387
Views
46
CrossRef citations to date
0
Altmetric
Review

Multitasking models for quantitative structure–biological effect relationships: current status and future perspectives to speed up drug discovery

&

Bibliography

  • Satyanarayanajois SD, editor. Drug design and discovery: methods and protocols. Humana Press, Springer Science+Business Media, LLC, New York; 2011
  • Abraham DJ. editor. Burger’s medicinal chemistry and drug discovery. 6th edition. John Wiley and Sons, Inc., Hoboken, New Jersey; 2003
  • Bleicher KH, Bohm HJ, Muller K, et al. Hit and lead generation: beyond high-throughput screening. Nat Rev Drug Discov 2003;2:369-78
  • Jahnke W, Erlanson DA. Fragment-based approaches in drug discovery. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany; 2006
  • Paul SM, Mytelka DS, Dunwiddie CT, et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 2010;9:203-14
  • Gasteiger J. Handbook of chemoinformatics. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; 2003
  • Oprea T. Chemoinformatics in drug discovery. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; 2005
  • Manly CJ, Louise-May S, Hammer JD. The impact of informatics and computational chemistry on synthesis and screening. Drug Discov Today 2001;6:1101-10
  • Gonzalez-Diaz H, Torres-Gomez LA, Guevara Y, et al. Markovian chemicals “in silico” design (MARCH-INSIDE), a promising approach for computer-aided molecular design III: 2.5D indices for the discovery of antibacterials. J Mol Model 2005;11:116-23
  • Gonzalez-Diaz H, Bonet I, Teran C, et al. ANN-QSAR model for selection of anticancer leads from structurally heterogeneous series of compounds. Eur J Med Chem 2007;42:580-5
  • Marrero-Ponce Y, Medina-Marrero R, Torrens F, et al. Atom, atom-type, and total nonstochastic and stochastic quadratic fingerprints: a promising approach for modeling of antibacterial activity. Bioorg Med Chem 2005;13:2881-99
  • Marrero-Ponce Y, Marrero RM, Torrens F, et al. Non-stochastic and stochastic linear indices of the molecular pseudograph’s atom-adjacency matrix: a novel approach for computational in silico screening and “rational” selection of new lead antibacterial agents. J Mol Model 2006;12:255-71
  • Le-Thi-Thu H, Casanola-Martin GM, Marrero-Ponce Y, et al. Novel coumarin-based tyrosinase inhibitors discovered by OECD principles-validated QSAR approach from an enlarged, balanced database. Mol Divers 2011;15:507-20
  • Deng ZL, Du CX, Li X, et al. Exploring the biologically relevant chemical space for drug discovery. J Chem Inf Model 2013;53:2820-8
  • Chen B, Sheridan RP, Hornak V, et al. Comparison of random forest and Pipeline Pilot Naive Bayes in prospective QSAR predictions. J Chem Inf Model 2012;52:792-803
  • Speck-Planche A, Cordeiro MNDS. Computer-aided drug design methodologies toward the design of anti-hepatitis C agents. Curr Top Med Chem 2012;12:802-13
  • Speck-Planche A, Kleandrova VV. QSAR and molecular docking techniques for the discovery of potent monoamine oxidase B inhibitors: computer-aided generation of new rasagiline bioisosteres. Curr Top Med Chem 2012;12:1734-47
  • Desai PV, Sawada GA, Watson IA, et al. Integration of in silico and in vitro tools for scaffold optimization during drug discovery: predicting P-glycoprotein efflux. Mol Pharm 2013;10:1249-61
  • Pham-The H, Garrigues T, Bermejo M, et al. Provisional classification and in silico study of biopharmaceutical system based on caco-2 cell permeability and dose number. Mol Pharm 2013;10:2445-61
  • Zheng M, Luo X, Shen Q, et al. Site of metabolism prediction for six biotransformations mediated by cytochromes P450. Bioinformatics 2009;25:1251-8
  • Zaretzki J, Rydberg P, Bergeron C, et al. RS-Predictor models augmented with SMARTCyp reactivities: robust metabolic regioselectivity predictions for nine CYP isozymes. J Chem Inf Model 2012;52:1637-59
  • Ghafourian T, Amin Z. QSAR models for the prediction of plasma protein binding. Bioimpacts 2013;3:21-7
  • Zhu H, Martin TM, Ye L, et al. Quantitative structure-activity relationship modeling of rat acute toxicity by oral exposure. Chem Res Toxicol 2009;22:1913-21
  • Sazonovas A, Japertas P, Didziapetris R. Estimation of reliability of predictions and model applicability domain evaluation in the analysis of acute toxicity (LD50). SAR QSAR Environ Res 2010;21:127-48
  • Lu J, Peng J, Wang J, et al. Estimation of acute oral toxicity in rat using local lazy learning. J Cheminform 2014;6:26
  • Li X, Chen L, Cheng F, et al. In silico prediction of chemical acute oral toxicity using multi-classification methods. J Chem Inf Model 2014;54:1061-9
  • Gonzalez-Diaz H, Prado-Prado FJ, Santana L, et al. Unify QSAR approach to antimicrobials. Part 1: predicting antifungal activity against different species. Bioorg Med Chem 2006;14:5973-80
  • Prado-Prado FJ, Gonzalez-Diaz H, Santana L, et al. Unified QSAR approach to antimicrobials. Part 2: predicting activity against more than 90 different species in order to halt antibacterial resistance. Bioorg Med Chem 2007;15:897-902
  • Gonzalez-Diaz H, Prado-Prado FJ. Unified QSAR and network-based computational chemistry approach to antimicrobials, part 1: multispecies activity models for antifungals. J Comput Chem 2008;29:656-67
  • Prado-Prado FJ, Gonzalez-Diaz H, de la Vega OM, et al. Unified QSAR approach to antimicrobials. Part 3: first multi-tasking QSAR model for input-coded prediction, structural back-projection, and complex networks clustering of antiprotozoal compounds. Bioorg Med Chem 2008;16:5871-80
  • Prado-Prado FJ, Borges F, Perez-Montoto LG, et al. Multi-target spectral moment: QSAR for antifungal drugs vs. different fungi species. Eur J Med Chem 2009;44:4051-6
  • Prado-Prado FJ, Borges F, Uriarte E, et al. Multi-target spectral moment: QSAR for antiviral drugs vs. different viral species. Anal Chim Acta 2009;651:159-64
  • Prado-Prado FJ, Martinez de la Vega O, Uriarte E, et al. Unified QSAR approach to antimicrobials. 4. Multi-target QSAR modeling and comparative multi-distance study of the giant components of antiviral drug-drug complex networks. Bioorg Med Chem 2009;17:569-75
  • Prado-Prado FJ, Uriarte E, Borges F, et al. Multi-target spectral moments for QSAR and Complex Networks study of antibacterial drugs. Eur J Med Chem 2009;44:4516-21
  • Vina D, Uriarte E, Orallo F, et al. Alignment-free prediction of a drug-target complex network based on parameters of drug connectivity and protein sequence of receptors. Mol Pharm 2009;6:825-35
  • Prado-Prado FJ, Garcia-Mera X, Gonzalez-Diaz H. Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species. Bioorg Med Chem 2010;18:2225-31
  • Marzaro G, Chilin A, Guiotto A, et al. Using the TOPS-MODE approach to fit multi-target QSAR models for tyrosine kinases inhibitors. Eur J Med Chem 2011;46:2185-92
  • Prado-Prado F, Garcia-Mera X, Abeijon P, et al. Using entropy of drug and protein graphs to predict FDA drug-target network: theoretic-experimental study of MAO inhibitors and hemoglobin peptides from Fasciola hepatica. Eur J Med Chem 2011;46:1074-94
  • Speck-Planche A, Kleandrova VV, Luan F, et al. Fragment-based QSAR model toward the selection of versatile anti-sarcoma leads. Eur J Med Chem 2011;46:5910-16
  • Speck-Planche A, Kleandrova VV, Luan F, et al. Multi-target drug discovery in anti-cancer therapy: fragment-based approach toward the design of potent and versatile anti-prostate cancer agents. Bioorg Med Chem 2011;19:6239-44
  • Molina E, Sobarzo-Sanchez E, Speck-Planche A, et al. Monoamino oxidase a: an interesting pharmacological target for the development of multi-target QSAR. Mini Rev Med Chem 2012;12:947-58
  • Speck-Planche A, Kleandrova VV. In silico design of multi-target inhibitors for C-C chemokine receptors using substructural descriptors. Mol Divers 2012;16:183-91
  • Speck-Planche A, Kleandrova VV, Luan F, et al. Rational drug design for anti-cancer chemotherapy: multi-target QSAR models for the in silico discovery of anti-colorectal cancer agents. Bioorg Med Chem 2012;20:4848-55
  • Speck-Planche A, Kleandrova VV, Luan F, et al. A ligand-based approach for the in silico discovery of multi-target inhibitors for proteins associated with HIV infection. Mol Biosyst 2012;8:2188-96
  • Speck-Planche A, Kleandrova VV, Luan F, et al. Chemoinformatics in anti-cancer chemotherapy: multi-target QSAR model for the in silico discovery of anti-breast cancer agents. Eur J Pharm Sci 2012;47:273-9
  • Speck-Planche A, Kleandrova VV, Luan F, et al. In silico discovery and virtual screening of multi-target inhibitors for proteins in Mycobacterium tuberculosis. Comb Chem High Throughput Screen 2012;15:666-73
  • Speck-Planche A, Kleandrova VV, Luan F, et al. Chemoinformatics in multi-target drug discovery for anti-cancer therapy: in silico design of potent and versatile anti-brain tumor agents. Anticancer Agents Med Chem 2012;12:678-85
  • Speck-Planche A, Luan F, Cordeiro MNDS. Abelson tyrosine-protein kinase 1 as principal target for drug discovery against leukemias. Role of the current computer-aided drug design methodologies. Curr Top Med Chem 2012;12:2745-62
  • Tenorio-Borroto E, Penuelas Rivas CG, Vasquez Chagoyan JC, et al. ANN multiplexing model of drugs effect on macrophages; theoretical and flow cytometry study on the cytotoxicity of the anti-microbial drug G1 in spleen. Bioorg Med Chem 2012;20:6181-94
  • Tenorio-Borroto E, Penuelas-Rivas CG, Vasquez-Chagoyan JC, et al. Immunotoxicity, flow cytometry, and chemoinformatics: review, bibliometric analysis, and new QSAR model of drug effects over macrophages. Curr Top Med Chem 2012;12:1815-33
  • Tenorio-Borroto E, Garcia-Mera X, Penuelas-Rivas CG, et al. Entropy model for multiplex drug-target interaction endpoints of drug immunotoxicity. Curr Top Med Chem 2013;13:1636-49
  • Tenorio-Borroto E, Penuelas-Rivas CG, Vasquez-Chagoyan JC, et al. Model for high-throughput screening of drug immunotoxicity - Study of the anti-microbial G1 over peritoneal macrophages using flow cytometry. Eur J Med Chem 2014;72:206-20
  • Luan F, Cordeiro MNDS, Alonso N, et al. TOPS-MODE model of multiplexing neuroprotective effects of drugs and experimental-theoretic study of new 1,3-rasagiline derivatives potentially useful in neurodegenerative diseases. Bioorg Med Chem 2013;21:1870-9
  • Alonso N, Caamano O, Romero-Duran FJ, et al. Model for high-throughput screening of multitarget drugs in chemical neurosciences: synthesis, assay, and theoretic study of rasagiline carbamates. ACS Chem Neurosci 2013;4:1393-403
  • Romero Duran FJ, Alonso N, Caamano O, et al. Prediction of multi-target networks of neuroprotective compounds with entropy indices and synthesis, assay, and theoretical study of new asymmetric 1,2-rasagiline carbamates. Int J Mol Sci 2014;15:17035-64
  • Speck-Planche A, Kleandrova VV, Cordeiro MNDS. Chemoinformatics for rational discovery of safe antibacterial drugs: simultaneous predictions of biological activity against streptococci and toxicological profiles in laboratory animals. Bioorg Med Chem 2013;21:2727-32
  • Speck-Planche A, Kleandrova VV, Cordeiro MNDS. New insights toward the discovery of antibacterial agents: multi-tasking QSBER model for the simultaneous prediction of anti-tuberculosis activity and toxicological profiles of drugs. Eur J Pharm Sci 2013;48:812-18
  • Speck-Planche A, Cordeiro MNDS. Simultaneous modeling of antimycobacterial activities and ADMET profiles: a chemoinformatic approach to medicinal chemistry. Curr Top Med Chem 2013;13:1656-65
  • Speck-Planche A, Cordeiro MNDS. Simultaneous virtual prediction of anti-Escherichia coli activities and ADMET profiles: a chemoinformatic complementary approach for high-throughput screening. ACS Comb Sci 2014;16:78-84
  • Speck-Planche A, Cordeiro MN. Review of current chemoinformatic tools for modeling important aspects of CYPs-mediated drug metabolism. Integrating metabolism data with other biological profiles to enhance drug discovery. Curr Drug Metab 2014;15:429-40
  • Gaulton A, Bellis LJ, Bento AP, et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 2012;40:D1100-7
  • Estrada E, Gutiérrez Y. MODESLAB. v1.5. Santiago de Compostela, 2002-2004
  • Estrada E. Spectral moments of the edge adjacency matrix in molecular graphs. 1. Definition and applications for the prediction of physical properties of alkanes. J Chem Inf Comput Sci 1996;36:844-9
  • Estrada E. Spectral moments of the edge adjacency matrix in molecular graphs. 2. Molecules containing heteroatoms and QSAR applications. J Chem Inf Comput Sci 1997;37:320-8
  • Estrada E. Spectral moments of the edge adjacency matrix in molecular graphs. 3. Molecules containing cycles. J Chem Inf Comput Sci 1998;38:23-7
  • Kier LB, Hall LH. Molecular connectivity in structure-activity analysis. Research Studies Press, Wiley, Letchworth, Hertfordshire, England, New York; 1986
  • Estrada E. Edge adjacency relationship and a novel topological index related to molecular volume. J Chem Inf Comput Sci 1995;35:31-3
  • Kier LB. A shape index from molecular graphs. Quant Struct-Act Relat 1985;4:109-16
  • Kier LB. Distinguishing atom differences in a molecular graph shape index. Quant Struct-Act Relat 1986;5:7-12
  • Wiener H. Structural determination of paraffin boiling points. J Am Chem Soc 1947;69:17-20
  • Ivanciuc O, Balaban T-S, Balaban AT. Design of topological indices. Part 4. Reciprocal distance matrix, related local vertex invariants and topological indices. J Math Chem 1993;12:309-18
  • Balaban AT. Highly discriminating distance-based topological index. Chem Phys Lett 1982;89:399-404
  • González-Díaz H, Molina RR, Hernández SI. MARCH-INSIDE. v2.0. Villa Clara, Cuba: 2003
  • Marrero-Ponce Y, Valdés-Martini JR, García-Jacas CR, et al. TOMOCOMD-CARDD. Module QUBILs-MAS. v1.0. Santa Clara, Villa Clara; 2012
  • Burke B, Lewis CE, editors. The Macrophage. 2nd edition. Oxford University Press, Oxford; 2002
  • De Groot AS, Scott DW. Immunogenicity of protein therapeutics. Trends Immunol 2007;28:482-90
  • Baker M, Carr F. Pre-clinical considerations in the assessment of immunogenicity for protein therapeutics. Curr Drug Saf 2010;5:308-13
  • Jawa V, Cousens LP, Awwad M, et al. T-cell dependent immunogenicity of protein therapeutics: preclinical assessment and mitigation. Clin Immunol 2013;149:534-55
  • Blondeau JM, Castanedo N, Gonzalez O, et al. In vitro evaluation of G1: a novel antimicrobial compound. Int J Antimicrob Agents 1999;11:163-6
  • Statsoft-Team. STATISTICA. Data analysis software system. v6.0. Tulsa; 2001
  • Mackenzie GA, Leach AJ, Carapetis JR, et al. Epidemiology of nasopharyngeal carriage of respiratory bacterial pathogens in children and adults: cross-sectional surveys in a population with high rates of pneumococcal disease. BMC Infect Dis 2010;10:304
  • Aziz RK, Kansal R, Aronow BJ, et al. Microevolution of group A streptococci in vivo: capturing regulatory networks engaged in sociomicrobiology, niche adaptation, and hypervirulence. PLoS One 2010;5:e9798
  • El Aila NA, Tency I, Claeys G, et al. Genotyping of Streptococcus agalactiae (group B streptococci) isolated from vaginal and rectal swabs of women at 35-37 weeks of pregnancy. BMC Infect Dis 2009;9:153
  • Feuerriegel S, Oberhauser B, George AG, et al. Sequence analysis for detection of first-line drug resistance in Mycobacterium tuberculosis strains from a high-incidence setting. BMC Microbiol 2012;12:90
  • Lautenbach E, Abrutyn E. Healthcare-acquired bacterial infections. In: Brachman PS, Abrutyn E, editors. Bacterial infections of humans: epidemiology and control. 4th edition. Springer Science+Business Media, LLC, New York, NY; 2009. p. 543-75
  • Grayson ML, Crowe SM, McCarthy JS, et al. editors. Kucers’ the use of antibiotics. A clinical review of antibacterial, antifungal, antiparasitic, and antiviral drugs. 6th edition. CRC Press, Taylor & Francis Group, LLC, Boca Raton, FL; 2010
  • Croucher NJ, Harris SR, Fraser C, et al. Rapid pneumococcal evolution in response to clinical interventions. Science 2011;331:430-4
  • Cordero OX, Wildschutte H, Kirkup B, et al. Ecological populations of bacteria act as socially cohesive units of antibiotic production and resistance. Science 2012;337:1228-31
  • Rossolini GM, Mantengoli E. Antimicrobial resistance in Europe and its potential impact on empirical therapy. Clin Microbiol Infect 2008;14(Suppl 6):2-8
  • Villemagne B, Crauste C, Flipo M, et al. Tuberculosis: the drug development pipeline at a glance. Eur J Med Chem 2012;51:1-16
  • Marrero-Ponce Y. Total and local quadratic indices of the molecular pseudograph’s atom adjacency matrix: applications to the prediction of physical properties of organic compounds. Molecules 2003;8:687-726
  • Marrero-Ponce Y, Cabrera Pérez MA, Romero Zaldivar V, et al. Total and local quadratic indices of the “Molecular pseudograph’s atom adjacency matrix”. Application to prediction of Caco-2 permeability of drugs. Int J Mol Sci 2003;4:512-36
  • Mok NY, Brenk R. Mining the ChEMBL database: an efficient chemoinformatics workflow for assembling an ion channel-focused screening library. J Chem Inf Model 2011;51:2449-54
  • Hill T, Lewicki P. Statistics methods and applications. a comprehensive reference for science, industry and data mining. StatSoft, Tulsa; 2006
  • Sahigara F, Mansouri K, Ballabio D, et al. Comparison of different approaches to define the applicability domain of QSAR models. Molecules 2012;17:4791-810
  • Baskin II, Skvortsova MI, Stankevich IV, et al. On the basis of invariants of labeled molecular graphs. J Chem Inf Comput Sci 1995;35:527-31
  • Baskin I, Varnek A. Fragment descriptors in SAR/QSAR/QSPR studies, molecular similarity analysis and in virtual screening. In: Varnek A, Tropsha A, editors. Chemoinformatics approaches to virtual screening. Royal Society of Chemistry, Cambridge; 2008. p. 1-43
  • Zartler ER, Shapiro MJ, editors. Fragment-based drug discovery: a practical approach. JohnWiley & Sons, Ltd., Chichester, West Sussex; 2008
  • Oprea TI, Mestres J. Drug repurposing: far beyond new targets for old drugs. AAPS J 2012;14:759-63

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.