1,210
Views
39
CrossRef citations to date
0
Altmetric
Reviews

Targeting protein palmitoylation: selective inhibitors and implications in disease

, &

Bibliography

  • Martin BR, Cravatt BF. Large-scale profiling of protein palmitoylation in mammalian cells. Nat Methods 2009;6(2):135-8
  • Yang W, Di Vizio D, Kirchner M, et al. Proteome scale characterization of human S-acylated proteins in lipid raft-enriched and non-raft membranes. Mol Cell Proteomics 2010;9(1):54-70
  • Chamberlain LH, Lemonidis K, Sanchez-Perez M, et al. Palmitoylation and the trafficking of peripheral membrane proteins. Biochem Soc Trans 2013;41(1):62-6
  • Rocks O, Gerauer M, Vartak N, et al. The palmitoylation machinery is a spatially organizing system for peripheral membrane proteins. Cell 2010;141(3):458-71
  • Blaskovic S, Blanc M, van der Goot FG. What does S-palmitoylation do to membrane proteins? FEBS J 2013;280(12):2766-74
  • Zacharias DA, Violin JD, Newton AC, et al. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 2002;296(5569):913-16
  • Levental I, Lingwood D, Grzybek M, et al. Palmitoylation regulates raft affinity for the majority of integral raft proteins. Proc Natl Acad Sci USA 2010;107(51):22050-4
  • Liang X, Lu Y, Neubert TA, et al. Mass spectrometric analysis of GAP-43/neuromodulin reveals the presence of a variety of fatty acylated species. J Biol Chem 2002;277(36):33032-40
  • Liang X, Lu Y, Wilkes M, et al. The N-terminal SH4 region of the Src family kinase Fyn is modified by methylation and heterogeneous fatty acylation: role in membrane targeting, cell adhesion, and spreading. J Biol Chem 2004;279(9):8133-9
  • Liang X, Nazarian A, Erdjument-Bromage H, et al. Heterogeneous fatty acylation of Src family kinases with polyunsaturated fatty acids regulates raft localization and signal transduction. J Biol Chem 2001;276(33):30987-94
  • Jones TL, Degtyarev MY, Backlund PS Jr. The stoichiometry of G alpha(s) palmitoylation in its basal and activated states. Biochemistry 1997;36(23):7185-91
  • Faergeman NJ, Knudsen J. Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling. Biochem J 1997;323(Pt 1):1-12
  • Mitchell DA, Vasudevan A, Linder ME, et al. Protein palmitoylation by a family of DHHC protein S-acyltransferases. J Lipid Res 2006;47(6):1118-27
  • Jennings BC, Linder ME. DHHC protein S-acyltransferases use similar ping-pong kinetic mechanisms but display different acyl-CoA specificities. J Biol Chem 2012;287(10):7236-45
  • Ohno Y, Kihara A, Sano T, et al. Intracellular localization and tissue-specific distribution of human and yeast DHHC cysteine-rich domain-containing proteins. Biochim Biophys Acta 2006;1761(4):474-83
  • Claros MG, von Heijne G. TopPred II: an improved software for membrane protein structure predictions. Comput Appl Biosci 1994;10(6):685-6
  • Greaves J, Chamberlain LH. Differential palmitoylation regulates intracellular patterning of SNAP25. J Cell Sci 2011;124(Pt 8):1351-60
  • Planey SL, Keay SK, Zhang CO, et al. Palmitoylation of cytoskeleton associated protein 4 by DHHC2 regulates antiproliferative factor-mediated signaling. Mol Biol Cell 2009;20(5):1454-63
  • Gorleku OA, Barns AM, Prescott GR, et al. Endoplasmic reticulum localization of DHHC palmitoyltransferases mediated by lysine-based sorting signals. J Biol Chem 2011;286(45):39573-84
  • Greaves J, Carmichael JA, Chamberlain LH. The palmitoyl transferase DHHC2 targets a dynamic membrane cycling pathway: regulation by a C-terminal domain. Mol Biol Cell 2011;22(11):1887-95
  • Fukata Y, Dimitrov A, Boncompain G, et al. Local palmitoylation cycles define activity-regulated postsynaptic subdomains. J Cell Biol 2013;202(1):145-61
  • Sugimoto H, Hayashi H, Yamashita S. Purification, cDNA cloning, and regulation of lysophospholipase from rat liver. J Biol Chem 1996;271(13):7705-11
  • Tomatis VM, Trenchi A, Gomez GA, et al. Acyl-protein thioesterase 2 catalyzes the deacylation of peripheral membrane-associated GAP-43. PLoS One 2010;5(11):e15045
  • Toyoda T, Sugimoto H, Yamashita S. Sequence, expression in Escherichia coli, and characterization of lysophospholipase II. Biochim Biophys Acta 1999;1437(2):182-93
  • Zeidman R, Jackson CS, Magee AI. Protein acyl thioesterases (Review). Mol Membr Biol 2009;26(1):32-41
  • Dekker FJ, Rocks O, Vartak N, et al. Small-molecule inhibition of APT1 affects Ras localization and signaling. Nat Chem Biol 2010;6(6):449-56
  • Rusch M, Zimmermann TJ, Burger M, et al. Identification of acyl protein thioesterases 1 and 2 as the cellular targets of the Ras-signaling modulators palmostatin B and M. Angew Chem Int Ed Engl 2011;50(42):9838-42
  • Burger M, Zimmermann TJ, Kondoh Y, et al. Crystal structure of the predicted phospholipase LYPLAL1 reveals unexpected functional plasticity despite close relationship to acyl protein thioesterases. J Lipid Res 2012;53(1):43-50
  • Fox CS, Liu Y, White CC, et al. Genome-wide association for abdominal subcutaneous and visceral adipose reveals a novel locus for visceral fat in women. PLoS Genet 2012;8(5):e1002695
  • Verkruyse LA, Hofmann SL. Lysosomal targeting of palmitoyl-protein thioesterase. J Biol Chem 1996;271(26):15831-6
  • Mukai J, Liu H, Burt RA, et al. Evidence that the gene encoding ZDHHC8 contributes to the risk of schizophrenia. Nat Genet 2004;36(7):725-31
  • Yanai A, Huang K, Kang R, et al. Palmitoylation of huntingtin by HIP14 is essential for its trafficking and function. Nat Neurosci 2006;9(6):824-31
  • Mansouri MR, Marklund L, Gustavsson P, et al. Loss of ZDHHC15 expression in a woman with a balanced translocation t(X;15)(q13.3;cen) and severe mental retardation. Eur J Hum Genet 2005;13(8):970-7
  • Raymond FL, Tarpey PS, Edkins S, et al. Mutations in ZDHHC9, which encodes a palmitoyltransferase of NRAS and HRAS, cause X-linked mental retardation associated with a Marfanoid habitus. Am J Hum Genet 2007;80(5):982-7
  • Oyama T, Miyoshi Y, Koyama K, et al. Isolation of a novel gene on 8p21.3-22 whose expression is reduced significantly in human colorectal cancers with liver metastasis. Genes Chromosomes Cancer 2000;29(1):9-15
  • Yamamoto Y, Chochi Y, Matsuyama H, et al. Gain of 5p15.33 is associated with progression of bladder cancer. Oncology 2007;72(1-2):132-8
  • Mansilla F, Birkenkamp-Demtroder K, Kruhoffer M, et al. Differential expression of DHHC9 in microsatellite stable and instable human colorectal cancer subgroups. Br J Cancer 2007;96(12):1896-903
  • Ducker CE, Stettler EM, French KJ, et al. Huntingtin interacting protein 14 is an oncogenic human protein: palmitoyl acyltransferase. Oncogene 2004;23(57):9230-7
  • Li Y, Hu J, Hofer K, et al. DHHC5 interacts with PDZ domain 3 of post-synaptic density-95 (PSD-95) protein and plays a role in learning and memory. J Biol Chem 2010;285(17):13022-31
  • Mill P, Lee AW, Fukata Y, et al. Palmitoylation regulates epidermal homeostasis and hair follicle differentiation. PLoS Genet 2009;5(11):e1000748
  • Saleem AN, Chen YH, Baek HJ, et al. Mice with alopecia, osteoporosis, and systemic amyloidosis due to mutation in Zdhhc13, a gene coding for palmitoyl acyltransferase. PLoS Genet 2010;6(6):e1000985
  • Huang K, Sanders SS, Kang R, et al. Wild-type HTT modulates the enzymatic activity of the neuronal palmitoyl transferase HIP14. Hum Mol Genet 2011;20(17):3356-65
  • Bhattacharyya R, Barren C, Kovacs DM. Palmitoylation of amyloid precursor protein regulates amyloidogenic processing in lipid rafts. J Neurosci 2013;33(27):11169-83
  • Benjannet S, Elagoz A, Wickham L, et al. Post-translational processing of beta-secretase (beta-amyloid-converting enzyme) and its ectodomain shedding. The pro- and transmembrane/cytosolic domains affect its cellular activity and amyloid-beta production. J Biol Chem 2001;276(14):10879-87
  • Sidera C, Parsons R, Austen B. Post-translational processing of beta-secretase in Alzheimer’s disease. Proteomics 2005;5(6):1533-43
  • Chen WY, Shi YY, Zheng YL, et al. Case-control study and transmission disequilibrium test provide consistent evidence for association between schizophrenia and genetic variation in the 22q11 gene ZDHHC8. Hum Mol Genet 2004;13(23):2991-5
  • Ropers HH. X-linked mental retardation: many genes for a complex disorder. Curr Opin Genet Dev 2006;16(3):260-9
  • Young FB, Butland SL, Sanders SS, et al. Putting proteins in their place: palmitoylation in Huntington disease and other neuropsychiatric diseases. Prog Neurobiol 2012;97(2):220-38
  • Vesa J, Hellsten E, Verkruyse LA, et al. Mutations in the palmitoyl protein thioesterase gene causing infantile neuronal ceroid lipofuscinosis. Nature 1995;376(6541):584-7
  • Pla P, Orvoen S, Saudou F, et al. Mood disorders in Huntington’s disease: from behavior to cellular and molecular mechanisms. Front Behav Neurosci 2014;8:135
  • A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 1993;72(6):971-83
  • Slow EJ, van Raamsdonk J, Rogers D, et al. Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet 2003;12(13):1555-67
  • Singaraja RR, Huang K, Sanders SS, et al. Altered palmitoylation and neuropathological deficits in mice lacking HIP14. Hum Mol Genet 2011;20(20):3899-909
  • Huang K, Yanai A, Kang R, et al. Huntingtin-interacting protein HIP14 is a palmitoyl transferase involved in palmitoylation and trafficking of multiple neuronal proteins. Neuron 2004;44(6):977-86
  • Huang K, Sanders S, Singaraja R, et al. Neuronal palmitoyl acyl transferases exhibit distinct substrate specificity. FASEB J 2009;23(8):2605-15
  • Singaraja RR, Hadano S, Metzler M, et al. HIP14, a novel ankyrin domain-containing protein, links huntingtin to intracellular trafficking and endocytosis. Hum Mol Genet 2002;11(23):2815-28
  • Ohyama T, Verstreken P, Ly CV, et al. Huntingtin-interacting protein 14, a palmitoyl transferase required for exocytosis and targeting of CSP to synaptic vesicles. J Cell Biol 2007;179(7):1481-96
  • Milnerwood AJ, Parsons MP, Young FB, et al. Memory and synaptic deficits in Hip14/DHHC17 knockout mice. Proc Natl Acad Sci USA 2013;110(50):20296-301
  • Sutton LM, Sanders SS, Butland SL, et al. Hip14l-deficient mice develop neuropathological and behavioural features of Huntington disease. Hum Mol Genet 2013;22(3):452-65
  • Song IW, Li WR, Chen LY, et al. Palmitoyl acyltransferase, zdhhc13, facilitates bone mass acquisition by regulating postnatal epiphyseal development and endochondral ossification: a mouse model. PLoS One 2014;9(3):e92194
  • Liu H, Abecasis GR, Heath SC, et al. Genetic variation in the 22q11 locus and susceptibility to schizophrenia. Proc Natl Acad Sci USA 2002;99(26):16859-64
  • Demily C, Legallic S, Bou J, et al. ZDHHC8 single nucleotide polymorphism rs175174 is not associated with psychiatric features of the 22q11 deletion syndrome or schizophrenia. Psychiatr Genet 2007;17(5):311-12
  • Glaser B, Schumacher J, Williams HJ, et al. No association between the putative functional ZDHHC8 single nucleotide polymorphism rs175174 and schizophrenia in large European samples. Biol Psychiatry 2005;58(1):78-80
  • Glaser B, Moskvina V, Kirov G, et al. Analysis of ProDH, COMT and ZDHHC8 risk variants does not support individual or interactive effects on schizophrenia susceptibility. Schizophr Res 2006;87(1-3):21-7
  • Otani K, Ujike H, Tanaka Y, et al. The ZDHHC8 gene did not associate with bipolar disorder or schizophrenia. Neurosci Lett 2005;390(3):166-70
  • Saito S, Ikeda M, Iwata N, et al. No association was found between a functional SNP in ZDHHC8 and schizophrenia in a Japanese case-control population. Neurosci Lett 2005;374(1):21-4
  • Gothelf D, Eliez S, Thompson T, et al. COMT genotype predicts longitudinal cognitive decline and psychosis in 22q11.2 deletion syndrome. Nat Neurosci 2005;8(11):1500-2
  • Paterlini M, Zakharenko SS, Lai WS, et al. Transcriptional and behavioral interaction between 22q11.2 orthologs modulates schizophrenia-related phenotypes in mice. Nat Neurosci 2005;8(11):1586-94
  • Raux G, Bumsel E, Hecketsweiler B, et al. Involvement of hyperprolinemia in cognitive and psychiatric features of the 22q11 deletion syndrome. Hum Mol Genet 2007;16(1):83-91
  • Chow EW, Watson M, Young DA, et al. Neurocognitive profile in 22q11 deletion syndrome and schizophrenia. Schizophr Res 2006;87(1-3):270-8
  • Pulver AE, Nestadt G, Goldberg R, et al. Psychotic illness in patients diagnosed with velo-cardio-facial syndrome and their relatives. J Nerv Ment Dis 1994;182(8):476-8
  • Mukai J, Dhilla A, Drew LJ, et al. Palmitoylation-dependent neurodevelopmental deficits in a mouse model of 22q11 microdeletion. Nat Neurosci 2008;11(11):1302-10
  • Faul T, Gawlik M, Bauer M, et al. ZDHHC8 as a candidate gene for schizophrenia: analysis of a putative functional intronic marker in case-control and family-based association studies. BMC Psychiatry 2005;5:35
  • Mizumaru C, Saito Y, Ishikawa T, et al. Suppression of APP-containing vesicle trafficking and production of beta-amyloid by AID/DHHC-12 protein. J Neurochem 2009;111(5):1213-24
  • Cordy JM, Hussain I, Dingwall C, et al. Exclusively targeting beta-secretase to lipid rafts by GPI-anchor addition up-regulates beta-site processing of the amyloid precursor protein. Proc Natl Acad Sci USA 2003;100(20):11735-40
  • Riddell DR, Christie G, Hussain I, et al. Compartmentalization of beta-secretase (Asp2) into low-buoyant density, noncaveolar lipid rafts. Curr Biol 2001;11(16):1288-93
  • Draper JM, Smith CD. DHHC20: a human palmitoyl acyltransferase that causes cellular transformation. Mol Membr Biol 2010;27(2-3):123-36
  • Hungermann D, Schmidt H, Natrajan R, et al. Influence of whole arm loss of chromosome 16q on gene expression patterns in oestrogen receptor-positive, invasive breast cancer. J Pathol 2011;224(4):517-28
  • Yu L, Reader JC, Chen C, et al. Activation of a novel palmitoyltransferase ZDHHC14 in acute biphenotypic leukemia and subsets of acute myeloid leukemia. Leukemia 2011;25(2):367-71
  • Sudo H, Tsuji AB, Sugyo A, et al. A loss of function screen identifies nine new radiation susceptibility genes. Biochem Biophys Res Commun 2007;364(3):695-701
  • Yaremko ML, Kutza C, Lyzak J, et al. Loss of heterozygosity from the short arm of chromosome 8 is associated with invasive behavior in breast cancer. Genes Chromosomes Cancer 1996;16(3):189-95
  • Anbazhagan R, Fujii H, Gabrielson E. Allelic loss of chromosomal arm 8p in breast cancer progression. Am J Pathol 1998;152(3):815-19
  • Fujiwara Y, Ohata H, Emi M, et al. A 3-Mb physical map of the chromosome region 8p21.3-p22, including a 600-kb region commonly deleted in human hepatocellular carcinoma, colorectal cancer, and non-small cell lung cancer. Genes Chromosomes Cancer 1994;10(1):7-14
  • Ohata H, Emi M, Fujiwara Y, et al. Deletion mapping of the short arm of chromosome 8 in non-small cell lung carcinoma. Genes Chromosomes Cancer 1993;7(2):85-8
  • Knowles MA, Shaw ME, Proctor AJ. Deletion mapping of chromosome 8 in cancers of the urinary bladder using restriction fragment length polymorphisms and microsatellite polymorphisms. Oncogene 1993;8(5):1357-64
  • Bova GS, Carter BS, Bussemakers MJ, et al. Homozygous deletion and frequent allelic loss of chromosome 8p22 loci in human prostate cancer. Cancer Res 1993;53(17):3869-73
  • Emi M, Fujiwara Y, Ohata H, et al. Allelic loss at chromosome band 8p21.3-p22 is associated with progression of hepatocellular carcinoma. Genes Chromosomes Cancer 1993;7(3):152-7
  • Yan SM, Tang JJ, Huang CY, et al. Reduced expression of ZDHHC2 is associated with lymph node metastasis and poor prognosis in gastric adenocarcinoma. PLoS One 2013;8(2):e56366
  • Mayer TC, Kleiman NJ, Green MC. Depilated (dep), a mutant gene that affects the coat of the mouse and acts in the epidermis. Genetics 1976;84(1):59-65
  • Kang R, Wan J, Arstikaitis P, et al. Neural palmitoyl-proteomics reveals dynamic synaptic palmitoylation. Nature 2008;456(7224):904-9
  • Martin BR, Wang C, Adibekian A, et al. Global profiling of dynamic protein palmitoylation. Nat Methods 2012;9(1):84-9
  • Roth AF, Wan J, Bailey AO, et al. Global analysis of protein palmitoylation in yeast. Cell 2006;125(5):1003-13
  • Hemsley PA, Weimar T, Lilley KS, et al. A proteomic approach identifies many novel palmitoylated proteins in Arabidopsis. New Phytol 2013;197(3):805-14
  • Tom CT, Martin BR. Fat chance! Getting a grip on a slippery modification. ACS Chem Biol 2013;8(1):46-57
  • Zhou F, Xue Y, Yao X, et al. CSS-Palm: palmitoylation site prediction with a clustering and scoring strategy (CSS). Bioinformatics 2006;22(7):894-6
  • Ren J, Wen L, Gao X, et al. CSS-Palm 2.0: an updated software for palmitoylation sites prediction. Protein Eng Des Sel 2008;21(11):639-44
  • Xue Y, Liu Z, Cao J, et al. editors. Computational prediction of post-translational modification sites. Intech China, Shanghai; 2011
  • Hu LL, Wan SB, Niu S, et al. Prediction and analysis of protein palmitoylation sites. Biochimie 2011;93(3):489-96
  • Shi SP, Sun XY, Qiu JD, et al. The prediction of palmitoylation site locations using a multiple feature extraction method. J Mol Graph Model 2013;40:125-30
  • Kumari B, Kumar R, Kumar M. PalmPred: an SVM based palmitoylation prediction method using sequence profile information. PLoS One 2014;9(2):e89246
  • Baker TL, Zheng H, Walker J, et al. Distinct rates of palmitate turnover on membrane-bound cellular and oncogenic H-ras. J Biol Chem 2003;278(21):19292-300
  • Fukata Y, Bredt DS, Fukata M. Protein Palmitoylation by DHHC Protein Family. In: Kittler JT, Moss SJ, editors. The dynamic synapse: molecular methods in ionotropic receptor biology. 2011/01/05 ed CRC Press, Boca Raton; 2006
  • Brocklehurst K, Carlsson J, Kierstan MP, et al. Covalent chromatography by thiol-disulfide interchange. Methods Enzymol 1974;34:531-44
  • Ivaldi C, Martin BR, Kieffer-Jaquinod S, et al. Proteomic analysis of S-acylated proteins in human B cells reveals palmitoylation of the immune regulators CD20 and CD23. PLoS One 2012;7(5):e37187
  • Jones ML, Collins MO, Goulding D, et al. Analysis of protein palmitoylation reveals a pervasive role in Plasmodium development and pathogenesis. Cell Host Microbe 2012;12(2):246-58
  • Marin EP, Derakhshan B, Lam TT, et al. Endothelial cell palmitoylproteomic identifies novel lipid-modified targets and potential substrates for protein acyl transferases. Circ Res 2012;110(10):1336-44
  • Forrester MT, Hess DT, Thompson JW, et al. Site-specific analysis of protein S-acylation by resin-assisted capture. J Lipid Res 2011;52(2):393-8
  • Zhang J, Planey SL, Ceballos C, et al. Identification of CKAP4/p63 as a major substrate of the palmitoyl acyltransferase DHHC2, a putative tumor suppressor, using a novel proteomics method. Mol Cell Proteomics 2008;7(7):1378-88
  • Li MH, Dong LW, Li SX, et al. Expression of cytoskeleton-associated protein 4 is related to lymphatic metastasis and indicates prognosis of intrahepatic cholangiocarcinoma patients after surgery resection. Cancer Lett 2013;337(2):248-53
  • Hemsley PA, Grierson CS. Multiple roles for protein palmitoylation in plants. Trends Plant Sci 2008;13(6):295-302
  • Hang HC, Geutjes EJ, Grotenbreg G, et al. Chemical probes for the rapid detection of Fatty-acylated proteins in Mammalian cells. J Am Chem Soc 2007;129(10):2744-5
  • Kostiuk MA, Corvi MM, Keller BO, et al. Identification of palmitoylated mitochondrial proteins using a bio-orthogonal azido-palmitate analogue. FASEB J 2008;22(3):721-32
  • Kostiuk MA, Keller BO, Berthiaume LG. Palmitoylation of ketogenic enzyme HMGCS2 enhances its interaction with PPARalpha and transcription at the Hmgcs2 PPRE. FASEB J 2010;24(6):1914-24
  • Martin BR. Nonradioactive analysis of dynamic protein palmitoylation. Curr Protoc Protein Sci 2013;73:Unit 14 5
  • Fukata M, Fukata Y, Adesnik H, et al. Identification of PSD-95 palmitoylating enzymes. Neuron 2004;44(6):987-96
  • Leong WF, Zhou T, Lim GL, et al. Protein palmitoylation regulates osteoblast differentiation through BMP-induced osterix expression. PLoS One 2009;4(1):e4135
  • Resh MD. Use of analogs and inhibitors to study the functional significance of protein palmitoylation. Methods 2006;40(2):191-7
  • Webb Y, Hermida-Matsumoto L, Resh MD. Inhibition of protein palmitoylation, raft localization, and T cell signaling by 2-bromopalmitate and polyunsaturated fatty acids. J Biol Chem 2000;275(1):261-70
  • Coleman RA, Rao P, Fogelsong RJ, et al. 2-Bromopalmitoyl-CoA and 2-bromopalmitate: promiscuous inhibitors of membrane-bound enzymes. Biochim Biophys Acta 1992;1125(2):203-9
  • Chenette EJ, Abo A, Der CJ. Critical and distinct roles of amino- and carboxyl-terminal sequences in regulation of the biological activity of the Chp atypical Rho GTPase. J Biol Chem 2005;280(14):13784-92
  • Pedro MP, Vilcaes AA, Tomatis VM, et al. 2-Bromopalmitate reduces protein deacylation by inhibition of acyl-protein thioesterase enzymatic activities. PLoS One 2013;8(10):e75232
  • Davda D, El Azzouny MA, Tom CT, et al. Profiling targets of the irreversible palmitoylation inhibitor 2-bromopalmitate. ACS Chem Biol 2013;8(9):1912-17
  • Mitchell DA, Mitchell G, Ling Y, et al. Mutational analysis of Saccharomyces cerevisiae Erf2 reveals a two-step reaction mechanism for protein palmitoylation by DHHC enzymes. J Biol Chem 2010;285(49):38104-14
  • Gonzalez Montoro A, Quiroga R, Maccioni HJ, et al. A novel motif at the C-terminus of palmitoyltransferases is essential for Swf1 and Pfa3. Biochem J 2009;419(2):8
  • Draper JM, Smith CD. Palmitoyl acyltransferase assays and inhibitors (Review). Mol Membr Biol 2009;26(1):5-13
  • Ducker CE, Griffel LK, Smith RA, et al. Discovery and characterization of inhibitors of human palmitoyl acyltransferases. Mol Cancer Ther 2006;5(7):1647-59
  • Jennings BC, Nadolski MJ, Ling Y, et al. 2-Bromopalmitate and 2-(2-hydroxy-5-nitro-benzylidene)-benzo[b]thiophen-3-one inhibit DHHC-mediated palmitoylation in vitro. J Lipid Res 2009;50(2):233-42
  • Rocks O, Peyker A, Kahms M, et al. An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 2005;307(5716):1746-52
  • Duncan JA, Gilman AG. A cytoplasmic acyl-protein thioesterase that removes palmitate from G protein alpha subunits and p21(RAS). J Biol Chem 1998;273(25):15830-7
  • Hirano T, Kishi M, Sugimoto H, et al. Thioesterase activity and subcellular localization of acylprotein thioesterase 1/lysophospholipase 1. Biochim Biophys Acta 2009;1791(8):797-805
  • Tian L, McClafferty H, Knaus HG, et al. Distinct acyl protein transferases and thioesterases control surface expression of calcium-activated potassium channels. J Biol Chem 2012;287(18):14718-25
  • Devedjiev Y, Dauter Z, Kuznetsov SR, et al. Crystal structure of the human acyl protein thioesterase I from a single X-ray data set to 1.5 A. Structure 2000;8(11):1137-46
  • Hadvary P, Sidler W, Meister W, et al. The lipase inhibitor tetrahydrolipstatin binds covalently to the putative active site serine of pancreatic lipase. J Biol Chem 1991;266(4):2021-7
  • Hedberg C, Dekker FJ, Rusch M, et al. Development of highly potent inhibitors of the Ras-targeting human acyl protein thioesterases based on substrate similarity design. Angew Chem Int Ed Engl 2011;50(42):9832-7
  • Zimmermann TJ, Burger M, Tashiro E, et al. Boron-based inhibitors of acyl protein thioesterases 1 and 2. ChemBioChem 2013;14(1):115-22
  • Bachovchin DA, Brown SJ, Rosen H, et al. Identification of selective inhibitors of uncharacterized enzymes by high-throughput screening with fluorescent activity-based probes. Nat Biotechnol 2009;27(4):387-94
  • Adibekian A, Martin BR, Chang JW, et al. Confirming target engagement for reversible inhibitors in vivo by kinetically tuned activity-based probes. J Am Chem Soc 2012;134(25):10345-8
  • Fabian MA, Biggs WH III, Treiber DK, et al. A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol 2005;23(3):329-36
  • Karaman MW, Herrgard S, Treiber DK, et al. A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 2008;26(1):127-32
  • Feng Y, Yin Y, Weiser A, et al. Discovery of substituted 4-(pyrazol-4-yl)-phenylbenzodioxane-2-carboxamides as potent and highly selective Rho kinase (ROCK-II) inhibitors. J Med Chem 2008;51(21):6642-5
  • Goytain A, Hines RM, Quamme GA. Huntingtin-interacting proteins, HIP14 and HIP14L, mediate dual functions, palmitoyl acyltransferase and Mg2+ transport. J Biol Chem 2008;283(48):33365-74

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.