425
Views
47
CrossRef citations to date
0
Altmetric
Reviews

Designing drugs with multi-target activity: the next step in the treatment of neurodegenerative disorders

& , DSc DTE
Pages 115-129 | Published online: 12 Dec 2012

Bibliography

  • Geldenhuys WJ, Youdim MB, Carroll RT, Van der Schyf CJ. The emergence of designed multiple ligands for neurodegenerative disorders. Prog Neurobiol 2011;94(4):347-59
  • Youdim MB, Geldenhuys WJ, Van der Schyf CJ. Why should we use multifunctional neuroprotective and neurorestorative drugs for Parkinson's disease? Parkinsonism Relat Disord 2007;13(Suppl 3):S281-91
  • Van der Schyf CJ, Gal S, Geldenhuys WJ, Youdim MB. Multifunctional neuroprotective drugs targeting monoamine oxidase inhibition, iron chelation, adenosine receptors, and cholinergic and glutamatergic action for neurodegenerative diseases. Expert Opin Investig Drugs 2006;15(8):873-86
  • Morphy R, Kay C, Rankovic Z. From magic bullets to designed multiple ligands. Drug Discov Today 2004;9(15):641-51
  • Gurwitz JH. Polypharmacy: a new paradigm for quality drug therapy in the elderly? Arch Intern Med 2004;164(18):1957-9
  • Chung KF, Caramori G, Adcock IM. Inhaled corticosteroids as combination therapy with beta-adrenergic agonists in airways disease: present and future. Eur J Clin Pharmacol 2009;65(9):853-71
  • Chung KF, Adcock IM. Combination therapy of long-acting beta2-adrenoceptor agonists and corticosteroids for asthma. Treat Respir Med 2004;3(5):279-89
  • Roth BL, Sheffler DJ, Kroeze WK. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov 2004;3(4):353-9
  • Caudle WM, Guillot TS, Lazo CR, Miller GW. Industrial toxicants and Parkinson's disease. Neurotoxicology 2012;33(2):178-88
  • Raicevic N, Mladenovic A, Perovic M, The mechanisms of 6-hydroxydopamine-induced astrocyte death. Ann NY Acad Sci 2005;1048:400-5
  • DeToma AS, Salamekh S, Ramamoorthy A, Lim MH. Misfolded proteins in Alzheimer's disease and type II diabetes. Chem Soc Rev 2012;41(2):608-21
  • Lei P, Ayton S, Finkelstein DI, Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. Nat Med 2012;18(2):291-5
  • Bush AI. The metal theory of Alzheimer's disease. J Alzheimers Dis 2012: in press.
  • Xie L, Zheng W, Xin N, Ebselen inhibits iron-induced tau phosphorylation by attenuating DMT1 up-regulation and cellular iron uptake. Neurochem Int 2012;61(3):334-40
  • Stankowski JN, Dawson VL, Dawson TM. Ironing out tau's role in parkinsonism. Nat Med 2012;18(2):197-8
  • Martin LJ. Biology of mitochondria in neurodegenerative diseases. Prog Mol Biol Transl Sci 2012;107:355-415
  • Lezi E, Swerdlow RH. Mitochondria in neurodegeneration. Adv Exp Med Biol 2012;942:269-86
  • Sheng ZH, Cai Q. Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat Rev Neurosci 2012;13(2):77-93
  • Joubert J, Geldenhuys WJ, Van der Schyf CJ, Polycyclic cage structures as lipophilic scaffolds for neuroactive drugs. ChemMedChem 2012;7(3):375-84
  • Geldenhuys WJ, Malan SF, Bloomquist JR, Pharmacology and structure-activity relationships of bioactive polycyclic cage compounds: a focus on pentacycloundecane derivatives. Med Res Rev 2005;25(1):21-48
  • Schwab RS, England AC Jr, Poskanzer DC, Young RR. Amantadine in the treatment of Parkinson's disease. JAMA 1969;208(7):1168-70
  • Marchand AP. Chemistry. Diamondoid hydrocarbons--delving into nature's bounty. Science 2003;299(5603):52-3
  • Danysz W, Parsons CG. Alzheimer's disease, beta-amyloid, glutamate, NMDA receptors and memantine - searching for the connections. Br J Pharmacol 2012;167(2):324-52
  • Lipton SA. The molecular basis of memantine action in Alzheimer's disease and other neurologic disorders: low-affinity, uncompetitive antagonism. Curr Alzheimer Res 2005;2(2):155-65
  • Marchand AP, Allen RW. Improved synthesis of pentacyclo[5.4.0.02,6.03,10.05,9]undecane. J Org Chem 1979; 39,1596-7
  • Malan SF, Van der Walt JJ, Van der Schyf CJ. Structure-activity relationships of polycyclic aromatic amines with calcium channel blocking activity. Arch Pharm (Weinheim) 2000;333(1):10-16
  • Malan SF, Dyason K, Wagenaar B, The structure and ion channel activity of 6-benzylamino-3-hydroxyhexa-cyclo[6.5.0.03,7.04,12.05,10.09,13]tridecane. Arch Pharm (Weinheim) 2003;336(2):127-33
  • Geldenhuys WJ, Malan SF, Bloomquist JR, Van der Schyf CJ. Structure-activity relationships of pentacycloundecylamines at the N-methyl-d-aspartate receptor. Bioorg Med Chem 2007;15(3):1525-32
  • Parsons CG, Danysz W, Quack G. Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist--a review of preclinical data. Neuropharmacology 1999;38(6):735-67
  • Liu X, Nuwayhid S, Christie MJ, Trishomocubanes: novel sigma-receptor ligands modulate amphetamine-stimulated [3H]dopamine release. Eur J Pharmacol 2001;422(1-3):39-45
  • Banister SD, Moussa IA, Jordan MJ, Oxo-bridged isomers of aza-trishomocubane sigma (sigma) receptor ligands: synthesis, in vitro binding, and molecular modeling. Bioorg Med Chem Lett 2010;20(1):145-8
  • Kassiou M, Nguyen VH, Knott R, Trishomocubanes, a new class of selective and high affinity ligands for the simga binding site. Bioorg Med Chem Lett 1996;6:595-600
  • Kornhuber J, Schoppmeyer K, Riederer P. Affinity of 1-aminoadamantanes for the sigma binding site in post-mortem human frontal cortex. Neurosci Lett 1993;163(2):129-31
  • Nguyen VH, Kassiou M, Johnston GA, Christie MJ. Comparison of binding parameters of sigma 1 and sigma 2 binding sites in rat and guinea pig brain membranes: novel subtype-selective trishomocubanes. Eur J Pharmacol 1996;311(2-3):233-40
  • Nguyen VH, Mardon K, Kassiou M, Christie MD. In vitro and in vivo characterisation of [3H]ANSTO-14 binding to the sigma 1 binding sites. Nucl Med Biol 1999;26(2):209-15
  • Liu X, Banister SD, Christie MJ, Trishomocubanes: novel sigma ligands modulate cocaine-induced behavioural effects. Eur J Pharmacol 2007;555(1):37-42
  • Liu X, Kassiou M, Christie M, Hambley TW. Trishomocubanes: requirements for sigma receptor binding and subtype selectivity. Aust J Chem 2001;54:157-63
  • Liu X, Mattner F, Katsifis A, Influence of trishomocubanes on sigma receptor binding of N-(1-benzyl-piperidin-4-yl)-4-[123I]iodobenzamide in vivo in the rat brain. Med Chem 2005;1(1):31-8
  • Geldenhuys WJ, Bishayee A, Darvesh AS, Carroll RT. Natural products of dietary origin as lead compounds in virtual screening and drug design. Curr Pharm Biotechnol 2012;13(1):117-24
  • Park SJ, Ahmad F, Philp A, Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 2012;148(3):421-33
  • Hindo SS, Mancino AM, Braymer JJ, Small molecule modulators of copper-induced Abeta aggregation. J Am Chem Soc 2009;131(46):16663-5
  • Kung HF, Lee CW, Zhuang ZP, Novel stilbenes as probes for amyloid plaques. J Am Chem Soc 2001;123(50):12740-1
  • Kung MP, Hou C, Zhuang ZP, IMPY: an improved thioflavin-T derivative for in vivo labeling of beta-amyloid plaques. Brain Res 2002;956(2):202-10
  • Braymer JJ, Choi JS, DeToma AS, Development of bifunctional stilbene derivatives for targeting and modulating metal-amyloid-beta species. Inorg Chem 2011;50(21):10724-34
  • Choi JS, Braymer JJ, Nanga RP, Design of small molecules that target metal-A{beta} species and regulate metal-induced A{beta} aggregation and neurotoxicity. Proc Natl Acad Sci USA 2010;107(51):21990-5
  • He X, Park HM, Hyung SJ, Exploring the reactivity of flavonoid compounds with metal-associated amyloid-beta species. Dalton Trans 2012;41(21):6558-66
  • DeToma AS, Choi JS, Braymer JJ, Lim MH. Myricetin: a naturally occurring regulator of metal-induced amyloid-beta aggregation and neurotoxicity. ChemBioChem 2011;12(8):1198-201
  • Youdim MB, Edmondson D, Tipton KF. The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 2006;7(4):295-309
  • Blanchet J, Longpre F, Bureau G, Resveratrol, a red wine polyphenol, protects dopaminergic neurons in MPTP-treated mice. Prog Neuropsychopharmacol Biol Psychiatry 2008;32(5):1243-50
  • Lu KT, Ko MC, Chen BY, Neuroprotective effects of resveratrol on MPTP-induced neuron loss mediated by free radical scavenging. J Agric Food Chem 2008;56(16):6910-13
  • Geldenhuys WJ, Ko KS, Stinnett H, Identification of multifunctional small molecule-based reversible monoamine oxidase inhibitors. Med Chem Commun 2011;2:1099-103
  • Postuma RB, Lang AE, Munhoz RP, Caffeine for treatment of Parkinson disease: a randomized controlled trial. Neurology 2012; 79(7): 651-8.
  • Jacobson KA, Gao ZG. Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 2006;5(3):247-64
  • Gao ZG, Jacobson KA. Emerging adenosine receptor agonists: an update. Expert Opin Emerg Drugs 2011;16(4):597-602
  • Muller CE, Sauer R, Geis U, Aza-analogs of 8-styrylxanthines as A2A-adenosine receptor antagonists. Arch Pharm(Weinheim) 1997;330(6):181-9
  • Muller CE, Geis U, Hipp J, Synthesis and structure-activity relationships of 3,7-dimethyl-1-propargylxanthine derivatives, A2A-selective adenosine receptor antagonists. J Med Chem 1997;40(26):4396-405
  • Petzer JP, Steyn S, Castagnoli KP, Inhibition of monoamine oxidase B by selective adenosine A2A receptor antagonists. Bioorg Med Chem 2003;11(7):1299-310
  • Van den Berg D, Zoellner KR, Ogunrombi MO, Inhibition of monoamine oxidase B by selected benzimidazole and caffeine analogues. Bioorg Med Chem 2007;15(11):3692-702
  • Binda C, Aldeco M, Geldenhuys WJ, Molecular insights into human monoamine oxidase B inhibition by the glitazone anti-diabetes drugs. ACS Med Chem Lett 2011;3(1):39-42
  • Pretorius J, Malan SF, Castagnoli N Jr, Dual inhibition of monoamine oxidase B and antagonism of the adenosine A(2A) receptor by (E,E)-8-(4-phenylbutadien-1-yl)caffeine analogues. Bioorg Med Chem 2008;16(18):8676-84
  • Gillies PS, Dunn CJ. Pioglitazone. Drugs 2000;60(2):333-43; discussion 344-335
  • Mendgen T, Steuer C, Klein CD. Privileged scaffolds or promiscuous binders: a comparative study on rhodanines and related heterocycles in medicinal chemistry. J Med Chem 2012;55(2):743-53
  • White AT, Murphy AN. Administration of thiazolidinediones for neuroprotection in ischemic stroke: a pre-clinical systematic review. J Neurochem 2010;115(4):845-53
  • Culman J, Zhao Y, Gohlke P, Herdegen T. PPAR-gamma: therapeutic target for ischemic stroke. Trends Pharmacol Sci 2007;28(5):244-9
  • Luo Y, Yin W, Signore AP, Neuroprotection against focal ischemic brain injury by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. J Neurochem 2006;97(2):435-48
  • Tureyen K, Kapadia R, Bowen KK, Peroxisome proliferator-activated receptor-gamma agonists induce neuroprotection following transient focal ischemia in normotensive, normoglycemic as well as hypertensive and type-2 diabetic rodents. J Neurochem 2007;101(1):41-56
  • Laloux C, Petrault M, Lecointe C, Differential susceptibility to the PPAR-gamma agonist pioglitazone in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 6-hydroxydopamine rodent models of Parkinson's disease. Pharmacol Res 2012;65(5):514-22
  • Breidert T, Callebert J, Heneka MT, Protective action of the peroxisome proliferator-activated receptor-gamma agonist pioglitazone in a mouse model of Parkinson's disease. J Neurochem 2002;82(3):615-24
  • Dehmer T, Heneka MT, Sastre M, Protection by pioglitazone in the MPTP model of Parkinson's disease correlates with I kappa B alpha induction and block of NF kappa B and iNOS activation. J Neurochem 2004;88(2):494-501
  • Hunter RL, Dragicevic N, Seifert K, Inflammation induces mitochondrial dysfunction and dopaminergic neurodegeneration in the nigrostriatal system. J Neurochem 2007;100(5):1375-86
  • Kumar P, Kaundal RK, More S, Sharma SS. Beneficial effects of pioglitazone on cognitive impairment in MPTP model of Parkinson's disease. Behav Brain Res 2009;197(2):398-403
  • Quinn LP, Crook B, Hows ME, The PPARgamma agonist pioglitazone is effective in the MPTP mouse model of Parkinson's disease through inhibition of monoamine oxidase B. Br J Pharmacol 2008;154(1):226-33
  • Geldenhuys WJ, Darvesh AS, Funk MO, Identification of novel monoamine oxidase B inhibitors by structure-based virtual screening. Bioorg Med Chem Lett 2010;20(17):5295-8
  • Montanari R, Saccoccia F, Scotti E, Crystal structure of the peroxisome proliferator-activated receptor gamma (PPARgamma) ligand binding domain complexed with a novel partial agonist: a new region of the hydrophobic pocket could be exploited for drug design. J Med Chem 2008;51(24):7768-76
  • Cronet P, Petersen JF, Folmer R, Structure of the PPARalpha and -gamma ligand binding domain in complex with AZ 242; ligand selectivity and agonist activation in the PPAR family. Structure 2001;9(8):699-706
  • Gampe RT Jr, Montana VG, Lambert MH, Asymmetry in the PPARgamma/RXRalpha crystal structure reveals the molecular basis of heterodimerization among nuclear receptors. Mol Cell 2000;5(3):545-55
  • Xu HE, Lambert MH, Montana VG, Structural determinants of ligand binding selectivity between the peroxisome proliferator-activated receptors. Proc Natl Acad Sci USA 2001;98(24):13919-24
  • Weinstock M, Luques L, Bejar C, Shoham S. Ladostigil, a novel multifunctional drug for the treatment of dementia co-morbid with depression. J Neural Transm Suppl 2006(70):443-6
  • Weinreb O, Amit T, Bar-Am O, The neuroprotective mechanism of action of the multimodal drug ladostigil. Front Biosci 2008;13:5131-7
  • Youdim MB, Amit T, Bar-Am O, Implications of co-morbidity for etiology and treatment of neurodegenerative diseases with multifunctional neuroprotective-neurorescue drugs; ladostigil. Neurotox Res 2006;10(3-4):181-92
  • Polinsky RJ. Clinical pharmacology of rivastigmine: a new-generation acetylcholinesterase inhibitor for the treatment of Alzheimer's disease. Clin Ther 1998;20(4):634-47
  • Heikkila RE, Duvoisin RC, Finberg JP, Youdim MB. Prevention of MPTP-induced neurotoxicity by AGN-1133 and AGN-1135, selective inhibitors of monoamine oxidase-B. Eur J Pharmacol 1985;116(3):313-17
  • Youdim MB, Gross A, Finberg JP. Rasagiline [N-propargyl-1R(+)-aminoindan], a selective and potent inhibitor of mitochondrial monoamine oxidase B. Br J Pharmacol 2001;132(2):500-6
  • Weinreb O, Amit T, Bar-Am O, Youdim MB. Rasagiline: a novel anti-Parkinsonian monoamine oxidase-B inhibitor with neuroprotective activity. Prog Neurobiol 2010;92(3):330-44
  • Magyar K, Palfi M, Tabi T, Pharmacological aspects of (-)-deprenyl. Curr Med Chem 2004;11(15):2017-31
  • Magyar K, Szende B, Jenei V, R-deprenyl: pharmacological spectrum of its activity. Neurochem Res 2010;35(12):1922-32
  • Weinreb O, Amit T, Bar-Am O, Involvement of multiple survival signal transduction pathways in the neuroprotective, neurorescue and APP processing activity of rasagiline and its propargyl moiety. J Neural Transm Suppl 2006(70):457-65
  • Weinreb O, Amit T, Bar-Am O, Novel neuroprotective mechanism of action of rasagiline is associated with its propargyl moiety: interaction of Bcl-2 family members with PKC pathway. Ann NY Acad Sci 2005;1053:348-55
  • Bar-Am O, Weinreb O, Amit T, Youdim MB. Regulation of Bcl-2 family proteins, neurotrophic factors, and APP processing in the neurorescue activity of propargylamine. FASEB J 2005;19(13):1899-901
  • Weinstock M, Bejar C, Wang RH, TV3326, a novel neuroprotective drug with cholinesterase and monoamine oxidase inhibitory activities for the treatment of Alzheimer's disease. J Neural Transm Suppl 2000(60):157-69
  • Zhou X, Patel AR, Perez F, Jurivich DA. Acteylcholinesterase inhibitor rivastigmine enhances cellular defenses in neuronal and macrophage-like cell lines. Transl Res 2009;153(3):132-41
  • Youdim MB, Weinstock M. Molecular basis of neuroprotective activities of rasagiline and the anti-Alzheimer drug TV3326 [(N-propargyl-(3R)aminoindan-5-yl)-ethyl methyl carbamate]. Cell Mol Neurobiol 2001;21(6):555-73
  • Bar-Am O, Amit T, Weinreb O, Propargylamine containing compounds as modulators of proteolytic cleavage of amyloid-beta protein precursor: involvement of MAPK and PKC activation. J Alzheimers Dis 2010;21(2):361-71
  • Bar-Am O, Amit T, Youdim MB. Aminoindan and hydroxyaminoindan, metabolites of rasagiline and ladostigil, respectively, exert neuroprotective properties in vitro. J Neurochem 2007;103(2):500-8
  • Bar-Am O, Yogev-Falach M, Amit T, Regulation of protein kinase C by the anti-Parkinson drug, MAO-B inhibitor, rasagiline and its derivatives, in vivo. J Neurochem 2004;89(5):1119-25
  • Youdim MB, Amit T, Bar-Am O, Amyloid processing and signal transduction properties of antiparkinson-antialzheimer neuroprotective drugs rasagiline and TV3326. Ann N Y Acad Sci 2003;993:378-86; discussion 387-393
  • Bolognesi ML, Banzi R, Bartolini M, Novel class of quinone-bearing polyamines as multi-target-directed ligands to combat Alzheimer's disease. J Med Chem 2007;50(20):4882-97
  • Bolognesi ML, Cavalli A, Melchiorre C. Memoquin: a multi-target-directed ligand as an innovative therapeutic opportunity for Alzheimer's disease. Neurotherapeutics 2009;6(1):152-62
  • Bolognesi ML, Rosini M, Andrisano V, MTDL design strategy in the context of Alzheimer's disease: from lipocrine to memoquin and beyond. Curr Pharm Des 2009;15(6):601-13
  • Mancini F, Bolognesi ML, Melchiorre C, Andrisano V. Investigation of the photostability properties of memoquin, a quinone derivative for the treatment of Alzheimer's disease. J Pharm Biomed Anal 2009;50(2):164-70
  • Bolognesi ML, Matera R, Minarini A, Alzheimer's disease: new approaches to drug discovery. Curr Opin Chem Biol 2009;13(3):303-8
  • Bolognesi ML, Bartolini M, Rosini M, Structure-activity relationships of memoquin: influence of the chain chirality in the multi-target mechanism of action. Bioorg Med Chem Lett 2009;19(15):4312-15
  • Simoni E, Bergamini C, Fato R, Polyamine conjugation of curcumin analogues toward the discovery of mitochondria-directed neuroprotective agents. J Med Chem 2010;53(19):7264-8
  • Morphy R, Rankovic Z. Designing multiple ligands - medicinal chemistry strategies and challenges. Curr Pharm Des 2009;15(6):587-600
  • Morphy R, Rankovic Z. Designed multiple ligands. An emerging drug discovery paradigm. J Med Chem 2005;48(21):6523-43
  • Morphy R, Rankovic Z. The physicochemical challenges of designing multiple ligands. J Med Chem 2006;49(16):4961-70
  • Morphy R. The challenges of multi-target lead optomization. In: Morphy R, Harris CJ, editors. Designing multi-target drugs. RSC Drug Discovery; Cambridge UK: 2012. p. 141-54
  • Jacobson KA, Xie R, Young L, A novel pharmacological approach to treating cardiac ischemia. Binary conjugates of A1 and A3 adenosine receptor agonists. J Biol Chem 2000;275(39):30272-9
  • Pardridge WM. Blood-brain barrier delivery. Drug Discov Today 2007;12(1-2):54-61
  • Kemp JA, McKernan RM. NMDA receptor pathways as drug targets. Nat Neurosci 2002;5(Suppl):1039-42
  • Gaasch JA, Geldenhuys WJ, Lockman PR, Voltage-gated calcium channels provide an alternate route for iron uptake in neuronal cell cultures. Neurochem Res 2007;32(10):1686-93
  • Gaasch JA, Lockman PR, Geldenhuys WJ, Brain iron toxicity: differential responses of astrocytes, neurons, and endothelial cells. Neurochem Res 2007;32(7):1196-208
  • Sian-Hulsmann J, Mandel S, Youdim MB, Riederer P. The relevance of iron in the pathogenesis of Parkinson's disease. J Neurochem 2011;118(6):939-57
  • Zecca L, Youdim MB, Riederer P, Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 2004;5(11):863-73

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.