Halliday GM, Damian DL. Role of nicotinamide in DNA damage, mutagenesis, and DNA repair. J Nucleic Acids 2010;2010
  • Chong ZZ, Shang YC, Wang S, Shedding new light on neurodegenerative diseases through the mammalian target of rapamycin. Prog Neurobiol 2012; Epub ahead of print
  • Chong ZZ, Shang YC, Zhang L, Mammalian target of rapamycin: hitting the bull's-eye for neurological disorders. Oxid Med Cell Longev 2010;3:374-91
  • Marfia G, Madaschi L, Marra F, Adult neural precursors isolated from post mortem brain yield mostly neurons: an erythropoietin-dependent process. Neurobiol Dis 2011;43:86-98
  • Sanghera KP, Mathalone N, Baigi R, The PI3K/Akt/mTOR pathway mediates retinal progenitor cell survival under hypoxic and superoxide stress. Mol Cell Neurosci 2011;47:145-53
  • Kim J, Jung Y, Sun H, Erythropoietin mediated bone formation is regulated by mTOR signaling. J Cell Biochem 2012;113:220-8
  • Shang YC, Chong ZZ, Wang S, Erythropoietin and Wnt1 Govern Pathways of mTOR, Apaf-1, and XIAP in Inflammatory Microglia. Curr Neurovasc Res 2011;8:270-85
  • Wang RH, Kim HS, Xiao C, Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance. J Clin Invest 2011;121:4477-90
  • Guo W, Qian L, Zhang J, Sirt1 overexpression in neurons promotes neurite outgrowth and cell survival through inhibition of the mTOR signaling. J Neurosci Res 2011;89:1723-36
  • Ghosh HS, McBurney M, Robbins PD. SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One 2010;5:e9199
  • Zhang S, Cai G, Fu B, SIRT1 is required for the effects of rapamycin on high glucose-inducing mesangial cells senescence. Mech Ageing Dev 2012;133:387-400
  • Hamada S, Hara K, Hamada T, Upregulation of the mammalian target of rapamycin complex 1 pathway by Ras homolog enriched in brain in pancreatic beta-cells leads to increased beta-cell mass and prevention of hyperglycemia. Diabetes 2009;58:1321-32
  • Fraenkel M, Ketzinel-Gilad M, Ariav Y, mTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes. Diabetes 2008;57:945-57
  • Deblon N, Bourgoin L, Veyrat-Durebex C, Chronic mTOR inhibition by rapamycin induces muscle insulin resistance despite weight loss in rats. Br J Pharmacol 2012;165:2325-40
  • Treins C, Alliouachene S, Hassouna R, The combined deletion of S6K1 and Akt2 deteriorates glycaemic control in high fat diet. Mol Cell Biol 2012;32(19):4001-11
  • Maiese K, Li F, Chong ZZ, The Wnt signaling pathway: aging gracefully as a protectionist? Pharmacol Ther 2008;118:58-81
  • Noguti J, CF DEM, Hossaka TA, The role of canonical WNT. signaling pathway in oral carcinogenesis: a comprehensive review. Anticancer Res 2012;32:873-8
  • Lehman DM, Hunt KJ, Leach RJ, Haplotypes of transcription factor 7-like 2 (TCF7L2) gene and its upstream region are associated with type 2 diabetes and age of onset in Mexican Americans. Diabetes 2007;56:389-93
  • Guo YF, Xiong DH, Shen H, Polymorphisms of the low-density lipoprotein receptor-related protein 5 (LRP5) gene are associated with obesity phenotypes in a large family-based association study. J Med Genet 2006;43:798-803
  • Mani A, Radhakrishnan J, Wang H, LRP6 mutation in a family with early coronary disease and metabolic risk factors. Science 2007;315:1278-82
  • L'Episcopo F, Serapide MF, Tirolo C, A Wnt1 regulated Frizzled-1/beta-Catenin signaling pathway as a candidate regulatory circuit controlling mesencephalic dopaminergic neuron-astrocyte crosstalk: therapeutical relevance for neuron survival and neuroprotection. Mol Neurodegener 2011;6:49
  • Sun J, Jin T. Both Wnt and mTOR signaling pathways are involved in insulin-stimulated proto-oncogene expression in intestinal cells. Cell Signal 2008;20:219-29
  • Berschneider B, Konigshoff M. WNT1 inducible signaling pathway protein 1 (WISP1): a novel mediator linking development and disease. Int J Biochem Cell Biol 2010;43:306-9
  • Macsai CE, Georgiou KR, Foster BK, Microarray expression analysis of genes and pathways involved in growth plate cartilage injury responses and bony repair. Bone 2012;50:1081-91
  • Wang S, Chong ZZ, Shang YC, Wnt1 inducible signaling pathway protein 1 (WISP1) blocks neurodegeneration through phosphoinositide 3 kinase/Akt1 and apoptotic mitochondrial signaling involving Bad, Bax, Bim, and Bcl-xL. Curr Neurovasc Res 2012;9:20-31
  • Lim HW, Lee JE, Shin SJ, Identification of differentially expressed mRNA during pancreas regeneration of rat by mRNA differential display. Biochem Biophys Res Commun 2002;299:806-12
  • Coca SG, Ismail-Beigi F, Haq N, Role of intensive glucose control in development of renal end points in type 2 diabetes mellitus: systematic review and meta-analysis intensive glucose control in type 2 diabetes. Arch Intern Med 2012;172:761-9
  • Kruger DF. Managing diabetes from first diagnosis: choosing well-tolerated therapies with durability. Diabetes Educ 2012;38:4S-11S
  • Canto C, Houtkooper RH, Pirinen E, The NAD(+) Precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab 2012;15:838-47
  • Hedley BD, Allan AL, Xenocostas A. The role of erythropoietin and erythropoiesis-stimulating agents in tumor progression. Clin Cancer Res 2011;17:6373-80
  • Maiese K, Chong ZZ, Hou J, The "O" class: crafting clinical care with FoxO transcription factors. Adv Exp Med Biol 2009;665:242-60
  • Maiese K, Li F, Chong ZZ. Erythropoietin and cancer. JAMA 2005;293:1858-9
  • Miyashita K, Tojo A, Kimura K, Blood pressure response to erythropoietin injection in hemodialysis and predialysis patients. Hypertens Res 2004;27:79-84
  • Novak BL, Force RW, Mumford BT, Erythropoietin-induced hypertensive urgency in a patient with chronic renal insufficiency: case report and review of the literature. Pharmacotherapy 2003;23:265-9
  • Kim JE, Chen J, Lou Z. DBC1 is a negative regulator of SIRT1. Nature 2008;451:583-6
  • Curran MP. Everolimus: in patients with subependymal giant cell astrocytoma associated with tuberous sclerosis complex. Paediatr Drugs 2012;14:51-60
  • Krueger DA, Care MM, Holland K, Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med 2010;363:1801-11
  • Magri L, Cambiaghi M, Cominelli M, Sustained activation of mTOR pathway in embryonic neural stem cells leads to development of tuberous sclerosis complex-associated lesions. Cell Stem Cell 2011;9:447-62
  • Santini E, Heiman M, Greengard P, Inhibition of mTOR signaling in Parkinson's disease prevents L-DOPA-induced dyskinesia. Science signaling 2009;2:ra36
  • Marchand A, Atassi F, Gaaya A, The Wnt/beta-catenin pathway is activated during advanced arterial aging in humans. Aging Cell 2011;10:220-32

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.