1,457
Views
77
CrossRef citations to date
0
Altmetric
Review

Drug discovery for alopecia: gone today, hair tomorrow

, & , PhD

Bibliography

  • Harel S, Christiano AM. Genetics of structural hair disorders. J Invest Dermatol 2012;132(E1):E22-6
  • Pagel M. What is the latest theory of why humans lost their body hair? Why are we the only hairless primate? Scientific American 2007
  • Semalty M, Semalty A, Joshi GP, et al. Hair growth and rejuvenation: an overview. J Dermatolog Treat 2011;22(3):123-32
  • The American Hair Loss Association. Available from: http://www.americanhairloss.org/ [Cited 9 January 2015]
  • Draelos ZK. Hair cosmetics. Dermatol Clin 1991;9(1):19-27
  • Schneider MR, Schmidt-Ullrich R, Paus R. The hair follicle as a dynamic miniorgan. Curr Biol 2009;19(3):R132-42
  • Mokos ZB, Mosler EL. Advances in a rapidly emerging field of hair follicle stem cell research. Coll Antropol 2014;38(1):373-8
  • Paus R, Cotsarelis G. The biology of hair follicles. N Engl J Med 1999;341(7):491-7
  • Paus R, Muller-Rover S, Van Der Veen C, et al. A comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis. J Invest Dermatol 1999;113(4):523-32
  • Sennett R, Rendl M. Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling. Semin Cell Dev Biol 2012;23(8):917-27
  • Oro AE, Scott MP. Splitting hairs: dissecting roles of signaling systems in epidermal development. Cell 1998;95(5):575-8
  • Jahoda CA, Reynolds AJ. Dermal-epidermal interactions. Adult follicle-derived cell populations and hair growth. Dermatol Clin 1996;14(4):573-83
  • Peus D, Pittelkow MR. Growth factors in hair organ development and the hair growth cycle. Dermatol Clin 1996;14(4):559-72
  • Cotsarelis G, Sun TT, Lavker RM. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 1990;61(7):1329-37
  • Mayer JA, Chuong CM, Widelitz R. Rooster feathering, androgenic alopecia, and hormone-dependent tumor growth: what is in common? Differentiation 2004;72(9-10):474-88
  • Sano S, Kira M, Takagi S, et al. Two distinct signaling pathways in hair cycle induction: stat3-dependent and -independent pathways. Proc Natl Acad Sci USA 2000;97(25):13824-9
  • Rishikaysh P, Dev K, Diaz D, et al. Signaling involved in hair follicle morphogenesis and development. Int J Mol Sci 2014;15(1):1647-70
  • Andl T, Reddy ST, Gaddapara T, et al. WNT signals are required for the initiation of hair follicle development. Dev Cell 2002;2(5):643-53
  • Harris PJ, Takebe N, Ivy SP. Molecular conversations and the development of the hair follicle and basal cell carcinoma. Cancer Prev Res (Phila) 2010;3(10):1217-21
  • Mill P, Mo R, Fu H, et al. Sonic hedgehog-dependent activation of Gli2 is essential for embryonic hair follicle development. Genes Dev 2003;17(2):282-94
  • Chiang C, Swan RZ, Grachtchouk M, et al. Essential role for Sonic hedgehog during hair follicle morphogenesis. Dev Biol 1999;205(1):1-9
  • Botchkarev VA, Botchkareva NV, Roth W, et al. Noggin is a mesenchymally derived stimulator of hair-follicle induction. Nat Cell Biol 1999;1(3):158-64
  • Mou C, Jackson B, Schneider P, et al. Generation of the primary hair follicle pattern. Proc Natl Acad Sci USA 2006;103(24):9075-80
  • Pummila M, Fliniaux I, Jaatinen R, et al. Ectodysplasin has a dual role in ectodermal organogenesis: inhibition of Bmp activity and induction of Shh expression. Development 2007;134(1):117-25
  • Takechi M, Adachi N, Hirai T, et al. The Dlx genes as clues to vertebrate genomics and craniofacial evolution. Semin Cell Dev Biol 2013;24(2):110-18
  • Hwang J, Mehrani T, Millar SE, et al. Dlx3 is a crucial regulator of hair follicle differentiation and cycling. Development 2008;135(18):3149-59
  • Hamanaka RB, Glasauer A, Hoover P, et al. Mitochondrial reactive oxygen species promote epidermal differentiation and hair follicle development. Sci Signal 2013;6(261):ra8
  • Aubin-Houzelstein G. Notch signaling and the developing hair follicle. Adv Exp Med Biol 2012;727:142-60
  • Millar SE. Molecular mechanisms regulating hair follicle development. J Invest Dermatol 2002;118(2):216-25
  • Taylor G, Lehrer MS, Jensen PJ, et al. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 2000;102(4):451-61
  • Ellis T, Gambardella L, Horcher M, et al. The transcriptional repressor CDP (Cutl1) is essential for epithelial cell differentiation of the lung and the hair follicle. Genes Dev 2001;15(17):2307-19
  • Li J, Zhou Y, Yang T, et al. Gsdma3 is required for hair follicle differentiation in mice. Biochem Biophys Res Commun 2010;403(1):18-23
  • Kim BK, Yoon SK. Hairless down-regulates expression of Msx2 and its related target genes in hair follicles. J Dermatol Sci 2013;71(3):203-9
  • Potter CS, Pruett ND, Kern MJ, et al. The nude mutant gene Foxn1 is a HOXC13 regulatory target during hair follicle and nail differentiation. J Invest Dermatol 2011;131(4):828-37
  • Jave-Suarez LF, Schweizer J. The HOXC13-controlled expression of early hair keratin genes in the human hair follicle does not involve TALE proteins MEIS and PREP as cofactors. Arch Dermatol Res 2006;297(8):372-6
  • Lin SJ, Wideliz RB, Yue Z, et al. Feather regeneration as a model for organogenesis. Dev Growth Differ 2013;55(1):139-48
  • Ponnaiyan D. Do dental stem cells depict distinct characteristics? - Establishing their “phenotypic fingerprint”. Dent Res J (Isfahan) 2014;11(2):163-72
  • Shibata D. Inferring human stem cell behaviour from epigenetic drift. J Pathol 2009;217(2):199-205
  • Rebora A. Telogen effluvium revisited. G Ital Dermatol Venereol 2014;149(1):47-54
  • Guarrera M, Cardo P, Arrigo P, et al. Reliability of hamilton-norwood classification. Int J Trichology 2009;1(2):120-2
  • Herskovitz I, Tosti A. Female pattern hair loss. Int J Endocrinol Metab 2013;11(4):e9860
  • Guarrera M, Semino MT, Rebora A. Quantitating hair loss in women: a critical approach. Dermatology 1997;194(1):12-16
  • Kaufman KD. Androgens and alopecia. Mol Cell Endocrinol 2002;198(1-2):89-95
  • Levy-Nissenbaum E, Bar-Natan M, Frydman M, et al. Confirmation of the association between male pattern baldness and the androgen receptor gene. Eur J Dermatol 2005;15(5):339-40
  • Crabtree JS, Kilbourne EJ, Peano BJ, et al. A mouse model of androgenetic alopecia. Endocrinology 2010;151(5):2373-80
  • Kaliyadan F, Nambiar A, Vijayaraghavan S. Androgenetic alopecia: an update. Indian J Dermatol Venereol Leprol 2013;79(5):613-25
  • Poor V, Juricskay S, Telegdy E. Urinary steroids in men with male-pattern alopecia. J Biochem Biophys Methods 2002;53(1-3):123-30
  • Leiros GJ, Attorresi AI, Balana ME. Hair follicle stem cell differentiation is inhibited through cross-talk between Wnt/beta-catenin and androgen signalling in dermal papilla cells from patients with androgenetic alopecia. Br J Dermatol 2012;166(5):1035-42
  • Dong L, Hao H, Xia L, et al. Treatment of MSCs with Wnt1a-conditioned medium activates DP cells and promotes hair follicle regrowth. Sci Rep 2014;4:5432
  • Platz EA, Pollak MN, Willett WC, et al. Vertex balding, plasma insulin-like growth factor 1, and insulin-like growth factor binding protein 3. J Am Acad Dermatol 2000;42(6):1003-7
  • Kamiya T, Shirai A, Kawashima S, et al. Hair follicle elongation in organ culture of skin from newborn and adult mice. J Dermatol Sci 1998;17(1):54-60
  • Philpott MP, Sanders DA, Kealey T. Effects of insulin and insulin-like growth factors on cultured human hair follicles: IGF-I at physiologic concentrations is an important regulator of hair follicle growth in vitro. J Invest Dermatol 1994;102(6):857-61
  • Lurie R, Ben-Amitai D, Laron Z. Laron syndrome (primary growth hormone insensitivity): a unique model to explore the effect of insulin-like growth factor 1 deficiency on human hair. Dermatology 2004;208(4):314-18
  • Batch JA, Mercuri FA, Werther GA. Identification and localization of insulin-like growth factor-binding protein (IGFBP) messenger RNAs in human hair follicle dermal papilla. J Invest Dermatol 1996;106(3):471-5
  • Zhao J, Harada N, Okajima K. Dihydrotestosterone inhibits hair growth in mice by inhibiting insulin-like growth factor-I production in dermal papillae. Growth Horm IGF Res 2011;21(5):260-7
  • Li J, Yang Z, Li Z, et al. Exogenous IGF-1 promotes hair growth by stimulating cell proliferation and down regulating TGF-beta1 in C57BL/6 mice in vivo. Growth Horm IGF Res 2014;24(2-3):89-94
  • Shin SH, Joo HW, Kim MK, et al. Extracellular histones inhibit hair shaft elongation in cultured human hair follicles and promote regression of hair follicles in mice. Exp Dermatol 2012;21(12):956-8
  • Samuelov L, Sprecher E, Tsuruta D, et al. P-cadherin regulates human hair growth and cycling via canonical Wnt signaling and transforming growth factor-beta2. J Invest Dermatol 2012;132(10):2332-41
  • Inui S, Itami S. Androgen actions on the human hair follicle: perspectives. Exp Dermatol 2013;22(3):168-71
  • Garza LA, Liu Y, Yang Z, et al. Prostaglandin D2 inhibits hair growth and is elevated in bald scalp of men with androgenetic alopecia. Sci Transl Med 2012;4(126):126ra34
  • Ambros V. The functions of animal microRNAs. Nature 2004;431(7006):350-5
  • Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005;120(1):15-20
  • Sand M, Gambichler T, Sand D, et al. MicroRNAs and the skin: tiny players in the body’s largest organ. J Dermatol Sci 2009;53(3):169-75
  • Andl T, Murchison EP, Liu F, et al. The miRNA-processing enzyme dicer is essential for the morphogenesis and maintenance of hair follicles. Curr Biol 2006;16(10):1041-9
  • Goodarzi HR, Abbasi A, Saffari M, et al. MicroRNAs take part in pathophysiology and pathogenesis of Male Pattern Baldness. Mol Biol Rep 2010;37(6):2959-65
  • Goldman BE, Fisher DM, Ringler SL. Transcutaneous PO2 of the scalp in male pattern baldness: a new piece to the puzzle. Plast Reconstr Surg 1996;97(6):1109-16; discussion 17
  • Klemp P, Peters K, Hansted B. Subcutaneous blood flow in early male pattern baldness. J Invest Dermatol 1989;92(5):725-6
  • Philpott MP, Green MR, Kealey T. Human hair growth in vitro. J Cell Sci 1990;97(Pt 3):463-71
  • Higgins CA, Christiano AM. Regenerative medicine and hair loss: how hair follicle culture has advanced our understanding of treatment options for androgenetic alopecia. Regen Med 2014;9(1):101-11
  • Philpott MP, Kealey T. Cyclical changes in rat vibrissa follicles maintained In vitro. J Invest Dermatol 2000;115(6):1152-5
  • Robinson M, Reynolds AJ, Jahoda CA. Hair cycle stage of the mouse vibrissa follicle determines subsequent fiber growth and follicle behavior in vitro. J Invest Dermatol 1997;108(4):495-500
  • Thornton MJ, Kato S, Hibberts NA, et al. Ability to culture dermal papilla cells from red deer (Cervus elaphus) hair follicles with differing hormonal responses in vivo offers a new model for studying the control of hair follicle biology. J Exp Zool 1996;275(6):452-8
  • Sundberg JP, King LE, Bascom C. Animal models for male pattern (androgenetic) alopecia. Eur J Dermatol 2001;11(4):321-5
  • Diani AR, Mills CJ. Immunocytochemical localization of androgen receptors in the scalp of the stumptail macaque monkey, a model of androgenetic alopecia. J Invest Dermatol 1994;102(4):511-14
  • Chesire DR, Isaacs WB. Ligand-dependent inhibition of beta-catenin/TCF signaling by androgen receptor. Oncogene 2002;21(55):8453-69
  • Ye F, Imamura K, Imanishi N, et al. Effects of topical antiandrogen and 5-alpha-reductase inhibitors on sebaceous glands in male fuzzy rats. Skin Pharmacol 1997;10(5-6):288-97
  • Park WS, Lee CH, Lee BG, et al. The extract of Thujae occidentalis semen inhibited 5alpha-reductase and androchronogenetic alopecia of B6CBAF1/j hybrid mouse. J Dermatol Sci 2003;31(2):91-8
  • Matias JR, Malloy V, Orentreich N. Animal models of androgen-dependent disorders of the pilosebaceous apparatus. 1. The androchronogenetic alopecia (AGA) mouse as a model for male-pattern baldness. Arch Dermatol Res 1989;281(4):247-53
  • Sundberg JP, Beamer WG, Uno H, et al. Androgenetic alopecia: in vivo models. Exp Mol Pathol 1999;67(2):118-30
  • Rittmaster RS. Finasteride. N Engl J Med 1994;330(2):120-5
  • Semalty A, Semalty M, Joshi GP, et al. Techniques for the discovery and evaluation of drugs against alopecia. Expert Opin Drug Discov 2011;6(3):309-21
  • Patzelt A, Lademann J. Drug delivery to hair follicles. Expert Opin Drug Deliv 2013;10(6):787-97
  • Lademann J, Knorr F, Richter H, et al. Hair follicles – an efficient storage and penetration pathway for topically applied substances. Summary of recent results obtained at the Center of Experimental and Applied Cutaneous Physiology, Charite -Universitatsmedizin Berlin, Germany. Skin Pharmacol Physiol 2008;21(3):150-5
  • Gupta M, Agrawal U, Vyas SP. Nanocarrier-based topical drug delivery for the treatment of skin diseases. Expert Opin Drug Deliv 2012;9(7):783-804
  • Islam N, Leung PS, Huntley A, et al. The autoimmune basis of alopecia areata: a comprehensive review. Autoimmun Rev 2015;14(2):81-9
  • Walker A, Mesinkovska NA, Boncher J, et al. Colocalization of vitiligo and alopecia areata presenting as poliosis. J Cutan Pathol 2014. [Epub ahead of print]
  • Jia WX, Mao QX, Xiao XM, et al. Patchy alopecia areata sparing gray hairs: a case series. Postepy Dermatol Alergol 2014;31(2):113-16
  • McElwee KJ, Boggess D, Olivry T, et al. Comparison of alopecia areata in human and nonhuman mammalian species. Pathobiology 1998;66(2):90-107
  • Petukhova L, Duvic M, Hordinsky M, et al. Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature 2010;466(7302):113-17
  • Gregoriou S, Papafragkaki D, Kontochristopoulos G, et al. Cytokines and other mediators in alopecia areata. Mediators Inflamm 2010;2010:928030
  • Deeths MJ, Endrizzi BT, Irvin ML, et al. Phenotypic analysis of T-cells in extensive alopecia areata scalp suggests partial tolerance. J Invest Dermatol 2006;126(2):366-73
  • Freyschmidt-Paul P, Seiter S, Zoller M, et al. Treatment with an anti-CD44v10-specific antibody inhibits the onset of alopecia areata in C3H/HeJ mice. J Invest Dermatol 2000;115(4):653-7
  • McElwee KJ, Spiers EM, Oliver RF. Partial restoration of hair growth in the DEBR model for Alopecia areata after in vivo depletion of CD4+ T cells. Br J Dermatol 1999;140(3):432-7
  • Martinez-Mir A, Zlotogorski A, Ott J, et al. Genetic linkage studies in alopecia areata. J Investig Dermatol Symp Proc 2003;8(2):199-203
  • Martinez-Mir A, Zlotogorski A, Gordon D, et al. Genomewide scan for linkage reveals evidence of several susceptibility loci for alopecia areata. Am J Hum Genet 2007;80(2):316-28
  • Duncan FJ, Silva KA, Johnson CJ, et al. Endogenous retinoids in the pathogenesis of alopecia areata. J Invest Dermatol 2013;133(2):334-43
  • Colombe BW, Price VH, Khoury EL, et al. HLA class II antigen associations help to define two types of alopecia areata. J Am Acad Dermatol 1995;33(5 Pt 1):757-64
  • Colombe BW, Lou CD, Price VH. The genetic basis of alopecia areata: HLA associations with patchy alopecia areata versus alopecia totalis and alopecia universalis. J Investig Dermatol Symp Proc 1999;4(3):216-19
  • Jagielska D, Redler S, Brockschmidt FF, et al. Follow-up study of the first genome-wide association scan in alopecia areata: IL13 and KIAA0350 as susceptibility loci supported with genome-wide significance. J Invest Dermatol 2012;132(9):2192-7
  • Ito T, Ito N, Saatoff M, et al. Maintenance of hair follicle immune privilege is linked to prevention of NK cell attack. J Invest Dermatol 2008;128(5):1196-206
  • Xing L, Dai Z, Jabbari A, et al. Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition. Nat Med 2014;20(9):1043-9
  • Leung MC, Sutton CW, Fenton DA, et al. Trichohyalin is a potential major autoantigen in human alopecia areata. J Proteome Res 2010;9(10):5153-63
  • McElwee KJ, Boggess D, Miller J, et al. Spontaneous alopecia areata-like hair loss in one congenic and seven inbred laboratory mouse strains. J Investig Dermatol Symp Proc 1999;4(3):202-6
  • McElwee KJ, Hoffmann R. Alopecia areata - animal models. Clin Exp Dermatol 2002;27(5):410-17
  • Sun J, Silva KA, McElwee KJ, et al. The C3H/HeJ mouse and DEBR rat models for alopecia areata: review of preclinical drug screening approaches and results. Exp Dermatol 2008;17(10):793-805
  • Kyoizumi S, Suzuki T, Teraoka S, et al. Radiation sensitivity of human hair follicles in SCID-hu mice. Radiat Res 1998;149(1):11-18
  • Gilhar A, Keren A, Paus R. A new humanized mouse model for alopecia areata. J Investig Dermatol Symp Proc 2013;16(1):S37-8
  • Gu ME, Song XM, Zhu CF, et al. Breeding and preliminarily phenotyping of a congenic mouse model with alopecia areata. Dongwuxue Yanjiu 2014;35(4):249-55
  • Ito T. Advances in the management of alopecia areata. J Dermatol 2012;39(1):11-17
  • Singh G, Lavanya M. Topical immunotherapy in alopecia areata. Int J Trichology 2010;2(1):36-9
  • Buckley DA, Du Vivier AW. The therapeutic use of topical contact sensitizers in benign dermatoses. Br J Dermatol 2001;145(3):385-405
  • Happle R. Antigenic competition as a therapeutic concept for alopecia areata. Arch Dermatol Res 1980;267(1):109-14
  • Giaccia AJ, Kastan MB. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev 1998;12(19):2973-83
  • Paus R, Haslam IS, Sharov AA, et al. Pathobiology of chemotherapy-induced hair loss. Lancet Oncol 2013;14(2):e50-9
  • Jimenez JJ, Roberts SM, Mejia J, et al. Prevention of chemotherapy-induced alopecia in rodent models. Cell Stress Chaperones 2008;13(1):31-8
  • Xie G, Wang H, Yan Z, et al. Testing Chemotherapeutic Agents in the Feather Follicle Identifies a Selective Blockade of Cell Proliferation and a Key Role for Sonic Hedgehog Signaling in Chemotherapy-Induced Tissue Damage. J Invest Dermatol 2014. [Epub ahead of print]
  • Wang J, Lu Z, Au JL. Protection against chemotherapy-induced alopecia. Pharm Res 2006;23(11):2505-14
  • Wikramanayake TC, Amini S, Simon J, et al. A novel rat model for chemotherapy-induced alopecia. Clin Exp Dermatol 2012;37(3):284-9
  • Rose PT, Nusbaum B. Robotic hair restoration. Dermatol Clin 2014;32(1):97-107
  • Marshall BT, Ingraham CA, Wu X, et al. Future horizons in hair restoration. Facial Plast Surg Clin North Am 2013;21(3):521-8
  • Marazzi M, Crovato F, Bucco M, et al. GMP-compliant culture of human hair follicle cells for encapsulation and transplantation. Cell Transplant 2012;21(1):373-8
  • Chueh SC, Lin SJ, Chen CC, et al. Therapeutic strategy for hair regeneration: hair cycle activation, niche environment modulation, wound-induced follicle neogenesis, and stem cell engineering. Expert Opin Biol Ther 2013;13(3):377-91
  • Ito M, Yang Z, Andl T, et al. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 2007;447(7142):316-20
  • Kim WS, Lee HI, Lee JW, et al. Fractional photothermolysis laser treatment of male pattern hair loss. Dermatol Surg 2011;37(1):41-51
  • Lee GY, Lee SJ, Kim WS. The effect of a 1550 nm fractional erbium-glass laser in female pattern hair loss. J Eur Acad Dermatol Venereol 2011;25(12):1450-4
  • Lanzafame RJ, Blanche RR, Bodian AB, et al. The growth of human scalp hair mediated by visible red light laser and LED sources in males. Lasers Surg Med 2013;45(8):487-95
  • Wikramanayake TC, Villasante AC, Mauro LM, et al. Low-level laser treatment accelerated hair regrowth in a rat model of chemotherapy-induced alopecia (CIA). Lasers Med Sci 2013;28(3):701-6
  • Wikramanayake TC, Rodriguez R, Choudhary S, et al. Effects of the Lexington LaserComb on hair regrowth in the C3H/HeJ mouse model of alopecia areata. Lasers Med Sci 2012;27(2):431-6
  • Jimenez JJ, Wikramanayake TC, Bergfeld W, et al. Efficacy and safety of a low-level laser device in the treatment of male and female pattern hair loss: a multicenter, randomized, sham device-controlled, double-blind study. Am J Clin Dermatol 2014;15(2):115-27
  • Paus R. Therapeutic strategies for treating hair. loss. Drug Discov Today Ther Strateg 2006;3:101-10
  • Rossi A, Cantisani C, Melis L, et al. Minoxidil use in dermatology, side effects and recent patents. Recent Pat Inflamm Allergy Drug Discov 2012;6(2):130-6
  • Buhl AE, Waldon DJ, Conrad SJ, et al. Potassium channel conductance: a mechanism affecting hair growth both in vitro and in vivo. J Invest Dermatol 1992;98(3):315-19
  • Bazzano GS, Terezakis N, Galen W. Topical tretinoin for hair growth promotion. J Am Acad Dermatol 1986;15(4 Pt 2):880-3; 90-3
  • Caserini M, Radicioni M, Leuratti C, et al. A novel finasteride 0.25% topical solution for androgenetic alopecia: pharmacokinetics and effects on plasma androgen levels in healthy male volunteers. Int J Clin Pharmacol Ther 2014;52(10):842-9
  • Kaufman KD. Finasteride, 1 mg (Propecia), is the optimal dose for the treatment of men with male pattern hair loss. Arch Dermatol 1999;135(8):989-90
  • Olszewska M, Rudnicka L. Effective treatment of female androgenic alopecia with dutasteride. J Drugs Dermatol 2005;4(5):637-40
  • Jung JY, Yeon JH, Choi JW, et al. Effect of dutasteride 0.5 mg/d in men with androgenetic alopecia recalcitrant to finasteride. Int J Dermatol 2014;53(11):1351-7
  • Pan HJ, Wilding G, Uno H, et al. Evaluation of RU58841 as an anti-androgen in prostate PC3 cells and a topical anti-alopecia agent in the bald scalp of stumptailed macaques. Endocrine 1998;9(1):39-43
  • Yazdabadi A, Sinclair R. Treatment of female pattern hair loss with the androgen receptor antagonist flutamide. Australas J Dermatol 2011;52(2):132-4
  • Sovak M, Seligson AL, Kucerova R, et al. Fluridil, a rationally designed topical agent for androgenetic alopecia: first clinical experience. Dermatol Surg 2002;28(8):678-85
  • Scheinfeld N. A review of hormonal therapy for female pattern (androgenic) alopecia. Dermatol Online J 2008;14(3):1
  • Rathnayake D, Sinclair R. Innovative use of spironolactone as an antiandrogen in the treatment of female pattern hair loss. Dermatol Clin 2010;28(3):611-18
  • Fischer TW, Burmeister G, Schmidt HW, et al. Melatonin increases anagen hair rate in women with androgenetic alopecia or diffuse alopecia: results of a pilot randomized controlled trial. Br J Dermatol 2004;150(2):341-5
  • Khidhir KG, Woodward DF, Farjo NP, et al. The prostamide-related glaucoma therapy, bimatoprost, offers a novel approach for treating scalp alopecias. FASEB J 2013;27(2):557-67
  • Lee YB, Eun YS, Lee JH, et al. Effects of topical application of growth factors followed by microneedle therapy in women with female pattern hair loss: a pilot study. J Dermatol 2013;40(1):81-3
  • Castro RF, Azzalis LA, Feder D, et al. Safety and efficacy analysis of liposomal insulin-like growth factor-1 in a fluid gel formulation for hair-loss treatment in a hamster model. Clin Exp Dermatol 2012;37(8):909-12
  • Philp D, Nguyen M, Scheremeta B, et al. Thymosin beta4 increases hair growth by activation of hair follicle stem cells. FASEB J 2004;18(2):385-7
  • Shirai A, Ikeda J, Kawashima S, et al. KF19418, a new compound for hair growth promotion in vitro and in vivo mouse models. J Dermatol Sci 2001;25(3):213-18
  • Kim YY, Up No S, Kim MH, et al. Effects of topical application of EGCG on testosterone-induced hair loss in a mouse model. Exp Dermatol 2011;20(12):1015-17
  • Park HJ, Zhang N, Park DK. Topical application of Polygonum multiflorum extract induces hair growth of resting hair follicles through upregulating Shh and beta-catenin expression in C57BL/6 mice. J Ethnopharmacol 2011;135(2):369-75
  • Datta K, Singh AT, Mukherjee A, et al. Eclipta alba extract with potential for hair growth promoting activity. J Ethnopharmacol 2009;124(3):450-6
  • Zhang NN, Park DK, Park HJ. Hair growth-promoting activity of hot water extract of Thuja orientalis. BMC Complement Altern Med 2013;13:9
  • Hoffmann R, Rot A, Niiyama S, et al. Steroid sulfatase in the human hair follicle concentrates in the dermal papilla. J Invest Dermatol 2001;117(6):1342-8
  • Dugour A, Hagelin K, Smus C, et al. Silencing the androgen receptor: new skills for antiandrogen oligonucleotide skin and hair therapy. J Dermatol Sci 2009;54(2):123-5
  • Lenane P, Macarthur C, Parkin PC, et al. Clobetasol propionate, 0.05%, vs hydrocortisone, 1%, for alopecia areata in children: a randomized clinical trial. JAMA Dermatol 2014;150(1):47-50
  • Micali G, Cicero RL, Nasca MR, et al. Treatment of alopecia areata with squaric acid dibutylester. Int J Dermatol 1996;35(1):52-6
  • Chiang K, Atanaskova Mesinkovska N, Amoretti A, et al. Clinical efficacy of diphenylcyclopropenone in alopecia areata: retrospective data analysis of 50 patients. J Am Acad Dermatol 2014;71(3):595-7
  • Mohamed Z, Bhouri A, Jallouli A, et al. Alopecia areata treatment with a phototoxic dose of UVA and topical 8-methoxypsoralen. J Eur Acad Dermatol Venereol 2005;19(5):552-5
  • Aghaei S. An uncontrolled, open label study of sulfasalazine in severe alopecia areata. Indian J Dermatol Venereol Leprol 2008;74(6):611-13
  • Gorcey L, Spratt EA, Leger MC. Alopecia universalis successfully treated with adalimumab. JAMA Dermatol 2014;150(12):1341-4
  • Bui K, Polisetty S, Gilchrist H, et al. Successful treatment of alopecia universalis with alefacept: a case report and review of the literature. Cutis 2008;81(5):431-4
  • Hussein AM, Stuart A, Peters WP. Protection against chemotherapy-induced alopecia by cyclosporin A in the newborn rat animal model. Dermatology 1995;190(3):192-6
  • Jimenez JJ, Huang HS, Yunis AA. Treatment with ImuVert/N-acetylcysteine protects rats from cyclophosphamide/cytarabine-induced alopecia. Cancer Invest 1992;10(4):271-6
  • Jimenez JJ, Wong GH, Yunis AA. Interleukin 1 protects from cytosine arabinoside-induced alopecia in the rat model. FASEB J 1991;5(10):2456-8
  • Jimenez JJ, Yunis AA. Protection from chemotherapy-induced alopecia by 1,25-dihydroxyvitamin D3. Cancer Res 1992;52(18):5123-5
  • Peters EM, Foitzik K, Paus R, et al. A new strategy for modulating chemotherapy-induced alopecia, using PTH/PTHrP receptor agonist and antagonist. J Invest Dermatol 2001;117(2):173-8
  • Sredni B, Xu RH, Albeck M, et al. The protective role of the immunomodulator AS101 against chemotherapy-induced alopecia studies on human and animal models. Int J Cancer 1996;65(1):97-103
  • Balsari AL, Morelli D, Menard S, et al. Protection against doxorubicin-induced alopecia in rats by liposome-entrapped monoclonal antibodies. FASEB J 1994;8(2):226-30
  • Soref CM, Fahl WE. A new strategy to prevent chemotherapy and radiotherapy-induced alopecia using topically applied vasoconstrictor. Int J Cancer 2015;136(1):195-203
  • Jimenez JJ, Yunis AA. Protection from 1-beta-D-arabinofuranosylcytosine-induced alopecia by epidermal growth factor and fibroblast growth factor in the rat model. Cancer Res 1992;52(2):413-15
  • Patel S, Sharma V, Chauhan NS, et al. A study on the extracts of Cuscuta reflexa Roxb. in treatment of cyclophosphamide induced alopecia. Daru 2014;22(1):7
  • Bohm M, Bodo E, Funk W, et al. alpha-Melanocyte-stimulating hormone: a protective peptide against chemotherapy-induced hair follicle damage? Br J Dermatol 2014;170(4):956-60
  • Botchkarev VA. Molecular mechanisms of chemotherapy-induced hair loss. J Investig Dermatol Symp Proc 2003;8(1):72-5
  • Nakashima-Kamimura N, Nishimaki K, Mori T, et al. Prevention of chemotherapy-induced alopecia by the anti-death FNK protein. Life Sci 2008;82(3-4):218-25
  • Vogel JE, Jimenez F, Cole J, et al. Hair restoration surgery: the state of the art. Aesthet Surg J 2013;33(1):128-51
  • Avci P, Gupta GK, Clark J, et al. Low-level laser (light) therapy (LLLT) for treatment of hair loss. Lasers Surg Med 2014;46(2):144-51
  • Takikawa M, Nakamura S, Nakamura S, et al. Enhanced effect of platelet-rich plasma containing a new carrier on hair growth. Dermatol Surg 2011;37(12):1721-9
  • Asakawa K, Toyoshima KE, Ishibashi N, et al. Hair organ regeneration via the bioengineered hair follicular unit transplantation. Sci Rep 2012;2:424
  • Higgins CA, Richardson GD, Ferdinando D, et al. Modelling the hair follicle dermal papilla using spheroid cell cultures. Exp Dermatol 2010;19(6):546-8
  • Toyoshima KE, Asakawa K, Ishibashi N, et al. Fully functional hair follicle regeneration through the rearrangement of stem cells and their niches. Nat Commun 2012;3:784

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.