508
Views
47
CrossRef citations to date
0
Altmetric
Review

Approaches targeting the type III secretion system to treat or prevent bacterial infections

, PhD (Post-Doctoral Fellow) & , PhD (Assistant Professor)

Bibliography

  • Keyser P, Elofsson M, Rosell S, Wolf-Watz H. Virulence blockers as alternatives to antibiotics: type III secretion inhibitors against Gram-negative bacteria. J Intern Med 2008;264:17-29
  • Galán JE, Lara-Tejero M, Marlovits TC, Wagner S. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu Rev Microbiol 2014;68:415-38
  • Cornelis GR. The type III secretion injectisome. Nat Rev Microbiol 2006;4:811-25
  • Burkinshaw BJ, Strynadka NC. Assembly and structure of the T3SS. Biochim Biophys Acta 2014;1843:1649-63
  • Dean P. Functional domains and motifs of bacterial type III effector proteins and their roles in infection. FEMS Microbiol Rev 2011;35:1100-25
  • Abby SS, Rocha EP. The non-flagellar type III secretion system evolved from the bacterial flagellum and diversified into host-cell adapted systems. PLoS Genet 2012;8:e1002983
  • Michiels T, Cornelis GR. Secretion of hybrid proteins by the Yersinia Yop export system. J Bacteriol 1991;173:1677-85
  • Rosqvist R, Forsberg A, Wolf-Watz H. Intracellular targeting of the Yersinia YopE cytotoxin in mammalian cells induces actin microfilament disruption. Infect Immun 1991;59:4562-9
  • Kubori T, Matsushima Y, Nakamura D, et al. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 1998;280:602-5
  • Blocker A, Gounon P, Larquet E, et al. The tripartite type III secreton of Shigella flexneri inserts IpaB and IpaC into host membranes. J Cell Biol 1999;147:683-93
  • Tamano K, Aizawa S, Katayama E, et al. Supramolecular structure of the Shigella type III secretion machinery: the needle part is changeable in length and essential for delivery of effectors. Embo J 2000;19:3876-87
  • Mueller CA, Broz P, Muller SA, et al. The V-antigen of Yersinia forms a distinct structure at the tip of injectisome needles. Science 2005;310:674-6
  • Cornelis GR, Boland A, Boyd AP, et al. The virulence plasmid of Yersinia, an Antihost Genome. Microbiol Mol Biol Rev 1998;62:1315-52
  • Kauppi AM, Nordfelth R, Uvell H, et al. Targeting bacterial virulence: inhibitors of type III secretion in Yersinia. Chem Biol 2003;10:241-9
  • Nordfelth R, Kauppi AM, Norberg HA, et al. Small-molecule inhibitors specifically targeting type III secretion. Infect Immun 2005;73:3104-14
  • Enquist PA, Gylfe A, Hagglund U, et al. Derivatives of 8-hydroxyquinoline--antibacterial agents that target intra- and extracellular Gram-negative pathogens. Bioorg Med Chem Lett 2012;22:3550-3
  • Yin S, Davis RA, Shelper T, et al. Pseudoceramines A-D, new antibacterial bromotyrosine alkaloids from the marine sponge Pseudoceratina sp. Org Biomol Chem 2011;9:6755-60
  • Zetterstrom CE, Hasselgren J, Salin O, et al. The resveratrol tetramer (-)-hopeaphenol inhibits type III secretion in the gram-negative pathogens Yersinia pseudotuberculosis and Pseudomonas aeruginosa. PLoS One 2013;8:e81969
  • Pan NJ, Brady MJ, Leong JM, Goguen JD. Targeting type III secretion in Yersinia pestis. Antimicrob Agents Chemother 2009;53:385-92
  • Aiello D, Williams JD, Majgier-Baranowska H, et al. Discovery and characterization of inhibitors of Pseudomonas aeruginosa type III secretion. Antimicrob Agents Chemother 2010;54:1988-99
  • Yamazaki A, Li J, Zeng Q, et al. Derivatives of plant phenolic compound affect the type III secretion system of Pseudomonas aeruginosa via a GacS-GacA two-component signal transduction system. Antimicrob Agents Chemother 2012;56:36-43
  • Liu CJ, Deavours BE, Richard SB, et al. Structural basis for dual functionality of isoflavonoid O-methyltransferases in the evolution of plant defense responses. Plant Cell 2006;18:3656-69
  • Yang S, Peng Q, San Francisco M, et al. Type III secretion system genes of Dickeya dadantii 3937 are induced by plant phenolic acids. PLoS One 2008;3:e2973
  • Li Y, Peng Q, Selimi D, et al. The plant phenolic compound p-coumaric acid represses gene expression in the Dickeya dadantii type III secretion system. Appl Environ Microbiol 2009;75:1223-8
  • Khokhani D, Zhang C, Li Y, et al. Discovery of plant phenolic compounds that act as type III secretion system inhibitors or inducers of the fire blight pathogen, Erwinia amylovora. Appl Environ Microbiol 2013;79:5424-36
  • Linington RG, Robertson M, Gauthier A, et al. Caminoside A, an antimicrobial glycolipid isolated from the marine sponge Caminus sphaeroconia. Org Lett 2002;4:4089-92
  • Linington RG, Robertson M, Gauthier A, et al. Caminosides B-D, antimicrobial glycolipids isolated from the marine sponge Caminus sphaeroconia. J Nat Prod 2006;69:173-7
  • Gauthier A, Robertson ML, Lowden M, et al. Transcriptional inhibitor of virulence factors in enteropathogenic Escherichia coli. Antimicrob Agents Chemother 2005;49:4101-9
  • Hansen-Wester I, Hensel M. Salmonella pathogenicity islands encoding type III secretion systems. Microbes Infect 2001;3:549-59
  • Hudson DL, Layton AN, Field TR, et al. Inhibition of type III secretion in Salmonella enterica serovar Typhimurium by small-molecule inhibitors. Antimicrob Agents Chemother 2007;51:2631-5
  • Li J, Lv C, Sun W, et al. Cytosporone B, an inhibitor of the type III secretion system of Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother 2013;57:2191-8
  • Li J, Sun W, Guo Z, et al. Fusaric acid modulates Type Three Secretion System of Salmonella enterica serovar Typhimurium. Biochem Biophys Res Commun 2014;449:455-9
  • Sory MP, Cornelis GR. Translocation of a hybrid YopE-adenylate cyclase from Yersinia enterocolitica into HeLa cells. Mol Microbiol 1994;14:583-94
  • Young GM, Schmiel DH, Miller VL. A new pathway for the secretion of virulence factors by bacteria: the flagellar export apparatus functions as a protein-secretion system. Proc Natl Acad Sci USA 1999;96:6456-61
  • Felise HB, Nguyen HV, Pfuetzner RA, et al. An inhibitor of gram-negative bacterial virulence protein secretion. Cell Host Microbe 2008;4:325-36
  • Tosi T, Estrozi LF, Job V, et al. Structural similarity of secretins from type II and type III secretion systems. Structure 2014;22:1348-55
  • Li X, Kang F, Macielag M. inventors Triazine compounds as inhibitors of bacterial type III protein secretion systems. WO 2005111017 A1;2005
  • Charpentier X, Oswald E. Identification of the secretion and translocation domain of the enteropathogenic and enterohemorrhagic Escherichia coli effector Cif, using TEM-1 beta-lactamase as a new fluorescence-based reporter. J Bacteriol 2004;186:5486-95
  • Harmon DE, Davis AJ, Castillo C, Mecsas J. Identification and characterization of small-molecule inhibitors of Yop translocation in Yersinia pseudotuberculosis. Antimicrob Agents Chemother 2010;54:3241-54
  • Hakansson S, Schesser K, Persson C, et al. The YopB protein of Yersinia pseudotuberculosis is essential for the translocation of Yop effector proteins across the target cell plasma membrane and displays a contact-dependent membrane disrupting activity. Embo J 1996;15:5812-23
  • Sansonetti PJ, Ryter A, Clerc P, et al. Multiplication of Shigella flexneri within HeLa cells: lysis of the phagocytic vacuole and plasmid-mediated contact hemolysis. Infect Immun 1986;51:461-9
  • Iwatsuki M, Uchida R, Yoshijima H, et al. Guadinomines, Type III secretion system inhibitors, produced by Streptomyces sp. K01-0509. I: taxonomy, fermentation, isolation and biological properties. J Antibiot (Tokyo) 2008;61:222-9
  • Kimura K, Iwatsuki M, Nagai T, et al. A small-molecule inhibitor of the bacterial type III secretion system protects against in vivo infection with Citrobacter rodentium. J Antibiot (Tokyo) 2011;64:197-203
  • Auerbuch V, Golenbock DT, Isberg RR. Innate immune recognition of Yersinia pseudotuberculosis type III secretion. PLoS Pathog 2009;5:e1000686
  • Duncan MC, Wong WR, Dupzyk AJ, et al. An NF-kappaB-based high-throughput screen identifies piericidins as inhibitors of the Yersinia pseudotuberculosis type III secretion system. Antimicrob Agents Chemother 2014;58:1118-26
  • Ur-Rehman T, Slepenkin A, Chu H, et al. Pre-clinical pharmacokinetics and anti-chlamydial activity of salicylidene acylhydrazide inhibitors of bacterial type III secretion. J Antibiot (Tokyo) 2012;65:397-404
  • Slepenkin A, Chu H, Elofsson M, et al. Protection of mice from a Chlamydia trachomatis vaginal infection using a Salicylidene acylhydrazide, a potential microbicide. J Infect Dis 2011;204:1313-20
  • Chu H, Slepenkin A, Elofsson M, et al. Candidate vaginal microbicides with activity against Chlamydia trachomatis and Neisseriagonorrhoeae. Int J Antimicrob Agents 2010;36:145-50
  • Yang F, Korban SS, Pusey PL, et al. Small-molecule inhibitors suppress the expression of both type III secretion and amylovoran biosynthesis genes in Erwinia amylovora. Mol Plant Pathol 2014;15:44-57
  • Muschiol S, Bailey L, Gylfe A, et al. A small-molecule inhibitor of type III secretion inhibits different stages of the infectious cycle of Chlamydia trachomatis. Proc Natl Acad Sci USA 2006;103:14566-71
  • Wolf K, Betts HJ, Chellas-Gery B, et al. Treatment of Chlamydia trachomatis with a small molecule inhibitor of the Yersinia type III secretion system disrupts progression of the chlamydial developmental cycle. Mol Microbiol 2006;61:1543-55
  • Bailey L, Gylfe A, Sundin C, et al. Small molecule inhibitors of type III secretion in Yersinia block the Chlamydia pneumoniae infection cycle. FEBS Lett 2007;581:587-95
  • Negrea A, Bjur E, Ygberg SE, et al. Salicylidene acylhydrazides that affect type III protein secretion in Salmonella enterica serovar typhimurium. Antimicrob Agents Chemother 2007;51:2867-76
  • Veenendaal AK, Sundin C, Blocker AJ. Small-molecule type III secretion system inhibitors block assembly of the Shigella type III secreton. J Bacteriol 2009;191:563-70
  • Layton AN, Hudson DL, Thompson A, et al. Salicylidene acylhydrazide-mediated inhibition of type III secretion system-1 in Salmonella enterica serovar Typhimurium is associated with iron restriction and can be reversed by free iron. FEMS Microbiol Lett 2010;302:114-22
  • Tree JJ, Wang D, McInally C, et al. Characterization of the effects of salicylidene acylhydrazide compounds on type III secretion in Escherichia coli O157:H7. Infect Immun 2009;77:4209-20
  • Wang D, Zetterstrom CE, Gabrielsen M, et al. Identification of bacterial target proteins for the salicylidene acylhydrazide class of virulence-blocking compounds. J Biol Chem 2011;286:29922-31
  • Dahlgren MK, Oberg CT, Wallin EA, et al. Synthesis of 2-(2-aminopyrimidine)-2,2-difluoroethanols as potential bioisosters of salicylidene acylhydrazides. Molecules 2010;15:4423-38
  • Dahlgren MK, Zetterstrom CE, Gylfe S, et al. Statistical molecular design of a focused salicylidene acylhydrazide library and multivariate QSAR of inhibition of type III secretion in the Gram-negative bacterium Yersinia. Bioorg Med Chem 2010;18:2686-703
  • Kauppi AM, Andersson CD, Norberg HA, et al. Inhibitors of type III secretion in Yersinia: design, synthesis and multivariate QSAR of 2-arylsulfonylamino-benzanilides. Bioorg Med Chem 2007;15:6994-7011
  • Dahlgren MK, Kauppi AM, Olsson IM, et al. Design, synthesis, and multivariate quantitative structure-activity relationship of salicylanilides – potent inhibitors of type III secretion in Yersinia. J Med Chem 2007;50:6177-88
  • Kim OK, Garrity-Ryan LK, Bartlett VJ, et al. N-hydroxybenzimidazole inhibitors of the transcription factor LcrF in Yersinia: novel antivirulence agents. J Med Chem 2009;52:5626-34
  • Kline T, Felise HB, Barry KC, et al. Substituted 2-imino-5-arylidenethiazolidin-4-one inhibitors of bacterial type III secretion. J Med Chem 2008;51:7065-74
  • Slepenkin A, Enquist PA, Hagglund U, et al. Reversal of the antichlamydial activity of putative type III secretion inhibitors by iron. Infect Immun 2007;75:3478-89
  • Engstrom P, Nguyen BD, Normark J, et al. Mutations in hemG mediate resistance to salicylidene acylhydrazides, demonstrating a novel link between protoporphyrinogen oxidase (HemG) and Chlamydia trachomatis infectivity. J Bacteriol 2013;195:4221-30
  • Bao X, Gylfe A, Sturdevant GL, et al. Benzylidene acylhydrazides inhibit chlamydial growth in a type III secretion- and iron chelation-independent manner. J Bacteriol 2014;196:2989-3001
  • Martinez-Argudo I, Veenendaal AK, Liu X, et al. Isolation of Salmonella mutants resistant to the inhibitory effect of Salicylidene acylhydrazides on flagella-mediated motility. PLoS One 2013;8:e52179
  • Kline T, Barry KC, Jackson SR, et al. Tethered thiazolidinone dimers as inhibitors of the bacterial type III secretion system. Bioorg Med Chem Lett 2009;19:1340-3
  • Bowlin NO, Williams JD, Knoten CA, et al. Mutations in the Pseudomonas aeruginosa needle protein gene pscF confer resistance to phenoxyacetamide inhibitors of the type III secretion system. Antimicrob Agents Chemother 2014;58:2211-20
  • Jessen DL, Bradley DS, Nilles ML. A type III secretion system inhibitor targets YopD while revealing differential regulation of secretion in calcium-blind mutants of Yersinia pestis. Antimicrob Agents Chemother 2014;58:839-50
  • Hayward RD, Hume PJ, McGhie EJ, Koronakis V. A Salmonella SipB-derived polypeptide blocks the ’trigger’ mechanism of bacterial entry into eukaryotic cells. Mol Microbiol 2002;45:1715-27
  • Hermant D, Menard R, Arricau N, et al. Functional conservation of the Salmonella and Shigella effectors of entry into epithelial cells. Mol Microbiol 1995;17:781-9
  • Larzabal M, Mercado EC, Vilte DA, et al. Designed coiled-coil peptides inhibit the type three secretion system of enteropathogenic Escherichia coli. PLoS One 2010;5:e9046
  • Larzabal M, Zotta E, Ibarra C, et al. Effect of coiled-coil peptides on the function of the type III secretion system-dependent activity of enterohemorragic Escherichia coli O157:H7 and Citrobacter rodentium. Int J Med Microbiol 2013;303:9-15
  • Sawa T, Ito E, Nguyen VH, Haight M. Anti-PcrV antibody strategies against virulent Pseudomonas aeruginosa. Hum Vaccin Immunother 2014;10:2843-52
  • Milla CE, Chmiel JF, Accurso FJ, et al. Anti-PcrV antibody in cystic fibrosis: a novel approach targeting Pseudomonas aeruginosa airway infection. Pediatr Pulmonol 2014;49:650-8
  • Francois B, Luyt CE, Dugard A, et al. Safety and pharmacokinetics of an anti-PcrV PEGylated monoclonal antibody fragment in mechanically ventilated patients colonized with Pseudomonas aeruginosa: a randomized,double-blind, placebo-controlled trial. Crit Care Med 2012;40:2320-6
  • KaloBios Pharmaceuticals I. KaloBios provides update on KB001-A partnership and clinical status. [Press release] 2014. Available from: http://ir.kalobios.com/releasedetail.cfm?ReleaseID=862413 [Cited 28 July 2014]
  • KaloBios Pharmaceuticals I. KaloBios reports top-line data for phase 2 study of KB001-A to treat pseudomonas aeruginosa lung infections in cystic fibrosis patients. [Press Release] 2015. Available from: http://ir.kalobios.com/releasedetail.cfm?ReleaseID=889910 [Cited 6 January 2015]
  • DiGiandomenico A, Keller AE, Gao C, et al. A multifunctional bispecific antibody protects against Pseudomonas aeruginosa. Sci Transl Med 2014;6:262ra155
  • Swietnicki W, Carmany D, Retford M, et al. Identification of small-molecule inhibitors of Yersinia pestis Type III secretion system YscN ATPase. PLoS One 2011;6:e19716
  • Garrity-Ryan LK, Kim OK, Balada-Llasat JM, et al. Small molecule inhibitors of LcrF, a Yersinia pseudotuberculosis transcription factor, attenuate virulence and limit infection in a murine pneumonia model. Infect Immun 2010;78:4683-90
  • Bowser TE, Bartlett VJ, Grier MC, et al. Novel anti-infection agents: small-molecule inhibitors of bacterial transcription factors. Bioorg Med Chem Lett 2007;17:5652-5
  • Koppolu V, Osaka I, Skredenske JM, et al. Small-molecule inhibitor of the Shigella flexneri master virulence regulator VirF. Infect Immun 2013;81:4220-31
  • Hart E, Yang J, Tauschek M, et al. RegA, an AraC-like protein, is a global transcriptional regulator that controls virulence gene expression in Citrobacter rodentium. Infect Immun 2008;76:5247-56
  • Yang J, Hocking DM, Cheng C, et al. Disarming bacterial virulence through chemical inhibition of the DNA binding domain of an AraC-like transcriptional activator protein. J Biol Chem 2013;288:31115-26
  • Tauschek M, Yang J, Hocking D, et al. Transcriptional analysis of the grlRA virulence operon from Citrobacter rodentium. J Bacteriol 2010;192:3722-34
  • Sato H, Frank DW, Hillard CJ, et al. The mechanism of action of the Pseudomonas aeruginosa-encoded type III cytotoxin, ExoU. Embo J 2003;22:2959-69
  • Lee VT, Pukatzki S, Sato H, et al. Pseudolipasin A is a specific inhibitor for phospholipase A2 activity of Pseudomonas aeruginosa cytotoxin ExoU. Infect Immun 2007;75:1089-98
  • Barbieri JT. Pseudomonas aeruginosa exoenzyme S, a bifunctional type-III secreted cytotoxin. Int J Med Microbiol 2000;290:381-7
  • Arnoldo A, Curak J, Kittanakom S, et al. Identification of small molecule inhibitors of Pseudomonas aeruginosa exoenzyme S using a yeast phenotypic screen. PLoS Genet 2008;4:e1000005
  • Huang J, Lesser CF, Lory S. The essential role of the CopN protein in Chlamydia pneumoniae intracellular growth. Nature 2008;456:112-15
  • Kuijl C, Savage ND, Marsman M, et al. Intracellular bacterial growth is controlled by a kinase network around PKB/AKT1. Nature 2007;450:725-30
  • Steele-Mortimer O, Knodler LA, Marcus SL, et al. Activation of Akt/protein kinase B in epithelial cells by the Salmonella typhimurium effector sigD. J Biol Chem 2000;275:37718-24
  • Williamson ED, Oyston PC. Protecting against plague: towards a next-generation vaccine. Clin Exp Immunol 2013;172:1-8
  • Sawa T, Yahr TL, Ohara M, et al. Active and passive immunization with the Pseudomonas V antigen protects against type III intoxication and lung injury. Nat Med 1999;5:392-8
  • Heine SJ, Diaz-McNair J, Martinez-Becerra FJ, et al. Evaluation of immunogenicity and protective efficacy of orally delivered Shigella type III secretion system proteins IpaB and IpaD. Vaccine 2013;31:2919-29
  • Potter AA, Klashinsky S, Li Y, et al. Decreased shedding of Escherichia coli O157:H7 by cattle following vaccination with type III secreted proteins. Vaccine 2004;22:362-9
  • Desin TS, Wisner AL, Lam PK, et al. Evaluation of Salmonella enterica serovar Enteritidis pathogenicity island-1 proteins as vaccine candidates against S. Enteritidis challenge in chickens. Vet Microbiol 2011;148:298-307
  • Lee SJ, Liang L, Juarez S, et al. Identification of a common immune signature in murine and human systemic Salmonellosis. Proc Natl Acad Sci USA 2012;109:4998-5003
  • Lyon CE, Sadigh KS, Carmolli MP, et al. In a randomized, double-blinded, placebo-controlled trial, the single oral dose typhoid vaccine, M01ZH09, is safe and immunogenic at doses up to 1.7 x 10(10) colony-forming units. Vaccine 2010;28:3602-8
  • Tran TH, Nguyen TD, Nguyen TT, et al. A randomised trial evaluating the safety and immunogenicity of the novel single oral dose typhoid vaccine M01ZH09 in healthy Vietnamese children. PLoS One 2010;5:e11778
  • Hindle Z, Chatfield SN, Phillimore J, et al. Characterization of Salmonella enterica derivatives harboring defined aroC and Salmonella pathogenicity island 2 type III secretion system (ssaV) mutations by immunization of healthy volunteers. Infect Immun 2002;70:3457-67
  • Figueira R, Watson KG, Holden DW, Helaine S. Identification of salmonella pathogenicity island-2 type III secretion system effectors involved in intramacrophage replication of S. enterica serovar typhimurium: implications for rational vaccine design. MBio 2013;4:e00065
  • Wong D, Chao JD, Av-Gay Y. Mycobacterium tuberculosis-secreted phosphatases: from pathogenesis to targets for TB drug development. Trends Microbiol 2013;21:100-9
  • Schwegmann A, Brombacher F. Host-directed drug targeting of factors hijacked by pathogens. Sci Signal 2008;1:re8
  • Law GL, Korth MJ, Benecke AG, Katze MG. Systems virology: host-directed approaches to viral pathogenesis and drug targeting. Nat Rev Microbiol 2013;11:455-66
  • McShan AC, De Guzman RN. The bacterial type III secretion system as a target for developing new antibiotics. Chem Biol Drug Des 2015;85:30-42
  • Duncan MC, Linington RG, Auerbuch V. Chemical inhibitors of the type three secretion system: disarming bacterial pathogens. Antimicrob Agents Chemother 2012;56:5433-41

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.