567
Views
57
CrossRef citations to date
0
Altmetric
Reviews

The discovery and development of cyclooxygenase-2 inhibitors as potential anticancer therapies

&

Bibliography

  • Baron JA, Cole BF, Sandler RS, et al. A randomized trial of aspirin to prevent colorectal adenomas. N Engl J Med 2003;348:891-9
  • Benamouzig R, Deyra J, Martin A, et al. Daily soluble aspirin and prevention of colorectal adenoma recurrence: one year results of the APACC trial. Gastroenterology 2003;125:328-36
  • Sandler RS, Halabi S, Baron JA, et al. A randomized trial of aspirin to prevent colorectal adenoma in patient with previous colorectal cancer. N Engl J Med 2003;348:883-90
  • Chan AT. Aspirin, non-steroidal anti-inflammatory drugs, and colorectal neoplasia: future challenges in chemoprevention. Cancer Causes Control 2003;14:413-18
  • Chan AT, Ogino S, Fuchs C. Aspirin and the risk of colorectal cancer in relation to expression of COX-2. N Engl J Med 2007;356(21):2131-42
  • Kopp E, Ghosh S. Inhibition of NF-kappa B by sodium salicylate and aspirin. Science 1994;265:956-9
  • Schwenger P, Bellosta P, Vietor I, et al. sodium salicylate induces apoptosis via p38 mitogen-activated protein kinase but inhibits tumor necrosis factor induced c-Jun N-terminal kinase/stress activated protein kinase activation. Proc Natl Acad Sci USA 1997;94:2869-73
  • Martinez ME, O'Brien TG, Flutz KE, et al. Pronounced reduction in adenoma recurrence associated with aspirin use and a polymorphism in the ornithine decarboxylase gene. Proc Natl Acad Sci USA 2003;100:7859-64
  • Mazhar D, Ang R, Waxman J. COX inhibitors and breast cancer. Br J Cancer 2006;94:346-50
  • Rahman M, Selvarjan K, Hassan MR, et al. Inhibition of COX-2 in colon cancer modulates tumor growth and MDR-1 expression to enhance tumor regression in therapy-refractor cancer in-vivo. Neoplasia 2012;14:624-33
  • Kucab J, Lee C, Chen CS, et al. Celecoxib analogues disrupt AKT signaling, which is commonly activated in primary breast tumor. Breast Cancer Res 2005;7:796-807
  • Subhashini J, Mahipal SVK, Reddanna P. Anti-proliferation and apoptotic effects of celecoxib in human chronic myeloid leukemia in-vitro. Cancer Lett 2005;224:31-43
  • Bocca C, Bozzo F, Bassignana A, et al. Antiproliferative effects of COX-2 inhibitor celecoxib on human breast cancer cell lines. Mol Cell Biochem 2011;350:59-70
  • Asting AG, Caren H, Andersson M. COX-2 gene expression in colon cancer tissue related to regulating factors and promoter methylation status. BMC Cancer 2011;11:238
  • Wang D, Xia D, DuBois RN. The crosstalk of PTGS2 and EFG signaling pathways in colorectal cancers. Cancers (Basel) 2011;3:3894-908
  • Ogino S, Lochhead P, Giovannucci E, et al. Discovery of colorectal cancer PIK3CA mutation as potential predictive biomarker: power and promise of molecular pathological epidemiology. Oncogene 2013. [Epub ahead of print]
  • Marnett L, DuBois RN. COX-2: a target for colon cancer prevention. Annu Rev Pharmacol Toxicol 2002;42:55-80
  • Brown JR, DuBois RN. COX-2: a molecular target for colorectal cancer prevention. J Clin Oncol 2005;23:2840-55
  • Mazhar D, Gillmore R, Waxman J. COX and cancer. Q J Med 2005;98:711-18
  • Baek SJ, Eling TE. Changes in gene expression contribute to cancer prevention by COX inhibitors. Prog Lipid Res 2006;45:1-16
  • Urade M. Cyclooxygenase (COX)-2 as a potent molecular target for prevention and therapy of oral cancer. Jpn Dent Sci Rev 2008;44:57-65
  • Sobolewski C, Cerella C, Dicato M, et al. The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int J cell Biol 2010. [Epub ahead of print]
  • Chia WK, Ali R, Toh HC. Aspirin as adjuvant therapy for colorectal cancer—reinterpreting paradigms. Nat Rev Clin Oncol 2012;9:561-70
  • Nishihara R, Lochhead P, Kuchiba A, et al. Aspirin Use and Risk of Colorectal Cancer According to BRAF Mutation Status. JAMA 2013;309(24):2563-71
  • Cebola L, Peinado MA. Epigenetic deregulation of the COX pathway in cancer. Prog lipid Res 2012;51(4):301-13
  • Kunzmann AT, Murray LJ, Cardwell CR, et al. PTGS2 (Cyclooxygenase-2) expression and survival among colorectal cancer patients: a systematic review. Cancer Epidemiol Biomarkers Prev 2013;22:1490-7
  • Williams CS, DuBois RN. Prostaglandin endoperoxide synthase: why two isoforms? Am J Physiol 1996;270(3 Pt 1):G393-400
  • Konturek PC, Kania J, Burnat G, et al. Prostaglandins as mediators of COX-2 derived carcinogenesis in gastrointestinal tract. J Physiol Pharmacol 2005;56(5):57-73
  • Gupta RA, Dubois RN. Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer 2001;1(1):11-21
  • Waskewich C, Blumenthal RD, Li H, et al. Celecoxib exhibits the greatest potency amongst cyclooxygenase (COX) inhibitors for growth inhibition of COX- 2-negative hematopoietic and epithelial cell lines. Cancer Res 2002;62(7):2029-33
  • Thun MJ, Henley SJ, Patrono C. Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J Natl Cancer Inst 2002;94(4):252-66
  • Wang D, Mann JR, Dubois RN. The role of prostaglandins and other eicosanoids in the gastrointestinal tract. Gastroenterology 2005;128(5):1445-61
  • Imperiale TF. Aspirin and the prevention of colorectal cancer. N Engl J Med 2003;348(10):879-80
  • Grosch S, Tegeder I, Niederberger E, et al. COX-2 independent induction of cell cycle arrest and apoptosis in colon cancer cells by the selective COX-2 inhibitor celecoxib. FASEB J 2001;15(14):2742-4
  • Le MG, Mathieu MC, Douc-Rasy S, et al. C-myc, p53 and bcl-2, apoptosis-related genes in infiltrating breast carcino-mass: evidence of a link between bcl-2 protein over-expression a lower risk of metastatisis and death in opreable patients. Int J Cancer 1999;84:562-7
  • Perez GI, Knudson CM, Leykin L, et al. Apoptosis-associated signaling pathways are required for chemotherapy-mediated female germ cell destruction. Nat Med 1997;3:1228-32
  • Soda G, Antonaci A, Bosco D, et al. M. Expression of bcl-2, c-erbB-2, p53, and p21 (wafl-cipl) protein in thyroid carcinomas. J Exp Clin Cancer Res 1999;18:363-7
  • Eerola AK, Ruokolainen H, Soini Y, et al. Accelerated apoptosis and low bcl-2 expression associated with neuroendocrine differentiation predict shortened survival in operated large cell carcinoma of the lung. Pathol Oncol Res 1999;5:179-86
  • Vaskivuo TE, Stenback F, Tapanainen SJ. Apoptosis and Apoptosis-Related Factors Bcl-2, Bax, Tumor Necrosis Factor-alpha, and NF-kappaB in Human Endometrial Hyperplasia and Carcinoma. Cancer 2002;95(7):1463-71
  • Athanassiadou P, Petrakakou E, Liossi A, et al. Prognostic significance of p53, bcl-2 and EGFR in carcinoma of the endometrium. Acta Cytol 1999;43:1039-44
  • Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science 1998;281:1322-6
  • Wang CY, Mayo MW, Korneluk RG, et al. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 1998;281:1680-3
  • LaCasse EC, Baird S, Korneluk RG, et al. The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 1998;17:3247-59
  • Del Poeta G, Stasi R, Aronica G, et al. Clinical relevance of P-glycoprotein expression in denovo acute myeloid leukemia. Blood 1996;5:1997-2004
  • List AF, Spier CS, Grogan TM, et al. Overexpression of the major vault transporter protein lung-resistance protein predicts treatment outcome in acute myeloid leukemia. Blood 1996;87:2464-9
  • Schneider E, Cowan KH, Bader H, et al. Increased expression of the multidrug resistance associated protein gene in relapsed acute leukemia. Blood 1995;85:186-93
  • Maung ZT, MacLean FR, Reid MM, et al. The relationship between bcl-2 expression and response to chemotherapy in acute leukemia. Br J Haematol 1994;88:105-9
  • Andreeff M, Jiang S, Zhang X, et al. Expression of Bcl-2 related genes in normal and AML progenitors changes induced by chemotherapy and retinoic acid. Leukemia 1999;13:1881-92
  • Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971;285:1182-6
  • Dameron KM, Volpert OV, Tainsky MA, et al. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 1994;265:1582-4
  • Zarghi A, Arfaei S. Selective COX-2 inhibitors: a review of their structure-activity relationships. Iran J Pharm Res 2011;10(4):655-83
  • Sharma S, Stolina M, Yang SC, et al. Tumor cyclooxygenase-2 dependent suppression of dendritic cell function. Clin Cancer Res 2003;9(3):961-8
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55-63
  • Rigas B, Goldman IS, Levine L. Altered eicosanoid levels in human colon cancer. J Lab Clin Med 1993;122:518-23
  • Waddell WR, Loughry RW. Sulindac for polyposis of the colon. J Surg Oncol 1983;24:83-7
  • Waddell WR, Ganser GF, Cerise EJ, et al. Sulindac for polyposis of the colon. Am J Surg 1989;157:175-9
  • Smalley WE, DuBois RN. Colorectal cancer and nonsteroidal anti-inflammatory drugs. Adv Pharmacol 1997;39:1-20
  • Stewart ZA, Westfall MD, Pietenpol JA. Cell-cycle dysregulation and anticancer therapy. Trends Pharmacol Sci 2003;24(3):139-45
  • Hochegger H, Takeda S, Hunt T. Cyclin-dependent kinases and cell-cycle transitions: does one fit all? Nat Rev Mol Cell Biol 2008;9(11):910-16
  • Li J, Chen X, Dong X, et al. Specific COX-2 inhibitors, Meloxicam, suppresses proliferation and induces apoptosis in human HepG2 hepatocellular carcinoma cells. J Gastroenterol Hepatol 2006;21(12):1814-20
  • Howe LR. Inflammation and breast cancer. Cyclooxygenase/prostaglandin signaling and breast cancer. Breast Cancer Res 2007;9(4):210
  • Wun T, McKnight H, Tuscano JM. Increased Cyclooxygenase-2 (COX-2): apotential role in the pathogenesis of lymphoma. Leuk Res 2004;28:179-90
  • Xu XF, Xie GG, Wang XP, et al. Selective inhibition of cyclooxygenase-2 suppresses the growth of pancreatic cancer cell in vitro and in vivo. Tohoku J Exp Med 2008;215:149-57
  • Zhang GS, Liu DS, Dai CW, et al. Antitumor effects of celecoxib on K562 leukemia cells are mediated by cell-cycle arrest, caspase-3 activation, and downregulation of COX-2 expression and are synergistic with hydroxyurea or imatinib. Am J Hematol 2006;81(4):242-55
  • Tuynman JB, Peppelenbasch MP, Richel DJ. COX-2 inhibition as a toll to trat and prevent colorectal cancer. Crit Rev Oncol Hematol 2004;52:81-101
  • Tang HY, Shih A, Cao HJ, et al. Resveratrol-induced cyclooxygenase-2 facilitates p53- dependent apoptosis in human breast cancer cells. Mol Cancer Ther 2006;5:2034-42
  • Ramer R, Walther U, Borchert P, et al. Induction, but not inhibition of COX-2 confers human lung cancer cell apoptosis by celecoxib. J Lipid Res 2013;54:3116-29
  • Tsujii M, Kawano S, DuBois RN. Cyclooxygenase-2 expression in human colon cancer cell increases metastatic potential. Proc Natl Acad Sci USA 1997;94:3336-40
  • Chell S, Kadi A, Williams AC, et al. Mediators of PGE2 synthesis and signalling downstream of COX-2 represent potential targets for the prevention/treatment of colorectal cancer. Biochim Biophys Acta 2006;1766:104-19
  • Yao M, Kargman S, Lam EC, et al. Inhibition of cyclooxygenase-2 by rofecoxib attenuates the growth and metastatic potential of colorectal carcinoma in mice. Cancer Res 2002;63:586-92
  • Liao X, Lochhead P, Nishihara R, et al. Aspirin Use, Tumor PIK3CA Mutation, and Colorectal-Cancer Survival. N Engl J Med 2012;367:1596-606
  • Domingo E, Church DN, Sieber O, et al. Evaluation of PIK3CA Mutation As a Predictor of Benefit From Nonsteroidal Anti-Inflammatory Drug Therapy in Colorectal Cancer. J Clin Oncol 2013;31(34):4297-305
  • Richardsen E, Uglehus RD, Due J, et al. COX-2 is overexpressed in primary prostate cancer with metastatic potential and may predict survival. A comparison study between COX-2, TGF-b, IL-10 and Ki67. Cancer Epidemiol 2010;34:316-22
  • Wagner M, Loos J, Weksler N, et al. Resistance of prostate cancer cell lines to COX-2 inhibitor treatment. Biochem Biophys Res Commun 2005;332:800-7
  • Barbisan F, Mazzucchelli R, Santinelli A, et al. Overexpression of ELAV-like protein HuR is associated with increased COX-2 expression in atrophy, high-grade prostatic intraepithelial neoplasia, and incidental prostate cancer in cytoprostatectomies. Eur Urol 2009;56:105-12
  • Zha S, Gage WR, Suvageot J, et al. Cyclooxygenase-2 is upregulated in proliferative inflammatory atrophy of the prostate but not in prostate carcinoma. Cancer Res 2001;61:8617-23
  • Dandekar DS, Lokeshwar BI. Inhibition of cyclooxygenase (COX)-2 expressions by the-inducible COX-2 antisense CDNA in hormone-refractory prostate cancer significantly slows tumor growth and improves efficacy of chemotherapeutic drugs. Clin Cancer Res 2004;10:8037-47
  • Soslow RA, Dannenberg AJ, Rush D, et al. COX-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer 2000;89:2637-45
  • Singh B, Berry JA, Shoher BSA, et al. COX-2 Induces IL-11 Production in Human Breast Cancer Cells. J Surg Res 2006;131:267-75
  • Bocca C, Bozzo F, Bassignana A, et al. Antiproliferative effects of COX-2 inhibitors celecoxib on human breast cancer cell lines. Mol Cell Biochem 2011;350:59-70
  • Singh B, Irving LTR, Tai K, et al. Overexpression of COX-2 in celecoxib-resistant breast cancer cell lines. J Surg Res 2010;163:235-43
  • Mohan S, Epstein JB. Carcinogenesis and cyclooxygenase: the potential role of COX-2 inhibition in upper aerodigestive tract cancer. Oral Oncol 2003;39:537-46
  • Eibl G, Bruemmer D, Okada Y, et al. PGE2 is generated by specific COX-2 activity and increases VEGF production in COX-2-expressing human pancreatic cancer cells. Biochem Biophys Res Commun 2003;306:887-97
  • D'Arca D, LeNoir J, Wildemore B, et al. Prevention of urinary bladder cancer in the FHIT knock-out mouse with Rofecoxib, a Cox-2 inhibitor. Urol Oncol 2010;28:189-94
  • Carmen P. COX-2 inhibitor potent at reducing risk of colorectal polyps. NCI Cancer Bull 2006;3(14):1-2
  • Umar A. Celecoxib significantly reduces the risk of precancerous colorectal polyps. NCI Cancer Bull 2006;3(34):3-4
  • Bazargan L, Fouladdel S, Shafiee A, et al. Evaluation of anticancer effects of newly synthesized dihydropyridine derivatives in comparison to verapamil and doxorubicin on T47D parental and resistant cell lines in vitro. Cell Biol Toxicol 2008;24:165-74
  • Mizutani Y, Kamoi K, Ukimura O, et al. Synergistic cytotoxicity and apoptosis of JTE-522, a selective cyclooxygenase-2 inhibitor, and 5-fluorouracil against bladder cancer. J Urol 2002;168:2650-4
  • Fantappie O, Solazzo M, Lasagna N. P-glycoprotein mediated celecoxib-induced apoptosis in multiple drug-resistant cell lines. Cancer Res 2007;57(10):4915-23
  • Cerella C, Sobolewski C, Dicato M, et al. Targeting COX-2 expression by natural compounds: a promising alternative strategy to synthetic COX-2 inhibitors for cancer chemoprevention and therapy. Biochem Pharmacol 2010;80:1801-15
  • Kim TH, Jeong YI, Jin SG, et al. Preparation of polylactide-co-glycolide nanoparticles incorporating celecoxib and their antitumor activity against brain tumor cells. Int J Nanomedicine 2011;6:2621-63
  • Gurpinar E, Grizzle WE, Piazza GA. COX-independent mechanisms of cancer chemoprevention by anti-inflammatory drugs. Oncology 2013;3:1-18
  • Perazella MA, Tray K. Selective cyclooxygenase-2 inhibitors: a pattern of nephrotoxicity similar to traditional nonsteroidal anti-inflammatory drugs. Am J Med 2001;111:64-7
  • Swan SK, Rudy DW, Lasseter KC, et al. Effects of cyclooxygenase-2 inhibition on renal function in elderly persons receiving a low-salt diet. A randomized, controlled trial. Ann Intern Med 2000;133:1-9
  • Quan H, Bolognese JA, Oxenius B, et al. Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N Engl J Med 2005;352(11):1092-102
  • FitzGerald GA. Coxibs and cardiovascular disease. N Engl J Med 2004;341:1709-11
  • Shapiro LE, Knowles SR, Weber E, et al. Safety of celecoxib in individuals allergic to sulfonamide: a pilot study. Drug Saf 2003;26:187-95
  • Zarghi A, Arfaei S, Ghodsi R. Design and synthesis of new 2,4,5-triarylimidazole derivatives as selective cyclooxygenase (COX-2) inhibitors. Med Chem Res 2012;21:1803-10
  • Navidpour L, Shafaroodi H, Abdi K, et al. Design, synthesis, and biological evaluation of substituted 3-alkylthio-4,5-diaryl-4H-1,2,4-triazoles as selective COX-2 inhibitors. Bioorg Med Chem 2006;14:2507-17
  • Navidpour L, Amini M, Shafaroodi H, et al. Design and synthesis of new water-soluble tetrazolide derivatives of celecoxib and rofecoxib as selective cyclooxygenase-2 (COX-2) inhibitors. Bioorg Med Chem Lett 2006;16:4483-7
  • Navidpour L, Shadnia H, Shafaroodi H, et al. Design, synthesis and biological evaluation of substituted 2-alkylthio 1,5-diarylimidazoles as selective COX-2 inhibitors. Bioorg Med Chem 2007;15(5):1976-82
  • Salimi M, Gharemani M, Naderi N, et al. Design, synthesis and pharmacological evaluation of 4-[2-alkylthio-5(4)-(4-substitutedphenyl)imidazole-5)yl]benzenesulfonamides as selective COX-2 inhibitors. Acta Pharmacol Sin 2007;28(8):1254-60
  • Zarghi A, Arfaei S, Shirazi FH. Design, synthesis, and cytotoxic activities of new 2,4,5-triarylimidazoles. Med Chem Res 2013;22:3897-904
  • Miralinaghi P, Salimi M, Amirhamzeh A, et al. Synthesis, molecular docking study, and anticancer activity of triaryl-1,2,4-oxadiazole. Med Chem Res 2013;22:4253-62
  • Assadieskandar A, Amini M, Ostad SN, et al. Design, synthesis, cytotoxic evaluation and tubulin inhibitory activity of 4-aryl-5-(3,4,5-trimethoxyphenyl)-2-alkylthio-1H-imidazole derivatives. Bioorg Med Chem 2013;21:2703-9
  • Salehi M, Ostad SN, Riazi GH, et al. Synthesis, cytotoxic evaluation, and molecular docking study of 4,5-diaryl-thiazole-2-thione analogs of combretastatin A-4 as microtubule-binding agents. Med Chem Res 2013. [Epub ahead of print]
  • Taheri A, Atyabi F, Salman Nouri F, et al. Nanoparticles of conjugated methotrexate-human serum albumin: preparation and cytotoxicity evaluation. J Nanomater 2011. [Epub ahead of print]
  • Dinarvand R, Morias PC, D'Emanulele A. Nanoparticles for targeted delivery of active agents against tumor cells. J Drug Deliv 2012. [Epub ahead of print]
  • Betancourt T, Brown B, Brannon-Peppas L. Doxorubicin-loaded PLGA nanoparticles by nanoprecipitation: preparation, characterization and in vitro evaluation. Nanomedicine 2007;2(2):219-32
  • Dinarvand R, Sepehri N, Manoochehri S, et al. Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. Int J Nanomedicine 2011;6:877-95
  • Esmaeili F, Ghahremani MH, Ostad SN, et al. Folate-receptor-targeted delivery of docetaxel nanoparticles prepared by PLGA–PEG–folate conjugate. J Drug Target 2008;16(5):415-23

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.