1,939
Views
56
CrossRef citations to date
0
Altmetric
Review

Emerging formats for next-generation antibody drug conjugates

, , &

Bibliography

  • Evans JB, Syed BA. Next generation antibodies. Nature Rev Drug Discov 2014;13:413-14
  • Zolot RS, Basu S, Million RP. Antibody drug conjugates. Nature Rev Drug Disc 2013;12:259-60
  • Rostami S, Qazi I, Sikorski R. The clinical landscape of antibody drug conjugates. ADC Review. Available from:http://adcreview.com/articles/doi-10-14229jadc-2014-8-1-001/ [Accessed 17 January 2015]
  • Beck A, Reichert JM. Antibody drug conjugates. MABs 2014;6:15-17
  • Chari RV, Miller ML, Widdison WC. Antibody-drug conjugates: an emerging concept in cancer therapy. Angew Chem Int Ed Engl 2014;53:3796-827
  • Flygare JA, Pillow TH, Aristoff P. Antibody-drug conjugates for the treatment of cancer. Chem Biol Drug Des 2013;81:113-21
  • Okeley NM, Alley SC, Senter PD. Advancing antibody drug conjugation: from the laboratory to a clinically approved anticancer drug. Hematol Oncol Clin North Am 2014;28:13-25
  • Goldmacher VS, Kovtun YV. Antibody-drug conjugates: using monoclonal antibodies for delivery of cytotoxic payloads to cancer cells. Ther Deliv 2011;2:397-416
  • Welslau M, Diéras V, Sohn JH, et al. Patient-reported outcomes from EMILIA, a randomized phase 3 study of trastuzumab emtansine (T-DM1) versus capecitabine and lapatinib in human epidermal growth factor receptor 2-positive locally advanced or metastatic breast cancer. Cancer 2014;120:642-51
  • Garnock-Jones KP. Brentuximab vedotin: a review of its use in patients with non-hodgkin lymphoma and systemic anaplastic large cell lymphoma following previous treatment failure. Drugs 2013;73:371-81
  • Litvak-Greenfeld D, Benhar I. Risks and untoward toxicities of antibody-based immunoconjugates. Adv Drug Deliv Rev 2012;64:1782-99
  • Gorovits B, Krinos-Fiorotti C. Proposed mechanism of off-target toxicity for antibody-drug conjugates driven by mannose receptor uptake. Cancer Immunol Immunother 2013;62:217-23
  • Perez HL, Cardarelli PM, Deshpande S, et al. Antibody-drug conjugates: current status and future directions. Drug Discov Today 2014;19:869-81
  • Klinguer-Hamour C, Strop P, Shah DK, et al. World Antibody Drug Conjugate Summit. MAbs 2014;6:18-29
  • Ardel J, Faulstich H, Strout P, et al. Methods in molecular biology. In: Ducry L, editor. Antibody-Drug Conjugate Payloads’ Antibody-Drug Conjugates. 1045 Humana Press, New York, USA; 2013. p. 51-70
  • Gerber HP, Koehn FE, Abraham RT. The antibody-drug conjugate: an enabling modality for natural product-based cancer therapeutics. Nat Prod Rep 2013;30:625-39
  • Gromek SA, Balunas MJ. Natural products as exquisitely potent cytotoxic payloads for antibody-drug conjugates. Curr Top Med Chem 2014;14:2822-34
  • Lessons Learned from 30+ years of ADC Development. Immunogen presentation. World ADC Summit; San Diego: 2014
  • Govindan SV, Cardillo TM, Rossi EA, et al. Improving the Therapeutic Index in Cancer Therapy by Using Antibody-Drug Conjugates Designed with a Moderately Cytotoxic Drug. Mol Pharm 2014. [ Epub ahead of print]
  • Bartlett NL, Chen R, Fanale MA, et al. Retreatment with brentuximab vedotin in patients with CD30-positive hematologic malignancies. J Hematol Oncol 2014;7:24
  • Strohl WR. Antibody discovery: sourcing of monoclonal antibody variable domains. Curr Drug Discov Technol 2014;11:3-19
  • Tse KF, Jeffers M, Pollack VA, et al. CR011, a fully human monoclonal antibody-auristatin E conjugate, for the treatment of melanoma. Clin Cancer Res 2006;12:1373-82
  • Ma D, Hopf CE, Malewicz AD, et al. Potent antitumor activity of an auristatin-conjugated, fully human monoclonal antibody to prostate-specific membrane antigen. Clin Cancer Res 2006;12:2591-6
  • Golfier S, Kopitz C, Kahnert A, et al. Anetumab ravtansine: a novel mesothelin-targeting antibody-drug conjugate cures tumors with heterogeneous target expression favored by bystander effect. Mol Cancer Ther 2014;13:1537-48
  • Junttila TT, Li G, Parsons K, et al. Trastuzumab-DM1(T-DM1) retains all the mechanisms of action of trastuzumab and efficiently inhibits growth of lapatinib insensitive breast cancer. Breast Cancer Res Treat 2011;128:347-56
  • McDonagh CF, Kim KM, Turcott E, et al. Engineered anti-CD70 antibody-drug conjugate with increased therapeutic index. Mol Cancer Ther 2008;7:2913-23
  • Gillies SD, Wesolowski JS. Antigen binding and biological activities of engineered mutant chimeric antibodies with human tumor specificities. Hum Antibodies Hybridomas 1990;1:47-54
  • Almagro JC, Gilliland GL, Breden F, et al. Antibody engineering and therapeutics, the annual meeting of the antibody society. MAbs 2014;6:577-618
  • Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer 2012;12:278-87
  • Beckley NS, Lazzareschi KP, Chih HW, et al. Investigation into temperature-induced aggregation of an antibody drug conjugate. Bioconjug Chem 2013;24:1674-83
  • Guo J, Kumar S, Prashad A, et al. Assessment of physical stability of an antibody drug conjugate by higher order structure analysis: impact of thiol- maleimide chemistry. Pharm Res 2014;31:1710-23
  • Lauer TM, Agrawal NJ, Chennamsetty N, et al. Developability index: a rapid in silico tool for the screening of antibody naggregation propensity. J Pharm Sci 2012;101:102-15
  • Harper J, Mao S, Strout P, et al. Selecting an optimal antibody for antibody-drug conjugate therapy: internalization and intracellular localization. Methods Mol Biol 2013;1045:41-9
  • Available from: http://www.moradec.com/catalog_adc.html [Accessed 17 January 2015]
  • Kellner C, Bleeker WK, Lammerts van Bueren JJ, et al. Human kappa light chain targeted Pseudomonas exotoxin A-identifying human antibodies and Fab fragments with favorable characteristics for antibody-drug conjugate development. J Immunol Methods 2011;371:122-33
  • Erickson HK, Park PU, Widdison WC, et al. Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res 2006;66:4426-33
  • Chari RV, Martell BA, Gross JL, et al. Immunoconjugates containing novel maytansinoids: promising anticancer drugs. Cancer Res 1992;52:127-31
  • Wakankar A, Chen Y, Gokarn Y, et al. Analytical methods for physicochemical characterization of antibody drug conjugates. MAbs 2011;3:161-72
  • Moldenhauer G, Salnikov AV, Lüttgau S, et al. Therapeutic potential of amanitin-conjugated anti-epithelial cell adhesion molecule monoclonal antibody against pancreatic carcinoma. J Natl Cancer Inst 2012;104:622-34
  • Heidelberg Pharma patent. Amatoxin derivatives. WO135282; 2014
  • Gianolio DA, Rouleau C, Bauta WE, et al. Targeting HER2-positive cancer with dolastatin-15 derivatives conjugated to trastuzumab, novel antibody-drug conjugates. Cancer Chemother Pharmacol 2012;70:439-49
  • Wang L, Amphlett G, Blättler WA, et al. Structural characterization of the maytansinoid-monoclonal antibody immunoconjugate, huN901-DM1, by mass spectrometry. Protein Sci 2005;14:2436-46
  • Doronina SO, Toki BE, Torgov MY, et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 2003;21:778-84
  • Doronina SO, Mendelsohn BA, Bovee TD, et al. Enhanced activity monomethylauristatin f through monoclonal antibody delivery: effects of linker technology on efficacy and toxicity bioconjugate chem. 2006;17:114-24
  • Hamblett KJ, Senter PD, Chace DF, et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res 2004;10:7063-70
  • Dokter W, Ubink R, van der Lee M, et al. Preclinical profile of the HER2-targeting ADC SYD983/SYD985: introduction of a new duocarmycin-based linker-drug platform. Mol Cancer Ther 2014;13:2618-29
  • Zhou Q, Stefano JE, Manning C, et al. Site-specific antibody−drug conjugation through glycoengineering. Bioconjug Chem 2014;25:510-20
  • Li X, Fang T, Boons GJ. Preparation of well-defined antibody-drug conjugates through glycan remodeling and strain-promoted azide-alkyne cycloadditions. Angew Chem Int Ed Engl 2014;53:7179-82
  • Panowski S, Bhakta S, Raab H, et al. Site specific antibody drug conjugates for cancer therapy. MAbs 2014;6:34-45
  • Van Delft F. Synaffix presentation. World ADC Summit; San Diego: 2014
  • Sweeny L, Hartman YE, Zinn KR, et al. A novel extracellular drug conjugate significantly inhibits head and neck squamous cell carcinoma. Oral Oncol 2013;49:991-7
  • Lowinger T. Mersana presentation. World ADC Summit; San Diego: 2014
  • Behrens CR, Liu B. Methods for site-specific drug conjugation to antibodies. MAbs 2014;6:46-53
  • MedImmune patent. Engineered Fc regions for site specific conjugation. US0213705; 2012
  • Junutula JR, Raab H, Clark S, et al. Site-specific conjugation of a cytotoxic drug to an antibody improves thetherapeutic index. Nat Biotechnol 2008;26:925-32
  • Shen BQ, Xu K, Liu L, et al. Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat Biotechnol 2012;30:184-9
  • Jeffrey SC, Burke PJ, Lyon RP, et al. A potent anti-CD70 antibody-drug conjugate combining a dimeric pyrrolobenzodiazepine drug with site-specific conjugation technology. Bioconjug Chem 2013;24:1256-63
  • Li X, Yang J, Rader C. Antibody conjugation via one and two C-terminal selenocysteines. Methods 2014;65:133-8
  • Rader C. Chemically programmed antibodies. Trends Biotechnol 2014;32:186-97
  • Hallam TJ, Smider VV. Unnatural amino acids in novel antibody conjugates. Future Med Chem 2014;6:1309-24
  • Zimmerman ES, Heibeck TH, Gill A, et al. Production of site-specific antibody-drug conjugates using optimized non-natural amino acids in a cell-free expression system. Bioconjug Chem 2014;25:351-61
  • Axup JY, Bajjuri KM, Ritland M, et al. Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. Proc Natl Acad Sci USA 2012;109:16101-6
  • Tian F, Lu Y, Manibusan A, et al. A general approach to site-specific antibody drug conjugates. Proc Natl Acad Sci USA 2014;111:1766-71
  • Zimmerman ES, Heibeck TH, Gill AG, et al. Production of site-specific antibody−drug conjugates using optimized non-natural amino acids in a cell-free expression system. Bioconjug Chem 2014;25:35-361
  • Xiao H, Chatterjee A, Choi SH, et al. Genetic incorporation of multiple unnatural amino acids into proteins in mammalian cells. Angew Chemie Int Ed 2013;52:14080-803
  • Strop P, Liu SH, Dorywalska M, et al. Location matters:site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem Biol 2013;20:161-7
  • Dennler P, Chiotellis A, Fischer E, et al. Transglutaminase-based chemo-enzymatic conjugation approach yields homogeneous antibody-drug conjugates. Bioconjug Chem 2014;25:569-78
  • Agarwal P, van der Weijden J, Sletten EM, et al. Pictet-Spengler ligation for protein chemical modification. Proc Natl Acad Sci USA 2013;110:46-51
  • Agarwal P, Kudirka R, Albers AE, et al. Hydrazino-Pictet-Spengler ligation as a biocompatible method for the generation of stable protein conjugates. Bioconjug Chem 2013;24:846-51
  • Albers AER, Garofalo AW, Drake PM, et al. Exploring the effects of linker composition on site-specifically modified antibodyedrug conjugates. Eur J Med Chem 2014;88:3-9
  • Ban H, Nagano M, Gavrilyuk J, et al. Facile and stabile linkages through tyrosine: bioconjugation strategies with the tyrosine-click reaction. Bioconj. Chem 2013;24:520-32
  • Polu KR, Lowman HB. Probody therapeutics for targeting antibodies to diseased tissue Exp. Opin Bio Ther 2014;14:1049
  • Sagert J, West J, Wong C, et al. Transforming Notch ligands into tumor-antigen targets: A Probody-Drug Conjugate (PDC) targeting Jagged 1 and Jagged 2. Cancer Res 2014;74(19 Suppl):abstract 2665
  • Metz S, Haas AK, Daub K, et al. Bispecific digoxigenin-binding antibodies for targeted payload delivery. Proc Natl Acad Sci USA 2011;108:8194-9
  • Govindan SV, Cardillo TM, Rossi EA, et al. Improving the therapeutic index in cancer therapy by using antibody-drug conjugates designed with a moderately cytotoxic drug. Mol Pharm 2014. [Epub ahead of print]
  • Available from: http://www.meditope.com/aboutsnap.html [Accessed 17 January 2015]
  • Roberts SA, Andrews PA, Blanset D, et al. Considerations for the nonclinical safety evaluation of antibody drug conjugates for oncology. Regul Toxicol Pharmacol 2013;67:382-91
  • Jain RK. Physiological barriers to delivery of monoclonal antibodies and other mmacromolecules in tumors. Cancer Res 1990;50:814s-9s
  • de Goeij BE, Peipp M, de Haij S, et al. HER2 monoclonal antibodies that do not interfere with receptor heterodimerization-mediated signaling induce effective internalization and represent valuable components for rationalantibody-drug conjugate design. MAbs 2014;6:392-402
  • Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single mdomains. Nat Biotechnol 2005;23:1126-36
  • Spadiut O, Capone S, Krainer F, et al. Microbials for the production of monoclonal antibodies and antibody fragments. Trends Biotechnol 2014;32:54-60
  • Adams GP, Schier R, McCall AM, et al. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res 2001;61:4750-5
  • Cao Y, Marks JD, Huang Q, et al. Single-chain antibody-based immunotoxins targeting Her2/neu: design optimization and impact of affinity on antitumor efficacy and off-target toxicity. Mol Cancer Ther 2012;11:143-53
  • Rudnick SI, Lou J, Shaller CC, et al. Influence of affinity and antigen internalization on the uptake and penetration of Anti-HER2 antibodies in solid tumors. Cancer Res 2011;71:2250-9
  • Dennis MS, Jin H, Dugger D, et al. Imaging tumors with an albumin-binding Fab, a noveltumor-targeting agent. Cancer Res 2007;67:254-61
  • Orcutt KD, Rhoden JJ, Ruiz-Yi B, et al. Effect of small-molecule-binding affinity on tumor uptake in vivo: a systematic study using a pretargeted bispecific antibody. Mol Cancer Ther 2012;11:1365-72
  • Zimmerman Z, Maniar T, Nagorsen D. Unleashing the clinical power of T cells: CD19/CD3 bi-specific T cell engager (BiTE®) antibody construct blinatumomab as a potential therapy. Int Immunol 2015;27:31-7
  • Available from: http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm425549.htm [Accessed 17 January 2015]
  • Chen X, Ding G, Gao Q, et al. A human anti-c-Met Fab fragment conjugated with doxorubicin as targeted chemotherapy for hepatocellular carcinoma. PLoS One 2013;8:e63093
  • Wang X, Zhu J, Zhao P, et al. In vitro efficacy of immuno-chemotherapy with anti-EGFR human Fab-Taxol conjugate on A431 epidermoid carcinoma cells. Cancer Biol Ther 2007;6:980-7
  • Badescu G, Bryant P, Bird M, et al. Bridging disulphides for stable and defined antibody drug conjuates. Bioconj. Chem 2014;25:1124-36
  • Lillo AM, Sun C, Gao C, et al. A human single-chain antibody specific for integrin alpha3beta1 capable of cell internalizationand delivery of antitumor agents. Chem Biol 2004;11:897-906
  • Ai J, Advani A. Current status of antibody therapy in ALL. Br J Haematol 2014. [Epub ahead of print]
  • Pye H, Stamati I, Yahioglu G, et al. Antibody directed phototherapy. Antibodies 2013;2:270-305
  • Bhatti M, Yahioglu G, Milgrom LR, et al. Targeted photodynamic therapy with multiply-loaded recombinant antibody fragments. Int J Cancer 2008;122:1155-63
  • Palumbo A, Hauler F, Dziunycz P, et al. A chemically modified antibody mediates complete eradication of tumours by selective disruption of tumour blood vessels. Br J Cancer 2011;104:1106-15
  • Kim KM, McDonagh CF, Westendorf L, et al. Anti-CD30 diabody-drug conjugates with potent antitumor activity. Mol Cancer Ther 2008;7:2486-97
  • Danielli R, Patuzzo R, Ruffini PA, et al. Armed antibodies for cancer treatment: a promising tool in a changing era. Cancer Immunol Immunother 2015;64:113-21
  • Bernardes GJ, Casi G, Trüssel S, et al. Traceless vascular-targeting antibody-drug conjugate for cancer therapy. Angew Chem Int Ed Engl 2012;51:941-4
  • Perrino E, Steiner M, Krall N, et al. Curative properties of noninternalizing antibody-drug conjugates based on maytansinoids. Cancer Res 2014;74:2569-78
  • Casi G, Huguenin-Dezot N, Zuberbühler K, et al. Site-specific traceless coupling of potent cytotoxic drugs to recombinant antibodies for pharmacodelivery. J Am Chem Soc 2012;134:5887-92
  • Steiner M, Hartmann I, Perrino E, et al. Spacer length shapes drug release and therapeutic efficacy of traceless disulfide-linked ADCs targeting the tumor neovasculature. Chem Sci 2013;4:297-302
  • List T, Casi G, Neri D. A chemically defined trifunctional antibody-cytokine-drug conjugate with potent antitumor activity. Mol Cancer Ther 2014;13:2641-52
  • Press release. Available from: http://www.marketwired.com/press-release/ablynx-spirogen-enter-into-research-collaboration-evaluate-potential-novel-toxin-nanobody-euronext-brussels-ablx-1760504.htm [Accessed 17 January 2015]
  • Deonarain MP. Antikor Biopharma presentation. World ADC Summit; San Diego: 2014
  • Reichert JM, Beck A, Lugovskoy AA, et al. 9th annual European Antibody Congress, November 11-13, 2013, Geneva Switzerland. MAbs 2014;6:309-26
  • Ying T, Gong R, Ju TW, et al. Engineered Fc based antibody domains and fragments as novel scaffolds. Biochim Biophys Acta 2014;1844:1977-82
  • Wurch T, Pierre A & Depil S. Novel protein scaffolds as emerging therapeutic proteins: from discovery to clinical proof-of-concept. TIBTECH 2012;30:575-82
  • Simon M, Fret R, Zangemeister-Wittke U, et al. Orthogonal assembly of a designed ankyrin repeat protein− cytotoxin conjugate with a clickable serum albumin module for half-life extension. Bioconj Chem 2013;24:1955-66
  • Balan S, Choi JW, Godvin A, et al. Site-specific PEGylation of protein disulfide bonds using a three-carbon bridge. Bioconj. Chem 2007;18(1):61-76
  • Schumacher FF, Nunes JP, Maruani A, et al. Next generation maleimides enable the controlled assembly of antibody-drug conjugates via native disulfide bond bridging. Org Biomol Chem 2014;12:7261-9
  • Igenica patent. Novel linkers for antibody-drug conjugates and related compounds, compositions, and methods of use. WO197854; 2014
  • Tumey NL, Charati M, He T, et al. Mild method for succinimide hydrolysis on ADCs: impact on ADC potency, stability, exposure and efficacy. Bioconj. Chem 2014;25(10):1871-80
  • Lyon RP, Setter JR, Bovee TD, et al. Self-hydrolyzing maleimides improve the stability and pharmacological properties of antibody-drug conjugates. Nat Biotechnol 2014;32:1059-62
  • Patterson JT, Asano S, Li X, et al. Improving the serum stability of site-specific antibody conjugates with sulfone linkers. Bioconj. Chem 2014;25:1402-7
  • Cal PM, Bernardes GJ, Gois PM. Cysteine-selective reactions for antibody conjugation. Angew Chem Int Ed Engl 2014;53:10585-7
  • Evans HL, Nguyen QD, Carroll LS, et al. A bioorthogonal (68)Ga-labelling strategy for rapid in vivo imaging. Chem Commun (Camb) 2014;50:9557-60
  • Diessner J, Bruttel V, Stein RG, et al. Targeting of preexisting and induced breast cancer stem cells with trastuzumab and trastuzumab emtansine (T-DM1). Cell Death Differ 2014;5:e1149
  • Regina A, Demeule M, Tripathy S, et al. NG4043, a novel brain-penetrant peptide-mAb conjugate, is efficacious against HER2-positive intracranial tumors in mice. Mol Cancer Ther 2015;14:129-40
  • Xu K, Liu L, Dere R. Characterization of the drug to antibody ratio distribution for antibody drug conjugates in plasma/serum. Bioanalysis 2013;5:1057-71
  • Kaur S. Bioanalytical assay strategies for the development of antibody – drug conjugate biotherapeutics. Bioanalysis 2013;5:201-26

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.