531
Views
52
CrossRef citations to date
0
Altmetric
Reviews

Multitarget ligands in antibacterial research: progress and opportunities

&
Pages 143-156 | Published online: 19 Dec 2012

Bibliography

  • Silver LL. Challenges of antibacterial discovery. Clin Microbiol Rev 2011;24:71-109
  • Walsh C. Molecular mechanisms that confer antibacterial drug resistance. Nature 2000;406:775-81
  • Silver LL. Polypharmacology as an emerging trend in antibacterial discovery in Polypharmacology in drug discovery. John Wiley & Sons, Inc., Hoboken, New Jersey; 2012. p. 167-202
  • Morphy R, Rankovic Z. Designed multiple ligands. An emerging drug discovery paradigm. J Med Chem 2005;48:6523-43
  • Metz JT, Hajduk PJ. Rational approaches to targeted polypharmacology: creating and navigating protein-ligand interaction networks. Curr Opin Chem Biol 2010;14:498-504
  • Fischbach MA. Combination therapies for combating antimicrobial resistance. Curr Opin Microbiol 2011;14:519-23
  • Morphy R, Kay C, Rankovic Z. From magic bullets to designed multiple ligands. Drug Discov Today 2004;9:641-51
  • Morphy R, Rankovic Z. Design of multitarget ligands in Lead generation approaches in drug discovery. John Wiley & Sons, Inc., Hoboken, New Jersey; 2010. p. 141-64
  • Pokrovskaya V, Baasov T. Dual-acting hybrid antibiotics: a promising strategy to combat bacterial resistance. Exp Opin Drug Discov 2010;5:883-902
  • Morphy R, Rankovic Z. The physicochemical challenges of designing multiple ligands. J Med Chem 2006;49:4961-70
  • Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA. Carbapenems: past, present, and future. Antimicrob Agents Chemother 2011;55:4943-60
  • Drlica K, Hiasa H, Kerns R, Quinolones: action and resistance updated. Curr Top Med Chem 2009;9:981-98
  • Sanyal G, Doig P. Bacterial DNA replication enzymes as targets for antibacterial drug discovery. Expert Opin Drug Discov 2012;7:327-39
  • Collin F, Karkare S, Maxwell A. Exploiting bacterial DNA gyrase as a drug target: current state and perspectives. Appl Microbiol Biotechnol 2011;92:479-97
  • Butler MS, Cooper MA. Antibiotics in the clinical pipeline in 2011. J Antibiot 2011;64:413-25
  • Pucci MJ, Podos SD, Thanassi JA, In vitro and in vivo profiles of ACH-702, an isothiazoloquinolone, against bacterial pathogens. Antimicrob Agents Chemother 2011;55:2860-71
  • http://www.achillion.com/ACH_702
  • Aravind L, Leipe DD, Koonin EV. Toprim – a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. Nucleic Acids Res 1998;26:4205-13
  • Kim HY, Wiles JA, Wang Q, Exploration of the activity of 7-pyrrolidino-8-methoxyisothiazoloquinolones against methicillin-resistant Staphylococcus aureus (MRSA). J Med Chem 2011;54:3268-82
  • Heim J. Safe drugs for bad bugs: EV-035, a new topoisomerase inhibitor. Available from: http://www.evolva.com/pharmaceuticals/ev-035
  • Evolva SA. 2-Pyridone antimicrobial compositions. WO2012047487; 2012
  • Li Q, Mitscher LA, Shen LL. The 2-pyridone antibacterial agents: bacterial topoisomerase inhibitors. Med Res Rev 2000;20:231-93
  • Black MT, Stachyra T, Platel D, Mechanism of action of the antibiotic NXL101, a novel nonfluoroquinolone inhibitor of bacterial type II topoisomerases. Antimicrob Agents Chemother 2008;52:3339-49
  • Miles TJ, Barfoot C, Brooks G, Novel cyclohexyl-amides as potent antibacterials targeting bacterial type IIA topoisomerases. Bioorg Med Chem Lett 2011;21:7483-8
  • Miles TJ, Axten JM, Barfoot C, Novel amino-piperidines as potent antibacterials targeting bacterial type IIA topoisomerases. Bioorg Med Chem Lett 2011;21:7489-95
  • Geng B, Comita-Prevoir J, Eyermann CJ, Exploring Left-hand-side substitutions in the benzoxazinone series of 4-amino-piperidine bacterial type IIa topoisomerase inhibitors. Bioorg Med Chem Lett 2011;21:5432-5
  • Reck F, Alm R, Brassil P, Novel N-linked aminopiperidine inhibitors of bacterial topoisomerase type II: broad-spectrum antibacterial agents with reduced hERG activity. J Med Chem 2011;54:7834-47
  • Reck F, Alm RA, Brassil P, Novel N-linked aminopiperidine inhibitors of bacterial topoisomerase type II with reduced pKa: antibacterial agents with an improved safety profile. J Med Chem 2012;55:6916-33
  • Wiles JA, Phadke AS, Bradbury BJ, Selenophene-containing inhibitors of type IIA bacterial topoisomerases. J Med Chem 2011;54:3418-25
  • Bax BD, Chan PF, Eggleston DS, Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature 2010;466:935-40
  • Widdowson K, Hennessy A. Advances in structure-based drug design of novel bacterial topoisomerase inhibitors. Future Med Chem 2010;2:1619-22
  • Wohlkonig A, Chan PF, Fosberry AP, Structural basis of quinolone inhibition of type IIA topoisomerases and target-mediated resistance. Nat Struct Mol Biol 2010;17:1152-3
  • Oblak M, Kotnik M, Solmajer T. Discovery and development of ATPase inhibitors of DNA gyrase as antibacterial agents. Curr Med Chem 2007;14:2033-47
  • Angehrn P, Goetschi E, Gmuender H, A new DNA gyrase inhibitor subclass of the cyclothialidine family based on a bicyclic dilactam-lactone scaffold. Synthesis and antibacterial properties. J Med Chem 2011;54:2207-24
  • Phillips JW, Goetz MA, Smith SK, Discovery of kibdelomycin, a potent new class of bacterial type II topoisomerase inhibitor by chemical-genetic profiling in Staphylococcus aureus. Chem Biol 2011;18:955-65
  • Hossion AM, Otsuka N, Kandahary RK, Design, synthesis, and biological evaluation of a novel series of quercetin diacylglucosides as potent anti-MRSA and anti-VRE agents. Bioorg Med Chem Lett 2010;20:5349-52
  • Hossion AM, Zamami Y, Kandahary RK, Quercetin diacylglycoside analogues showing dual inhibition of DNA gyrase and topoisomerase IV as novel antibacterial agents. J Med Chem 2011;54:3686-703
  • Cushnie TP, Lamb AJ. Antimicrobial activity of flavonoids. Int J Antimicrob Agents 2005;26:343-56
  • Boehm HJ, Boehringer M, Bur D, Novel inhibitors of DNA gyrase: 3D structure based biased needle screening, hit validation by biophysical methods, and 3D guided optimization. A promising alternative to random screening. J Med Chem 2000;43:2664-74
  • Charifson PS, Grillot AL, Grossman TH, Novel dual-targeting benzimidazole urea inhibitors of DNA gyrase and topoisomerase IV possessing potent antibacterial activity: intelligent design and evolution through the judicious use of structure-guided design and structure-activity relationships. J Med Chem 2008;51:5243-63
  • Grossman TH, Bartels DJ, Mullin S, Dual targeting of GyrB and ParE by a novel aminobenzimidazole class of antibacterial compounds. Antimicrob Agents Chemother 2007;51:657-66
  • Wei Y, Letiran A. PDB accession code: 3FV5
  • Vertex pharmaceticals incorporated. Pyrimidine gyrase and topoisomerase IV inhibitors. WO2012097269; 2012
  • East SP, Czaplewski LG, Haydon DJ. Ethyl urea inhibitors of the bacterial type II topoisomerase DNA gyrase (GyrB) and topoisomerase IV (ParE) in designing multi-target drugs. RSC Publishing, Cambridge; 2012. p. 335-52
  • Palmer J. Dual-targeting DNA supercoiling inhibitors for the treatment of bacterial infections. Presented at the challenges of antibacterial drug development; San Diego; 2012
  • Manchester JI, Dussault DD, Rose JA, Discovery of a novel azaindole class of antibacterial agents targeting the ATPase domains of DNA gyrase and topoisomerase IV. Bioorg Med Chem Lett 2012;22:5150-6
  • Manchester JI, Buurman ET, Bisacchi GS, McLaughlin RE. Molecular determinants of AcrB-mediated bacterial efflux implications for drug discovery. J Med Chem 2012;55:2532-7
  • Finn J. The discovery of potent dual targeting pyrrolopyrimidine inhibitors of bacterial DNA gyrase B and topoisomerase IV with broad spectrum antibacterial activity. Presented at the challenges of antibacterial drug development; San Diego; 2012
  • Bugg TD, Braddick D, Dowson CG, Roper DI. Bacterial cell wall assembly: still an attractive antibacterial target. Trends Biotechnol 2011;29:167-73
  • Gautam A, Vyas R, Tewari R. Peptidoglycan biosynthesis machinery: a rich source of drug targets. Crit Rev Biotechnol 2011;31:295-336
  • Silver LL. Does the cell wall of bacteria remain a viable source of targets for novel antibiotics? Biochem Pharmacol 2006;71:996-1005
  • Smith CA. Structure, function and dynamics in the mur family of bacterial cell wall ligases. J Mol Biol 2006;362:640-55
  • Perdih A, Kovač A, Wolber G, Discovery of novel benzene 1,3-dicarboxylic acid inhibitors of bacterial MurD and MurE ligases by structure-based virtual screening approach. Bioorg Med Chem Lett 2009;19:2668-73
  • Tomašić T, Zidar N, Rupnik V, Synthesis and biological evaluation of new glutamic acid-based inhibitors of MurD ligase. Bioorg Med Chem Lett 2009;19:153-7
  • Tomašić T, Šink R, Zidar N, Dual inhibitor of MurD and MurE ligases from Escherichia coli and Staphylococcus aureus. ACS Med Chem Lett 2012;3:626-30
  • Tomašić T, Zidar N, Kovač A, 5-Benzylidenethiazolidin-4-ones as multitarget inhibitors of bacterial Mur ligases. Chem Med Chem 2010;5:286-95
  • Tomašić T, Peterlin Mašič L. Rhodanine as a scaffold in drug discovery: a critical review of its biological activities and mechanisms of target modulation. Expert Opin Drug Discov 2012;7:549-60
  • Mendgen T, Steuer C, Klein CD. Privileged scaffolds or promiscuous binders: a comparative study on rhodanines and related heterocycles in medicinal chemistry. J Med Chem 2012;55:743-53
  • Baell JB, Holloway GA. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 2010;53:2719-40
  • Tomašić T, Kovač A, Klebe G, Virtual screening for potential inhibitors of bacterial MurC and MurD ligases. J Mol Model 2012;18:1063-72
  • Turk S, Verlaine O, Gerards T, New noncovalent inhibitors of penicillin-binding proteins from penicillin-resistant bacteria. PLoS One 2011;6:e19418
  • Shilabin AG, Dzhekieva L, Misra P, 4-Quinolones as noncovalent Inhibitors of high molecular mass penicillin-binding proteins. ACS Med Chem Lett 2012;3:592-5
  • Woon ECY, Zervosen A, Sauvage E, Structure guided development of potent reversibly binding penicillin binding protein inhibitors. ACS Med Chem Lett 2011;2:219-23
  • Contreras-Martel C, Amoroso A, Woon EC, Structure-guided design of cell wall biosynthesis inhibitors that overcome β-lactam resistance in Staphylococcus aureus (MRSA). ACS Chem Biol 2011;6:943-51
  • Zervosen A, Bouillez A, Herman A, Synthesis and evaluation of boronic acids as inhibitors of penicillin binding proteins of classes A, B and C. Bioorg Med Chem 2012;20:3915-24
  • Zhang J, Zhang L, Li X, Xu W. UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) inhibitors: a new class of antibacterial agents. Curr Med Chem 2012;19:2038-50
  • Achaogen announces all objectives met in Phase 2 plazomicin complicated urinary tract infections study and start of first-in-human study with ACHN-975. Available from: http://www.achaogen.com/news/148
  • Jenkins RJ, Dotson GD. Dual targeting antibacterial peptide inhibitor of early lipid A biosynthesis. ACS Chem Biol 2012;7:1170-7
  • Wang J, Kodali S, Lee SH. Discovery of platencin, a dual FabF and FabH inhibitor with in vivo antibiotic properties. Proc Natl Acad Sci USA 2007;104:7612-16
  • Ali A, Taylor GE. Development of DNA polymerase IIIC inhibitors for the treatment of Gram-positive bacterial infections. Expert Opin Ther Patents 2005;15:947-53
  • Bennett BC, Xu H, Simmerman RF, Crystal structure of the anthrax drug target, Bacillus anthracis dihydrofolate reductase. J Med Chem 2007;50:4374-81
  • Škedelj V, Tomašić T, Mašič LP, Zega A. ATP-binding site of bacterial enzymes as a target for antibacterial drug design. J Med Chem 2011;54:915-29
  • Keiser MJ, Roth BL, Armbruster BN, Relating protein pharmacology by ligand chemistry. Nat Biotechnol 2007;25:197-206
  • Durrant JD, Amaro RE, Xie L, A multidimensional strategy to detect polypharmacological targets in the absence of structural and sequence homology. PLoS Comput Biol 2010;6:e1000648
  • Morphy R. Selectively nonselective kinase inhibition: striking the right balance. J Med Chem 2010;53:1413-37

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.