4,560
Views
41
CrossRef citations to date
0
Altmetric
Editorial

Maximizing computational tools for successful drug discovery

&

Bibliography

  • Hughes JP, Rees S, Kalindjian SB, et al. Principles of early drug discovery. Brit J Pharmacol 2011;162(6):1239-49
  • Doman TN, McGovern SL, Witherbee BJ, et al. Molecular docking and high-throughput screening for novel inhibitors of protein tyrosine phosphatase-1B. J Med Chem 2002;45(11):2213-21
  • Sliwoski G, Kothiwale S, Meiler J, et al. Computational methods in drug discovery. Pharmacol Rev 2013;66(1):334-95
  • Villoutreix BO, Lagorce D, Labbe CM, et al. One hundred thousand mouse clicks down the road: selected online resources supporting drug discovery collected over a decade. Drug Discov Today 2013;18(21-22):1081-9
  • Swiss Institute of Bioinformatics. Click2Drug: directory of computer-aided drug design tools. Available from: http://www.click2drug.org/ [Last accessed 18 July 2014]
  • Lipinski C, Hopkins A. Navigating chemical space for biology and medicine. Nature 2004;432(7019):855-61
  • Ruddigkeit L, van Deursen R, Blum LC, et al. Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J Chem Inf Model 2012;52(11):2864-75
  • Erlanson DA, McDowell RS, O’Brien T. Fragment-based drug discovery. J Med Chem 2004;47(14):3463-82
  • Bohm HJ, Flohr A, Stahl M. Scaffold hopping. Drug Discov Today Technol 2004;1(3):217-24
  • Wang Y, Xiao J, Suzek TO, et al. PubChem’s BioAssay database. Nucleic Acids Res 2012;40 (Database issue):D400-12
  • Gaulton A, Bellis LJ, Bento AP, et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 2012;40(Database issue):D1100-7
  • Liu T, Lin Y, Wen X, et al. BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res 2007;35(Database issue):D198-201
  • Williams AJ, Ekins S. A quality alert and call for improved curation of public chemistry databases. Drug Discov Today 2011;16(17-18):747-50
  • Williams AJ, Ekins S, Tkachenko V. Towards a gold standard: regarding quality in public domain chemistry databases and approaches to improving the situation. Drug Discov Today 2012;17(13-14):685-701
  • Trouiller P, Olliaro P, Torreele E, et al. Drug development for neglected diseases: a deficient market and a public-health policy failure. Lancet 2002;359(9324):2188-94
  • Pammolli F, Magazzini L, Riccaboni M. The productivity crisis in pharmaceutical R&D. Nat Rev Drug Discov 2011;10(6):428-38
  • Judd DB. Open innovation in drug discovery research comes of age. Drug Discov Today 2013;18(7-8):315-17
  • Dorsch H, Jurock AE, Schoepe S, et al. Grants4Targets: an open innovation initiative to foster drug discovery collaborations. Nat Rev Drug Discov 2015;14(1):74-6
  • Nantasenamat C, Isarankura-Na-Ayudhya C, Naenna T, et al. A practical overview of quantitative structure-activity relationship. Excli J 2009;874-88
  • Nantasenamat C, Isarankura-Na-Ayudhya C, Prachayasittikul V. Advances in computational methods to predict the biological activity of compounds. Exp Opin Drug Discov 2010;5(7):633-54
  • Nantasenamat C, Worachartcheewan A, Jamsak S, et al. AutoWeka: toward an automated data mining software for QSAR and QSPR studies. Methods Mol Biol 2015;1260:119-47
  • Chen L, Li Y, Yu H, et al. Computational models for predicting substrates or inhibitors of P-glycoprotein. Drug Discov Today 2012;17(7-8):343-51
  • Li D, Chen L, Li Y, et al. ADMET evaluation in drug discovery. 13. Development of in silico prediction models for P-glycoprotein substrates. Mol Pharm 2014;11(3):716-26
  • Shen M, Tian S, Li Y, et al. Drug-likeness analysis of traditional Chinese medicines: 1. property distributions of drug-like compounds, non-drug-like compounds and natural compounds from traditional Chinese medicines. J Cheminform 2012;4(1):31
  • Bickerton GR, Paolini GV, Besnard J, et al. Quantifying the chemical beauty of drugs. Nat Chem 2012;4(2):90-8
  • Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001;46(1-3):3-26
  • Worachartcheewan A, Mandi P, Prachayasittikul V, et al. Large-scale QSAR study of aromatase inhibitors using SMILES-based descriptors. Chemometr Intell Lab Syst 2014;138:120-6
  • Pingaew R, Worachartcheewan A, Nantasenamat C, et al. Synthesis, cytotoxicity and QSAR study of N-tosyl-1,2,3,4-tetrahydroisoquinoline derivatives. Arch Pharm Res 2013;36(9):1066-77
  • Worachartcheewan A, Nantasenamat C, Isarankura-Na-Ayudhya C, et al. Predicting antimicrobial activities of benzimidazole derivatives. Med Chem Res 2013;22(11):5418-30
  • Nichols SE, Baron R, Ivetac A, et al. Predictive power of molecular dynamics receptor structures in virtual screening. J Chem Inf Model 2011;51(6):1439-46
  • Tian S, Sun H, Pan P, et al. Assessing an ensemble docking-based virtual screening strategy for kinase targets by considering protein flexibility. J Chem Inf Model 2014;54(10):2664-79
  • Dixit A, Verkhivker GM. Integrating ligand-based and protein-centric virtual screening of kinase inhibitors using ensembles of multiple protein kinase genes and conformations. J Chem Inf Model 2012;52(10):2501-15
  • Durrant JD, Amaro RE, McCammon JA. AutoGrow: a novel algorithm for protein inhibitor design. Chem Biol Drug Des 2009;73(2):168-78
  • Durrant JD, Lindert S, McCammon JA. AutoGrow 3.0: an improved algorithm for chemically tractable, semi-automated protein inhibitor design. J Mol Graph Model 2013;44:104-12
  • Lindert S, Durrant JD, McCammon JA. LigMerge: a fast algorithm to generate models of novel potential ligands from sets of known binders. Chem Biol Drug Des 2012;80(3):358-65
  • Zhang Y. Progress and challenges in protein structure prediction. Curr Opin Struct Biol 2008;18(3):342-8
  • Kalaszi A, Szisz D, Imre G, et al. Screen3D: a novel fully flexible high-throughput shape-similarity search method. J Chem Inf Model 2014;54(4):1036-49
  • Irwin JJ, Shoichet BK. ZINC - a free database of commercially available compounds for virtual screening. J Chem Inf Model 2005;45(1):177-82
  • Pence HE, Williams A. ChemSpider: an online chemical information resource. J Chem Educ 2010;87(11):1123-4
  • Tanrikulu Y, Kruger B, Proschak E. The holistic integration of virtual screening in drug discovery. Drug Discov Today 2013;18(7-8):358-64
  • Wei NN, Hamza A. SABRE: ligand/structure-based virtual screening approach using consensus molecular-shape pattern recognition. J Chem Inf Model 2014;54(1):338-46
  • Scior T, Bender A, Tresadern G, et al. Recognizing pitfalls in virtual screening: a critical review. J Chem Inf Model 2012;52(4):867-81
  • Weaver S, Gleeson MP. The importance of the domain of applicability in QSAR modeling. J Mol Graph Model 2008;26(8):1315-26
  • Medina-Franco JL, Giulianotti MA, Welmaker GS, et al. Shifting from the single to the multitarget paradigm in drug discovery. Drug Discov Today 2013;18(9-10):495-501
  • Yildirim MA, Goh KI, Cusick ME, et al. Drug-target network. Nat Biotechnol 2007;25(10):1119-26
  • Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 2004;3(8):673-83
  • Bredel M, Jacoby E. Chemogenomics: an emerging strategy for rapid target and drug discovery. Nat Rev Genet 2004;5(4):262-75
  • van Westen GJ, Wegner JK, Ijzerman AP, et al. Proteochemometric modeling as a tool to design selective compounds and for extrapolating to novel targets. Med Chem Comm 2011;2(1):16-30
  • Pavlopoulos GA, Secrier M, Moschopoulos CN, et al. Using graph theory to analyze biological networks. BioData Min 2011;4:10
  • Kharkar PS, Warrier S, Gaud RS. Reverse docking: a powerful tool for drug repositioning and drug rescue. Future Med Chem 2014;6(3):333-42
  • Mathias SL, Hines-Kay J, Yang JJ, et al. The CARLSBAD database: a confederated database of chemical bioactivities. Database (Oxford) 2013;2013:bat044
  • Eriksson M, Nilsson I, Kogej T, et al. SARConnect: a tool to interrogate the connectivity between proteins, chemical structures and activity Data. Mol Inform 2012;31(8):555-68
  • Carrascosa MC, Massaguer OL, Mestres J. PharmaTrek: a semantic web explorer for OpeniInnovation in multitarget drug discovery. Mol Inform 2012;31(8):537-41
  • Dakshanamurthy S, Issa NT, Assefnia S, et al. Predicting new indications for approved drugs using a proteochemometric method. J Med Chem 2012;55(15):6832-48
  • Pei J, Yin N, Ma X, et al. Systems biology brings new dimensions for structure-based drug design. J Am Chem Soc 2014;136(33):11556-65
  • Lu S, Li S, Zhang J. Harnessing allostery: a novel approach to drug discovery. Med Res Rev 2014;34(6):1242-85
  • Huang Z, Mou L, Shen Q, et al. ASD v2.0: updated content and novel features focusing on allosteric regulation. Nucleic Acids Res 2014;42(Database issue):D510-16
  • Uversky VN. Intrinsically disordered proteins and novel strategies for drug discovery. Expert Opin Drug Discov 2012;7(6):475-88
  • Milroy LG, Grossmann TN, Hennig S, et al. Modulators of protein-protein interactions. Chem Rev 2014;114(9):4695-748
  • Gashaw I, Ellinghaus P, Sommer A, et al. What makes a good drug target? Drug Discov Today 2011;16(23-24):1037-43
  • Iorio F, Rittman T, Ge H, et al. Transcriptional data: a new gateway to drug repositioning? Drug Discov Today 2013;18(7-8):350-7
  • Giardine B, Riemer C, Hardison RC, et al. Galaxy: a platform for interactive large-scale genome analysis. Genome Res 2005;15(10):1451-5
  • O’Boyle NM, Hutchison GR. Cinfony - combining open source cheminformatics toolkits behind a common interface. Chem Cent J 2008;2:24
  • Grunberg R, Nilges M, Leckner J. Biskit - a software platform for structural bioinformatics. Bioinformatics 2007;23(6):769-70
  • Kalev I, Mechelke M, Kopec KO, et al. CSB: a Python framework for structural bioinformatics. Bioinformatics 2012;28(22):2996-7
  • Cokelaer T, Pultz D, Harder LM, et al. BioServices: a common Python package to access biological web services programmatically. Bioinformatics 2013;29(24):3241-2
  • Spjuth O, Willighagen EL, Guha R, et al. Towards interoperable and reproducible QSAR analyses: exchange of datasets. J Cheminform 2010;2(1):5
  • Chen B, Dong X, Jiao D, et al. Chem2Bio2RDF: a semantic framework for linking and data mining chemogenomic and systems chemical biology data. BMC Bioinformatics 2010;11:255
  • O’Boyle NM, Guha R, Willighagen EL, et al. Open data, open source and open standards in chemistry: the Blue Obelisk five years on. J Cheminform 2011;3(1):37
  • Williams AJ, Harland L, Groth P, et al. Open PHACTS: semantic interoperability for drug discovery. Drug Discov Today 2012;17(21-22):1188-98
  • Preeyanon L, Pyrkosz AB, Brown CT. Reproducible bioinformatics research for biologists. Implementing reproducible research: Chapman and Hall/CRC;Boca Raton, Florida. 2014
  • Sandve GK, Nekrutenko A, Taylor J, et al. Ten simple rules for reproducible computational research. PLoS Comput Biol 2013;9(10):e1003285
  • Wolstencroft K, Haines R, Fellows D, et al. The taverna workflow suite: designing and executing workflows of web services on the desktop, web or in the cloud. Nucleic Acids Res 2013;41(Web Server issue):W557-61
  • Pérez F, Granger BE. IPython: a system for interactive scientific computing. Comput Sci Eng 2007;9(3):21-9
  • Voegele C, Bouchereau B, Robinot N, et al. A universal open-source electronic laboratory notebook. Bioinformatics 2013;29(13):1710-12

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.