245
Views
38
CrossRef citations to date
0
Altmetric
Reviews

The discovery and development of new potential antioxidant agents for the treatment of neurodegenerative diseases

(Research Scholar) & (Professor in Pharmaceutical Chemistry)

Bibliography

  • Sen S, Chakraborty R. The role of antioxidants in human health. American chemical society. In: Andreescu S, Hepel M, editors, Oxidative stress: diagnostics, prevention, and therapy; ACS symposium series. American Chemical Society, Washington, DC; 2011. p. 1-37
  • Hussain SP, Hofseth LJ, Harris CC. Radical causes of cancer. Nat Rev Cancer 2003;3:276-85
  • Coussens LM, Werb Z. Inflammation and cancer. Nature 2002;420:860-7
  • Bargagli E, Olivieri C, Bennett D, et al. Oxidative stress in the pathogenesis of diffuse lung diseases: a review. Respir Med 2009;103:1245-56
  • Kinnula VL, Fattman CL, Tan RJ, Oury T. Oxidative stress in pulmonary fibrosis. Am J Respir Crit Care Med 2005;172:417-22
  • Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radical Biol Med 2010;49:1603-16
  • Freeman LR, Keller JN. Oxidative stress and cerebral endothelial cells: regulation of the blood-brain-barrier and antioxidant based interventions. Biochim Biophys Acta 2012;1822:822-9
  • Lenz AG, Hinze-Heyn H, Schneider A, et al. Influence of inflammatory mechanisms on the redox balance in interstitial lung disease. Respir Med 2004;98:737-45
  • Tayarani I, Chaudiere J, Lefauconnier JM, Bourre JM. Enzymatic protection against peroxidative damage in isolated brain capillaries. J Neurochem 1987;48:1399-402
  • Markesbery WR. Oxidative stress hypothesis in Alzheimer’s disease. Free Radical Biol Med 1997;23:134-47
  • Lovell MA, Ehmann WD, Butler SM, Markesberg WR. Elevated thiobarbituric acid reactive substances and antioxidant enzyme activity in the brain in Alzheimer’s disease. Neurology 1995;45:1594-601
  • Zemlan FP, Theinhaus OJ, Bosmann HB. Superoxide dismutase activity in Alzheimer’s disease: possible mechanism for paired helical formation. Brain Res 1989;476:160-2
  • Pappella MA, Omar RA, Kim KS, Rubakis UK. Immunohistochemical evidence of antioxiodant stress in Alzheimer’s disease. Am J Pathol 1992;140:621-8
  • Frautschy SA, Baired A, Cole GM. Effects of injected Alzheimer beta-amyloid cores in rat brain. Proc Natl Acad Sci USA 1991;88:8362-6
  • Pappolla MA, Chyan YJ, Omar RA, et al. Evidence of oxidative stress and in vivo neurotoxicity of beta-amyloid in a transgenic mouse model of Alzheimer’s disease: a chronic oxidative paradigm for testing antioxidant therapies in vivo. Am J Pathol 1998;152:871-7
  • Olivier S. Oxidative stress: a theoretical model or a biological reality? C R Biol 2004;327:649-62
  • Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002;297:353-6
  • Walker FO. Huntington’s disease. Semin Neurol 2007;27:143-50
  • The Huntington’s disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993;72:971-83
  • Beal MF. Mitochondria, free radicals and neurodegeneration. Curr Opin Neurobiol 1996;6:661-6
  • Olney JW, Gubareff T. Glutamate neurotoxicity and Huntington’s chorea. Nature 1978;271:557-9
  • Browne SE, Ferrante RJ, Beal MF. Oxidative stress in Huntington’s disease. Brain Pathol 1999;9:147
  • Browne SE, Bowling AC, MacGarvey U, et al. Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann Neurol 1997;41:646-53
  • Goebel HH, Heipertz R, Scholz W, et al. Juvenile Huntington chorea: clinical, ultrastructural, and biochemical studies. Neurology 1978;28:23-31
  • Klivenyi P, Ferrante RJ, Gardian G, et al. Increased survival and neuroprotective effects of BN82451 in a transgenic mouse model of Huntington’s disease. J Neurochem 2003;86:267-72
  • Rao AV, Balachandran B. Role of oxidative stress and antioxidants in neurodegenerative diseases. Nutr Neurosci 2002;5:291-309
  • Olanow CW. The pathogenesis of cell death in Parkinson’s disease. Mov Disord 2007;22:S335-42
  • Chung KK, Dawson VL, Dawson TM. New insights into Parkinson’s disease. J Neurol 2003;250:III15-24
  • Mattson MP. Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 2000;1:120-9
  • Tansey MG, McCoy MK, Frank-Cannon TC. Neuroinflammatory mechanisms in Parkinson’s disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol 2007;208:1-25
  • Przedborski S, Jackson-Lewis V, Vila M, et al. Free radical and nitric oxide toxicity in Parkinson’s disease. Adv Neurol 2003;91:83-94
  • Andersen JK. Oxidative stress in neurodegeneration: cause or consequence? Nat Med 2004;10:S18-25
  • Danielson SR, Andersen JK. Oxidative and nitrative protein modifications in Parkinson’s disease. Free Radical Biol Med 2008;44:1787-94
  • Yoritaka A, Hattori N, Uchida K, et al. Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc Natl Acad Sci USA 1996;93:2696-701
  • Dexter DT, Holley AE, Flitter WD, et al. Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: an HPLC and ESR study. Mov Disord 1994;9:92-7
  • Patel BP, Hamadeh MJ. Nutritional and exercise-based interventions in the treatment of amyotrophic lateral sclerosis. Clin Nutr 2009;28:604-17
  • Gonzalez de Aguilar JL, Echaniz-Laguna A, Fergani A, et al. Amyotrophic lateral sclerosis: all roads lead to Rome. J Neurochem 2007;101:1153-60
  • Carr MT, Ferri A, Cozzolino M, et al. Neurodegeneration in amyotrophic lateral sclerosis: the role of oxidative stress and altered homeostasis of metals. Brain Res Bull 2003;61:365-74
  • Bonnefont-Rousselot D, Lacomblez L, Jaudon MC, et al. Blood oxidative stress in amyotrophic lateral sclerosis. J Neurol Sci 2000;178:57-62
  • Rosen DR, Siddique T, Patterson D, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993;362:59-62
  • Bogdanov MB, Ramos LE, Xu Z, Beal MF. Elevated ‘‘hydroxyl radical’’ generation in vivo in an animal model of amyotrophic lateral sclerosis. J Neurochem 1998;71:1321-4
  • Hand CK, Rouleau GA. Familial amyotrophic lateral sclerosis. Muscle Nerve 2002;25:135-59
  • Bogdanov M, Brown HR, Matson W, et al. Increased oxidative damage to DNA in ALS patients. Free Radical Biol Med 2000;29:652-8
  • Rizzardini M, Lupi M, Bernasconi S, et al. Mitochondrial dysfunction and death in motor neurons exposed to the glutathione-depleting agent ethacrynic acid. J Neurol Sci 2003;207:51-8
  • Shibata N, Nagai R, Uchida K, et al. Morphological evidence for lipid peroxidation and protein glycoxidation in spinal cords from sporadic amyotrophic lateral sclerosis patients. Brain Res 2001;917:97-104
  • Beal MF. Mitochondria and the pathogenesis of ALS. Brain 2000;123:1291-2
  • Guegan C, Vila M, Rosoklija G, et al. Recruitment of the mitochondrial-dependent apoptotic pathway in amyotrophic lateral sclerosis. J Neurosci 2001;21:6569-76
  • Glade MJ. Oxidative stress and cognitive longevity. Nutrition 2010;26:595-603
  • Corbetta M, Patel G, Shulman GL. The reorienting system of the human brain: from environment to theory of mind. Neuron 2008;58:306-24
  • Radak Z, Kumagai S, Nakamoto H, Goto S. 8-Oxoguanosine and uracil repair of nuclear and mitochondrial DNA in red and white skeletal muscle of exercise-trained old rats. J Appl Physiol 2007;102:1696-701
  • Liu J, Head E, Gharib AM, et al. Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: partial reversal by feeding acetyl-L-carnitine and/or R-a-lipoic acid. Proc Natl Acad Sci USA 2002;99:2356-61
  • Quiroz JA, Singh J, Gould TD, et al. Emerging experimental therapeutics for bipolar disorder: clues from the molecular pathophysiology. Mol Psychiatry 2004;9:756-76
  • Byron KY, Bitanihirwe TWW. Oxidative stress in schizophrenia: an integrated approach. Neurosci Biobehav Rev 2011;35:878-93
  • McGrath J, Saha S, Chant T, Welham J. Schizophrenia: a concise overview of incidence, prevalance, and mortality. Epidemiol Rev 2008;30:67-76
  • Radonjic NV, Knezevic IV, Vilimanovich U, et al. Decreased glutathione levels and altered antioxidant defense in an animal model of schizophrenia: long-term effects of perinatal phencyclidine administration. Neuropharmacology 2010;58:739-45
  • Raffa M, Mechri A, Othman LB, et al. Decreased glutathione levels and antioxidant enzyme activities in untreated and treated schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry 2009;33:1178-83
  • Mahadik SP, Mukherjee S, Scheffer R, et al. Elevated plasma lipid peroxides at the onset of non affective psychosis. Biol Psychiatry 1998;43:674-9
  • Herken H, Uz E, Ozyurt H, et al. Evidence that the activities of erythrocyte free radical scavenging enzymes and the products of lipid peroxidation are increased in different forms of schizophrenia. Mol Psychiatry 2001;6:66-73
  • Lohr JB, Underhill S, Moir S, Jeste V. Increased indices of free radical activity in the cerebrospinal fluid of patients with tardive dyskinesia. Biol Psychiatry 1990;28:535-9
  • Zhang XY, Zhou DF, Cao LY, et al. Elevated blood superoxide dismutase in neuroleptic-free schizophrenia: association with positive symptoms. Psychiatry Res 2003;117:85-8
  • Yao JK, Reddy RD, van Kammen DP. Oxidative damage and schizophrenia: an overview of the evidence and its therapeutic implications. CNS Drugs 2001;15:287-310
  • Zhang XY, Zhou DF, Zhang PY, et al. A double-blind, placebo-controlled trial of extract of Ginkgo biloba added to haloperidol in treatment-resistant patients with schizophrenia. J Clin Psychiatry 2001a;62:878-83
  • Mahadik SP, Evans DR. Is schizophrenia a metabolic brain disorder? Membrane phospholipid dysregulation and its therapeutic implications. Psychiatr Clin North Am 2003;26:85-102
  • Frohman EM, Racke MK, Raine CS. Multiple sclerosis-the plaque and its pathogenesis. N Engl J Med 2006;354:942-55
  • Horssen JV, Schreibelt G, Drexhage J, et al. Severe oxidative damage in multiple sclerosis lesions coincides with enhanced antioxidant enzyme expression. Free Radical Biol Med 2008;45:1729-37
  • Bruck W, Stadelmann C. The spectrum of multiple sclerosis: new lessons from pathology. Curr Opin Neurol 2005;18:221-4
  • Mirshafiey A, Mohsenzadegan M. Antioxidant therapy in multiple sclerosis. Immunopharmacol Immunotoxicol 2009;31:13-29
  • Hendriks JJ, Teunissen CE, de Vries HE, Dijkstra CD. Macrophages and neurodegeneration. Brain Res Brain Res Rev 2005;48:185-95
  • Rotrosen J, Adler L, Lohr J, et al. Antioxidant treatment of tardive dyskinesia. Prostaglandins Leukot Essent Fatty Acids 1996;55:77-81
  • Shriqui CL, Bradwejn J, Annable L Jones BD. Vitamin E in the treatment of tardive dyskinesia: a double-blind placebo-controlled study. Am J Psychiatry 1992;149:391-3
  • Migliore L, Coppede F. Environmental-induced oxidative stress in neurodegenerative disorders and aging. Mutat Res 2009;674:73-84
  • Hosokawa K, Chen P, Lavin MF, Bottle SE. The impact of carboxy nitroxide antioxidants on irradiated ataxia telangiectasia cells. Free Radical Biol Med 2004;37:946-52
  • Shiloh Y. ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 2003;3:155-68
  • Gatei M, Shkedy D, Khanna K, et al. Ataxia-telangiectasia: chronic activation of damage-responsive functions is reduced by alpha lipoic acid. Oncogene 2001;20:289-94
  • Reichenbach J, Schubert R, Schwan C, et al. Antioxidant capacity in patients with ataxia telangiectasia. Clin Exp Immunol 1999;117:535-9
  • Marmolino D. Friedreich’s ataxia: past, present and future. Brain Res Rev 2011;67:311-30
  • Sies H. editior Oxidative stress: oxidants and antioxidants. Academic Press, London, UK; 1991. p. XV-XXII
  • Reed TT. Lipid peroxidation and neurodegenerative disease. Free Radical Biol Med 2011;51:1302-19
  • Zamocky M, Koller F. Understanding the structure and function of catalases: clues from molecular evolution and in vitro mutagenesis. Prog Biophys Mol Biol 1999;72:19-66
  • Pastore A, Federici G, Bertini E, Piemonte F. Analysis of glutathione: implication in redox and detoxification. Clin Chim Acta 2003;333:19-39
  • Packer L, Witt EH, Tritschler HJ. Alpha-lipoic acid as a biological antioxidant. Free Radical Biol Med 1995;19:227-50
  • Gad MZ. Anti-aging effects of l-arginine. J Adv Res 2010;1:169-77
  • Smita EN, Muskieta FAJ, Boersma ER. The possible role of essential fatty acids in the pathophysiology of malnutrition: a review. Prostaglandins Leukot Essent Fatty Acids 2004;71:241-50
  • Rao AV, Rao LG. Carotenoids and human health. Pharmacol Res 2007;55:207-16
  • Esposito E, Rotilio D, Matteo VD, et al. A review of specific dietary antioxidants and the effects on biochemical mechanisms related to neurodegenerative processes. Neurobiol Aging 2002;23:719-35
  • Williams RJ, Spencer JPE, Rice-Evans C. Flavonoids: antioxidants or signalling molecules? Free Radical Biol Med 2004;36:838-49
  • Palace VP, Khaper N, Qin Q, Singal PK. Antioxidant potentials of vitamin A and carotenoids and their relevance to heart disease. Free Radical Biol Med 1999;26:746-61
  • Kim DO, Lee KW, Lee HJ, Lee CY. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J Agric Food Chem 2002;50:3713-17
  • Traber MG, Atkinson J. Vitamin E, antioxidant and nothing more. Free Radical Biol Med 2007;43:4-15
  • Yossi GS, Eldad M, Daniel O. Oxidative stress induced neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology 2001;40:959-75
  • Vatassery GT, Vitamin E. Neurochemistry and implication for Parkinson’s disease. Ann N Y Acad Sci 1992;669:92-110
  • Sano M, Erresto C, Thomas RG, et al. A controlled trial of selegiline, alpha tocopherol or both as treatment for Alzheimer’s disease. N Engl J Med 1997;336:1216-22
  • Dexter DT, Nanayakkaral A, Goss-Sampson MA. Nigral dopaminergic loss in vitamin E deficient rats. Neuroreport 1994;5:1773-6
  • Cadet JL, Katz M, Jackson-Lewis V, Fahn S. Vitamin E attenuates the toxic effects of intrastriated injection of 6-hydroxydopamine (6-OHDA) in rats: behavioral and biochemical evidence. Brain Res 1989;476:10-15
  • Perumal AS, Gopal VB, Tordzro WK, et al. Vitamin E attenuates the toxic effects of 6-hydoxydopamine on free radical scavenging system in rat brain. Brain Res Bull 1992;29:699-701
  • Tanner C. Epidemiology of Parkinson’s disease. Neurol Clin 1992;10:317-27
  • Peyser CE, Folstein M, Chase GA, et al. Trial of α-tocopherol in Huntington’s disease. Am J Psychiatry 1995;152:1771-5
  • Lohr JB, Caligiuri MP. A double-blind placebo-controlled study of vitamin E treatment of tardive dyskinesia. J Clin Psychiatry 1996;57:167-73
  • Rose RC, Bote AM. Biology of free radical scavengers: an evaluation of ascorbate. FASEB J 1993;7:1135-42
  • Agus DB, Sanjiv SG, Pardridge WM, et al. Vitamin C crosses the blood brain barrier in the oxidized form through the glucose transporters. J Clin Invest 1997;100:2842-8
  • Morris MC, Bechett LA, Scherr PA, et al. Vitamin E and vitamin C supplement use and risk of incident Alzheimer’s Disease. Alzheimer Dis Assoc Disord 1998;12:121-6
  • Masaki KH, White LR, Petrovitch H, et al. The influence of prior and concurrent use of aspirin and vitamins on cognitive function scores in elderly Japanese American men. Neurobiol Aging 1994;1:574
  • Macdonald PN, Boh D, Ong DE. Localization of cellular retinol binding protein and retinol-binding protein in cells comprising the blood brain barrier of rat and human. Proc Natl Acad Sci USA 1990;87:4265-9
  • Patmanatha ND. Effects of vitamin A and its analogs on nonenzymatic lipid peroxidation in rat brain mitochondria. J Neurochem 1989;52:585-8
  • Stoll S, Rostoch A, Bartsch R, et al. The potent free radical scavenger alpha-lipoic acid improves cognition in rodents. Ann N Y Acad Sci 1994;717:122-8
  • Greenmayere JT, Garcia-Osuna N, Greene JG. The endogenous cofactors, thioctic acid lesions and dihydrolipoic acid, are neuroprotective against NMDA and malonic acid lesions of striatum. Neurosci Lett 1994;171:17-20
  • Packer L, Tritschler H, Wessel K. Neuroprotection by the metabolic antioxidant and α-lipoic acid. Free Radical Biol Med 1997;22:359-78
  • Rice-Evans C. Flavonoid antioxidants. Curr Med Chem 2001;8:797-807
  • Schroeter H, Williams RJ, Matin R, et al. Phenolic antioxidants attenuate neuronal cell death following uptake of oxidized low- density lipoprotein. Free Radical Biol Med 2000;29:1222-33
  • Koh SH, Lee SM, Kim HY, et al. The effect of epigallocatechin gallate on suppressing disease progression of ALS model mice. Neurosci Lett 2006;395:103-7
  • Ortega-Arellano HF, Jimenez-Del-Rio M, Velez-Pardo C. Life span and locomotor activity modification by glucose and polyphenols in Drosophila melanogaster chronically exposed to oxidative stress-stimuli: implications in Parkinson’s disease. Neurochem Res 2011;36:1073-86
  • Zhang L, Cao H, Wen J, Xu M. Green tea polyphenol (−) epigallocatechin-3- gallate enhances the inhibitory effect of huperzine A on acetylcholinesterase by increasing the affinity with serum albumin. Nutr Neurosci 2009;12:142-8
  • Chang-Mu C, Jen-Kun L, Shing-Hwa L, Shoei-Yn LS. Characterization of neurotoxic effects of NMDA and the novel neuroprotection by phytopolyphenols in mice. Behav Neurosci 2010;124:541-53
  • Wang CY, Zheng W, Wang T, et al. Huperzine A activates Wnt/beta-catenin signaling and enhances the nonamyloidogenic pathway in an Alzheimer transgenic mouse model. Neuropsychopharmacol 2011;36:1073-89
  • Wang R, Tang XC. Neuroprotective effects of huperzine A. A natural cholinesterase inhibitor for the treatment of Alzheimer’s disease. Neurosignals 2005;14:71-82
  • Ma X, Tan C, Zhu D, et al. Huperzine A from Huperzia species- an ethnopharmacolgical review. J Ethnopharmacol 2007;113:15-34
  • Wang R, Yan H, Tang XC. Progress in studies of huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine. Acta Pharmacol Sin 2006;27:1-26
  • Zhang Z, Wang X, Chen Q, et al. [Clinical efficacy and safety of huperzine Alpha in treatment of mild to moderate Alzheimer disease, a placebo-controlled, double-blind, randomized trial]. Zhonghua Yi Xue Za Zhi 2002;82:941-4
  • Chang-Mu C, Jen-Kun L, Shing-Hwa L, Shoei-Yn LS. Characterization of neurotoxic effects of NMDA and the novel neuroprotection by phytopolyphenols in mice. Behav Neurosci 2010;124:541-53
  • Campos-Esparza MR, Sanchez-Gomez MV, Matute C. Molecular mechanisms of neuroprotection by two natural antioxidant polyphenols. Cell Calcium 2009;45:358-68
  • Riviere C, Richard T, Vitrac X, et al. New polyphenols active on beta-amyloid aggregation. Bioorg Med Chem Lett 2008;18:828-31
  • Vingtdeux V, Giliberto L, Zhao H, et al. AMP activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. J Biol Chem 2010;285:9100-13

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.