332
Views
16
CrossRef citations to date
0
Altmetric
Reviews

Current strategies for designing antidotes against botulinum neurotoxins

, &

Bibliography

  • Greenfield RA, Brown BR, HUtchis JB, et al. Microbiological, biological, and chemical weapons of warfare and terrorism. Am J Med Sci 2002;323(6):326-40
  • Singh BR. Intimate details of the most poisonous poison. Nat Struct Biol 2000;7(8):617-19
  • Arnon SS, Schechter R, Inglesby TV, et al. Botulinum toxin as a biological weapon: medical and public health management. JAMA 2001;285(8):1059-70
  • Benefield DA, Dessain SK, Shine N, et al. Molecular assembly of botulinum neurotoxin progenitor complexes. Proc Natl Acad Sci USA 2013;110(14):5630-5
  • Lee K, Gu S, Jin L, et al. Structure of a bimodular botulinum neurotoxin complex provides insights into its oral toxicity. PLoS Pathog 2013;9(10):e1003690
  • Dekleva ML, DasGupta BR. Nicking of single chain Clostridium botulinum type A neurotoxin by an endogenous protease. Biochem Biophys Res Commun 1989;162(2):767-72
  • Singh BR. Botulinum neurotoxin structure, engineering, and novel cellular trafficking and targeting. Neurotox Res 2006;9(2-3):73-92
  • Montecucco C. How do tetanus and botulinum toxins bind to neuronal membranes? Trends Biochem Sci 1986;11(8):314-17
  • Montecucco C, Schiavo G. Structure and function of tetanus and botulinum neurotoxins. Q Rev Biophys 1995;28(4):423-72
  • Montecucco C, Rossetto O, Schiavo G. Presynaptic receptor arrays for clostridial neurotoxins. Trends Microbiol 2004;12(10):442-6
  • Dong M, Thompson AA, Fan Y, et al. Glycosylated SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons. Mol Biol Cell 2008;19(12):5226-37
  • Chai Q, Arndt JW, Dong M, et al. Structural basis of cell surface receptor recognition by botulinum neurotoxin B. Nature 2006;444(7122):1096-100
  • Peng L, Tepp WH, Johnson EA, et al. Botulinum neurotoxin D uses synaptic vesicle protein SV2 and gangliosides as receptors. PLoS Pathog 2011;7(3):e1002008
  • Dong M, Yeh F, Tepp WH, et al. SV2 is the protein receptor for botulinum neurotoxin A. Science 2006;312(5773):p592-6
  • Jacky BP, Garay PE, Dupuy J, et al. Identification of fibroblast growth factor receptor 3 (FGFR3) as a protein receptor for botulinum neurotoxin serotype A (BoNT/A). PLoS Pathog 2013;9(5):e1003369
  • Kukreja RV, Sharma SK, Singh BR. Molecular basis of activation of endopeptidase activity of botulinum neurotoxin type E. Biochemistry 2010;49(11):2510-19
  • Montal M. Botulinum neurotoxin: a marvel of protein design. Annu Rev Biochem 2010;79:591-617
  • Singh BR, Thirunavukkarsu N, Ghosal K, et al. Clostridial neurotoxins as a drug delivery vehicle targeting nervous system. Biochimie 2010;92(9):1252-9
  • Binz T, Blasi J, Yamasaki S, et al. Proteolysis of SNAP-25 by types E and A botulinal neurotoxins. J Biol Chem 1994;269(3):1617-20
  • Blasi J, Chapman ER, Link E, et al. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature 1993;365(6442):160-3
  • Foran P, Lawrence GW, Shone CC, et al. Botulinum neurotoxin C1 cleaves both syntaxin and SNAP-25 in intact and permeabilized chromaffin cells: correlation with its blockade of catecholamine release. Biochemistry 1996;35(8):2630-6
  • Schiavo G, Poulain B, Rossetto O, et al. Tetanus toxin is a zinc protein and its inhibition of neurotransmitter release and protease activity depend on zinc. EMBO J 1992;11(10):3577-83
  • Schiavo G, Benfenati F, Rossetto O, et al. Tetanus and botulinum-B neurrotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 1992;359(29):832-5
  • Schiavo G, Rossetto O, Catsics S, et al. Identification of the nerve terminal targets of botulinum neurotoxin serotypes A, D, and E. J Biol Chem 1993;268(32):23784-7
  • Schiavo G, Malizio C, Trimble WS, et al. Botulinum G neurotoxin cleaves VAMP/synaptobrevin at a single Ala-Ala peptide bond. J Biol Chem 1994;269(32):20213-16
  • Yamasaki S, Baumeister A, Binz T, et al. Cleavage of members of the synaptobrevin/VAMP family by types D and F botulinal neurotoxins and tetanus toxin. J Biol Chem 1994;269(17):12764-672
  • Schiavo G, Shone CC, Bennet MK, et al. Botulinum neurotoxin type C cleaves a single Lys-Ala bond within the carboxyl-terminal region of syntaxins. J Biol Chem 1995;270(18):10566-70
  • Francisco AM, Arnon SS. Clinical mimics of infant botulism. Pediatrics 2007;119(4):826-8
  • Cherington M. Clinical spectrum of botulism. Muscle Nerve 1998;21(6):701-10
  • Rosenbloom M, et al. Biological and chemical agents: a brief synopsis. Am J Ther 2002;9(1):5-14
  • Sobel J. Botulism. Clin Infect Dis 2005;41(8):1167-73
  • Hallett M, Albanese A, Dressler D, et al. Evidence-based review and assessment of botulinum neurotoxin for the treatment of movement disorders. Toxicon 2013;67:94-114
  • Cai S, Singh BR. Strategies to design inhibitors of Clostridium botulinum neurotoxins. Infect Disord Drug Targets 2007;7(1):47-57
  • Chang TW, Blank M, JAnardhanan P, et al. In vitro selection of RNA aptamers that inhibit the activity of type A botulinum neurotoxin. Biochem Biophys Res Commun 2010;396(4):854-60
  • Nowakowski A, Wang C, Powersw DB, et al. Potent neutralization of botulinum neurotoxin by recombinant oligoclonal antibody. Proc Natl Acad Sci USA 2002;99(17):11346-50
  • Marks JD. Deciphering antibody properties that lead to potent botulinum neurotoxin neutralization. Mov Disord 2004;19(Suppl 8):S101-8
  • Thanongsaksrikul J, Chaicumpa W. Botulinum neurotoxins and botulism: a novel therapeutic approach. Toxins (Basel) 2011;3(5):469-88
  • Leeson PD, Springthorpe B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat Rev Drug Discov 2007;6(11):881-90
  • Veber DF, Johnson SR, Cheng HY, et al. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 2002;45(12):2615-23
  • Bakry N, Kamata Y, Simpson LL. Lectins from Triticum vulgaris and Limax flavus are universal antagonists of botulinum neurotoxin and tetanus toxin. J Pharmacol Exp Ther 1991;258(3):830-6
  • Eswaramoorthy S, Kumaran D, Swaminathan S. Crystallographic evidence for doxorubicin binding to the receptor-binding site in Clostridium botulinum neurotoxin B. Acta Crystallogr D Biol Crystallogr 2001;57(Pt 11):1743-6
  • Simpson LL. Ammonium chloride and methylamine hydrochloride antagonize clostridial neurotoxins. J Pharmacol Exp Ther 1983;225(3):546-52
  • Deshpande SS, Sheridan RE, Adle M. Efficacy of certain quinolines as pharmacological antagonists in botulinum neurotoxin poisoning. Toxicon 1997;35(3):433-45
  • Sheridan RE, Deshpande SS, Nicholson JD, et al. Structural features of aminoquinolines necessary for antagonist activity against botulinum neurotoxin. Toxicon 1997;35(9):1439-51
  • Simpson LL, Coffield JA, Bakry N. Chelation of zinc antagonizes the neuromuscular blocking properties of the seven serotypes of botulinum neurotoxin as well as tetanus toxin. J Pharmacol Exp Ther 1993;267(2):720-7
  • Sheridan RE, Deshpande SS. Interactions between heavy metal chelators and botulinum neurotoxins at the mouse neuromuscular junction. Toxicon 1995;33(4):539-49
  • Simpson LL. The interaction between aminoquinolines and presynaptically acting neurotoxins. J Pharmacol Exp Ther 1982;222(1):43-8
  • Simpson LL, Coffield JA, Bakry N. Inhibition of vacuolar adenosine triphosphatase antagonizes the effects of clostridial neurotoxins but not phospholipase A2 neurotoxins. J Pharmacol Exp Ther 1994;269(1):256-62
  • Li MF, Shi YL. Toosendanin interferes with pore formation of botulinum toxin type A in PC12 cell membrane. Acta Pharmacol Sin 2006;27(1):66-70
  • Shi YL, Li MF. Biological effects of toosendanin, a triterpenoid extracted from Chinese traditional medicine. Prog Neurobiol 2007;82(1):1-10
  • Fischer A, Nakai Y, Eubanks LM, et al. Bimodal modulation of the botulinum neurotoxin protein-conducting channel. Proc Natl Acad Sci USA 2009;106(5):1330-5
  • Sheridan RE. Protonophore antagonism of botulinum toxin in mouse muscle. Toxicon 1996;34(8):849-55
  • Keller JE, Cai F, Neale EA. Uptake of botulinum neurotoxin into cultured neurons. Biochemistry 2004;43(2):526-32
  • Simpson LL. A preclinical evaluation of aminopyridines as putative therapeutic agents in the treatment of botulism. Infect Immun 1986;52(3):858-62
  • Adler M, Deshpande SS, Apland JP, et al. Reversal of BoNT/A-mediated inhibition of muscle paralysis by 3,4-diaminopyridine and roscovitine in mouse phrenic nerve-hemidiaphragm preparations. Neurochem Int 2012;61(6):866-73
  • Cai S, Lindo P, Park JB, et al. The identification and biochemical characterization of drug-like compounds that inhibit botulinum neurotoxin serotype A endopeptidase activity. Toxicon 2010;55(4):818-26
  • Burnett JC, Schmjidt JJ, McGrath CF, et al. Conformational sampling of the botulinum neurotoxin serotype A light chain: implications for inhibitor binding. Bioorg Med Chem 2005;13(2):333-41
  • Tang J, Park JG, Millard CB, et al. Computer-aided lead optimization: improved small-molecule inhibitor of the zinc endopeptidase of botulinum neurotoxin serotype A. PLoS One 2007;2(8):e761
  • Boldt GE, Kennedy JP, Janda KD. Identification of a potent botulinum neurotoxin a protease inhibitor using in situ lead identification chemistry. Org Lett 2006;8(8):1729-32
  • Schmidt JJ, Stafford RG. A high-affinity competitive inhibitor of type A botulinum neurotoxin protease activity. FEBS Lett 2002;532(3):423-6
  • Kumaran D, Rawat R, Ludivico ML, et al. Structure- and substrate-based inhibitor design for Clostridium botulinum neurotoxin serotype A. J Biol Chem 2008;283(27):18883-91
  • Schmidt JJ, Stafford RG, Millard CB. High-throughput assays for botulinum neurotoxin proteolytic activity: serotypes A, B, D, and F. Anal Biochem 2001;296(1):130-7
  • Anne C, Cornille F, Lenoir C, et al. High-throughput fluorogenic assay for determination of botulinum type B neurotoxin protease activity. Anal Biochem 2001;291(2):253-61
  • Burnett JC, Schmidt JJ, Stafford RG, et al. Novel small molecule inhibitors of botulinum neurotoxin A metalloprotease activity. Biochem Biophys Res Commun 2003;310(1):84-93
  • Burnett JC, Li B, Pai R, et al. Analysis of botulinum neurotoxin serotype A metalloprotease inhibitors: analogs of a chemotype for therapeutic development in the context of a three-zone pharmacophore. Open Access Bioinformatics 2010;2010(2):11-18
  • Burnett JC, Ruthel G, Stegmann CM, et al. Inhibition of metalloprotease botulinum serotype A from a pseudo-peptide binding mode to a small molecule that is active in primary neurons. J Biol Chem 2007;282(7):5004-14
  • Li B, Pai R, Cardinale SC, et al. Synthesis and biological evaluation of botulinum neurotoxin a protease inhibitors. J Med Chem 2010;53(5):2264-76
  • Pang YP, Vummenthala A, Mishra RK, et al. Potent new small-molecule inhibitor of botulinum neurotoxin serotype A endopeptidase developed by synthesis-based computer-aided molecular design. PLoS One 2009;4(11):e7730
  • Pang YP, Davis J, Wang S, et al. Small molecules showing significant protection of mice against botulinum neurotoxin serotype A. PLoS One 2010;5(4):e10129
  • Roxas-Duncan V, Enyedy I, Montgomery VA, et al. Identification and biochemical characterization of small-molecule inhibitors of Clostridium botulinum neurotoxin serotype A. Antimicrob Agents Chemother 2009;53(8):3478-86
  • Singh P, Singh MK, Chaudhary D, et al. Small-molecule quinolinol inhibitor identified provides protection against BoNT/A in mice. PLoS One 2012;7(10):e47110
  • Cardellina JH, Roxas-Dunca V, Montagomery V, et al. Fungal bis-naphthopyrones as inhibitors of botulinum neurotoxin serotype A. ACS Med Chem Lett 2012;3(5):387-91
  • Silvaggi NR, Boldt GE, Hixon MS, et al. Structures of clostridium botulinum neurotoxin serotype A light chain complexed with small-molecule inhibitors highlight active-site flexibility. Chem Biol 2007;14(5):533-42
  • Eubanks LM, Hixon MS, Jin W, et al. An in vitro and in vivo disconnect uncovered through high-throughput identification of botulinum neurotoxin A antagonists. Proc Natl Acad Sci USA 2007;104(8):2602-7
  • Eubanks LM, Silhar P, Salzameda NT, et al. Identification of a natural product antagonist against the botulinum neurotoxin light chain protease. ACS Med Chem Lett 2010;1(6):268-72
  • Salzameda NT, Eubanks LM, Zakhari JS, et al. A cross-over inhibitor of the botulinum neurotoxin light chain B: a natural product implicating an exosite mechanism of action. Chem Commun (Camb) 2011;47(6):1713-15
  • Silhar P, Capkova K, Xiaochuan F, et al. Botulinum neurotoxin A protease: discovery of natural product exosite inhibitors. J Am Chem Soc 2010;132(9):2868-9
  • Adler M, Nicholson JD, Cornille F, et al. Efficacy of a novel metalloprotease inhibitor on botulinum neurotoxin B activity. FEBS Lett 1998;429(3):234-8
  • Hanson MA, Oost TK, Sukonpan C, et al. Structural basis for BABIM inhibition of botulinum neurotoxin type B protease. J Am Chem Soc 2000;122:11268-9
  • Eswaramoorthy S, Kumaran D, Swaminathan S. A novel mechanism for Clostridium botulinum neurotoxin inhibition. Biochemistry 2002;41(31):9795-802
  • Zuniga JE, Schmidt JJ, Fenn T, et al. A potent peptidomimetic inhibitor of botulinum neurotoxin serotype A has a very different conformation than SNAP-25 substrate. Structure 2008;16(10):1588-97
  • Lacy DB, Tepp W, Chhen AC, et al. Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol 1998;5(10):898-902
  • Swaminathan S, Eswaramoorthy S. Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B. Nat Struct Biol 2000;7(8):693-9
  • Arndt JW, Chai Q, Chistian T, et al. Structure of botulinum neurotoxin type D light chain at 1.65 A resolution: repercussions for VAMP-2 substrate specificity. Biochemistry 2006;45(10):3255-62
  • Breidenbach MA, Brunger AT. Substrate recognition strategy for botulinum neurotoxin serotype A. Nature 2004;432(7019):925-9
  • Swaminathan S, Eswaramoorthy S, Kumaran D. Structure and enzymatic activity of botulinum neurotoxins. Mov Disord 2004;19(Suppl 8):S17-22
  • Agarwal R, Eswaramoorthy S, Kumaran D, et al. Structural analysis of botulinum neurotoxin type E catalytic domain and its mutant Glu212-->Gln reveals the pivotal role of the Glu212 carboxylate in the catalytic pathway. Biochemistry 2004;43(21):6637-44
  • Schmidt JJ, Bostian KA. Proteolysis of synthetic peptides by type A botulinum neurotoxin1. J Protein Chem 1995;14(8):703-8
  • Schmidt JJ, Stafford RG, Bostian KA. Type A botulinum neurotoxin proteolytic activity: development of competitive inhibitors and implications for substrate specificity at the S1' binding subsite. FEBS Lett 1998;435(1):61-4
  • Kumaran D, Rawat R, Ahmed S, et al. Substrate binding mode and its implication on drug design for botulinum neurotoxin A. PLoS Pathog 2008;4(9):e1000165
  • Anne C, Turcaud S, Blommaert AG, et al. Development of potent inhibitors of botulinum neurotoxin type B. J Med Chem 2003;46(22):4648-56
  • Hayden J, Pires J, Roy S, et al. Discovery and design of novel inhibitors of botulinus neurotoxin A: targeted ‘hinge’ peptide libraries. J Appl Toxicol 2003;23(1):1-7
  • Rossetto O, Schiavo G, Montecucco C, et al. SNARE motif and neurotoxins. Nature 1994;372(6505):415-16
  • Hale M, Oyler G, Swaminathan S, et al. Basic tetrapeptides as potent intracellular inhibitors of type A botulinum neurotoxin protease activity. J Biol Chem 2011;286(3):1802-11
  • Zuniga JE, Hammill J, Drory O, et al. Iterative structure-based peptide-like inhibitor design against the botulinum neurotoxin serotype A. PLoS One 2010;5(6):e11378
  • Moore GJ, Moore DM, Roy SS, et al. Hinge peptide combinatorial libraries for inhilbitors of botulinum neurotoxins and saxitoxin: deconvolution strategy. Mol Divers 2006;10(1):9-16
  • Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990;249(4968):505-10
  • Nimjee SM, Rusconi CP, Sullenger BA. Aptamers: an emerging class of therapeutics. Annu Rev Med 2005;56:555-83
  • Tan W, Wang H, Chen Y, et al. Molecular aptamers for drug delivery. Trends Biotechnol 2011;29(12):634-40
  • Rusconi CP, Robert JD, Pitoc GA, et al. Antidote-mediated control of an anticoagulant aptamer in vivo. Nat Biotechnol 2004;22(11):1423-8
  • Janardhanan P, Ghosal K, Ravichandran E, et al. Development of aptamer-based rapid in vitro detection system and antidotes against botulinum neurotoxin type A. 49th Interagency Botulism Research Coordinating Committee Meeting; Baltimore, Maryland; 2012
  • Pellett S, Tepp WH, Stanker LH, et al. Neuronal targeting, internalization, and biological activity of a recombinant atoxic derivative of botulinum neurotoxin A. Biochem Biophys Res Commun 2011;405(4):673-7
  • Band PA, Blais S, Neubert TA, et al. Recombinant derivatives of botulinum neurotoxin A engineered for trafficking studies and neuronal delivery. Protein Expr Purif 2010;71(1):62-73
  • Zhang P, Ray R, Singh BR, et al. An efficient drug delivery vehicle for botulism countermeasure. BMC Pharmacol 2009;9:12
  • Shoji Y, Nakashima H. Current status of delivery systems to improve target efficacy of oligonucleotides. Curr Pharm Des 2004;10(7):785-96
  • Mizanur RM, Frasca V, Swaminathan S, et al. The C terminus of the catalytic domain of type A botulinum neurotoxin may facilitate product release from the active site. J Biol Chem 2013;288(33):24223-33
  • Cai S, Singh BR. Role of the disulfide cleavage induced molten globule state of type a botulinum neurotoxin in its endopeptidase activity. Biochemistry 2001;40(50):15327-33
  • Kukreja R, Singh BR. Biologically active novel conformational state of botulinum, the most poisonous poison. J Biol Chem 2005;280(47):39346-52
  • Pires-Alves M, Ho M, Aberle KK, et al. Tandem fluorescent proteins as enhanced FRET-based substrates for botulinum neurotoxin activity. Toxicon 2009;53(4):392-9
  • Stura EA, Le RouX L, Guitot K, et al. Structural framework for covalent inhibition of Clostridium botulinum neurotoxin A by targeting Cys165. J Biol Chem 2012;287(40):33607-14
  • Kumar R, Kukreja RV, Li L, et al. Botulinum neurotoxin: unique folding of enzyme domain of the most-poisonous poison. J Biomol Struct Dyn 2013. [Epub ahead of print]
  • Rummel A, Karnath T, Henke T, et al. Synaptotagmins I and II act as nerve cell receptors for botulinum neurotoxin G. J Biol Chem 2004;279(29):30865-70
  • Dong M, Richards DA, Goodnough MC, et al. Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells. J Cell Biol 2003;162(7):1293-303
  • Yiadom KP, Muhie S, Yang DC. Peptide inhibitors of botulinum neurotoxin by mRNA display. Biochem Biophys Res Commun 2005;335(4):1247-53
  • Sukonpan C, Oost T, Goodnough M, et al. Synthesis of substrates and inhibitors of botulinum neurotoxin type A metalloprotease. J Pept Res 2004;63(2):181-93
  • Boldt GE, Eubanks LM, Janda KD. Identification of a botulinum neurotoxin A protease inhibitor displaying efficacy in a cellular model. Chem Commun (Camb) 2006 (29):3063-5
  • Boldt GE, Kennedy JP, Hixon MS, et al. Synthesis, characterization and development of a high-throughput methodology for the discovery of botulinum neurotoxin a inhibitors. J Comb Chem 2006;8(4):513-21
  • Hayden J, Pires J, Hamilton M, et al. Novel inhibitors of botulinus neurotoxin "A" based on variations of the SNARE motif. Proc West Pharmacol Soc 2000;43:71-4
  • Anne C, Turcaud S, Blommaert AG, et al. Partial protection against Botulinum B neurotoxin-induced blocking of exocytosis by a potent inhibitor of its metallopeptidase activity. ChemBioChem 2005;6(8):1375-80
  • Kukreja R, Singh BR. Botulinum Neurotoxin – Structure and Mechanism of Action. In: Thomas ET, editor, Microbial toxins: current research and future trends. Caister Academic Press, Norfolk; 2009
  • Cerchia L, Duconge F, Pestourie C, et al. Neutralizing aptamers from whole-cell SELEX inhibit the RET receptor tyrosine kinase. PLoS Biol 2005;3(4):e123

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.