42,794
Views
2,469
CrossRef citations to date
0
Altmetric
Review

The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities

&

Bibliography

  • Gohlke H, Klebe G. Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. Ang Chem Int Ed 2002;41:2644-76
  • Shirts MR, Mobley DL, Chodera JD. Alchemical free energy calculations: ready for prime time? Ann Rep Comput Chem 2007;3:41-59
  • Homeyer N, Stoll F, Hillisch A, et al. Binding free energy calculations for lead optimization: assessment of their accuracy in an industrial drug design context. J Chem Theory Comput 2014;10:3331-44
  • Sham YY, Chu ZT, Tao H, et al. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease. Proteins 2000;39:393-407
  • Åqvist J, Medina C, Samuelsson JE. A new method for predicting binding affinity in computer-aided drug design. Proteins Eng 1994;7:385-91
  • Hansson T, Marelius J, Åqvist J. Ligand binding affinity prediction by linear interaction energy methods. J Comput-Aided Mol Des 1998;12:27-35
  • Kollman PA, Massova I, Reyes C, et al. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 2000;33:889-97
  • Srinivasan J, Cheatham TE, Cieplak P, et al. Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate–DNA helices. J Am Chem Soc 1998;120:9401-9
  • Sirin S, Kumar R, Martinez C, et al. A computational approach to enzyme design: predicting ω-aminotransferase catalytic activity using docking and MM-GBSA scoring. J Chem Inf Model 2014;54:2334-46
  • Moreira IS, Fernandes PA, Ramos MJ. Unravelling Hot Spots: a comprehensive computational mutagenesis study. Theor Chern Ace 2006;117:99-113
  • Gohlke H, Case DA. Converging free energy estimates: MM-PB(GB)SA studies on the protein–protein complex Ras–Raf. J Comput Chem 2004;25:238-50
  • Reblova K, Strelcova Z, Kulhanek P, et al. An RNA molecular switch: intrinsic flexibility of 23S rRNA helices 40 and 68 5’-UAA/5’-GAN internal loops studied by molecular dynamics methods. J Chem Theory Comput 2010;6:910-29
  • Homeyer N, Gohlke H. Free energy calculations by the molecular mechanics Poisson−Boltzmann surface area method. Mol Inf 2012;31:114-22
  • Hou T, Wang J, Li YY, et al. Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized Born surface area methods. II. The accuracy of ranking poses generated from docking. J Comp Chem 2011;32:866-77
  • Sun H, Li Y, Shen M, et al. Assessing the performance of the MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring. Phys Chem Chem Phys 2014;16:22035-45
  • Foloppe N, Hubbard R. Towards predictive ligand design with free-energy based computational methods. Curr Med Chem 2006;13:3583-608
  • Wang J, Hou T, Xu X. Recent advances in free energy calculations with a combination of molecular mechanics and continuum models. Curr Comput-Aided Drug Design 2006;2:95-103
  • Homeyer N, Gohlke H. Free energy calculations by the molecular mechanics Poisson–Boltzmann surface area method. Mol Inf 2012;31:114-22
  • Checa A, Ortiz AR, Pascual-Teresa B, et al. Assessment of solvation effects on calculated binding affinity differences: trypsin inhibition by flavonoids as a model system for congeneric series. J Med Chem 1997;40:4136-45
  • Schwarzl SM, Tschopp TB, Smith JC, et al. Can the calculation of ligand binding free energy be improved with continuum solvent electrostatics and an ideal-gas entropy correction. J Comput Chem 2002;23:1143-9
  • Zoete V, Michielin O, Karplus M. Protein–ligand binding free energy estimation using molecular mechanics and continuum electrostatics. Application to HIV-1 protease inhibitors. J Comput-Aided Mol Design 2003;17:861-80
  • Swanson JM, Henchman RH, McCammon JA. Revisiting free energy calculations: a theoretical connection to MM/PBSA and direct calculation of the association free energy. Biophys J 2004;86:67-74
  • Genheden S, Ryde U. Comparison of end-point continuum-solvation methods for the calculation of protein–ligand binding free energies. Protein 2012;80:1326-42
  • Mikulskis P, Genheden S, Ryde U. Effect of explicit water molecules on ligand-binding affinities calculated with the MM/GBSA approach. J Mol Model 2014;20:2273
  • Pearlman DA. Evaluating the molecular mechanics Poisson-Boltzmann surface area free energy method using a congeneric series of ligands to p38 MAP kinase. J Med Chem 2005;48:7796-807
  • Spackova N Cheatham TE, Ryjacek F, et al. Molecular dynamics simulations and thermodynamics analysis of DNA–drug complexes. Minor groove binding between 4’,6-diamidino-2-phenylidole and DNA duplexes in solution. J Am Chem Soc 2003;125:1759-69
  • Lepsik M, Kriz Z, Havlas Z. Efficiency of a second-generation HIV-1 protease inhibitor studied by molecular dynamics and absolute binding free energy calculations. Proteins 2004;57:279-93
  • Yang CY, Sun H, Chen J, et al. Importance of ligand reorganization free energy in protein-ligand binding-affinity prediction. J Am Chem Soc 2009;131:13709-21
  • Weis A, Katebzadeh K, Söderhjelm P, et al. Ligand affinities predicted with the MM/PBSA method:  Dependence on the simulation method and the force field. J Med Chem 2006;49:6596-606
  • Godschalk F, Genheden S, Söderhjelm P, et al. Comparison of MM/GBSA calculations based on explicit and implicit solvent simulations. Phys Chem Chem Phys 2013;15:7731-9
  • Kuhn B, Gerber P, Schulz-Gasch T, et al. Validation and use of the MM-PBSA approach for drug discovery. J Med Chem 2005;48:4040-8
  • Rastelli G, Del Rio A, Degliesposti G, et al. Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA. J Comput Chem 2010;31:797-810
  • Xu L, Sun H, Li Y, et al. Assessing the Performance of MM/PBSA and MM/GBSA methods. 3. Impact of force fields and ligand charge models. J Phys Chem B 2013;117:8408-21
  • Li Y, Liu Z, Wang R. Test MM-PB/SA on true conformational ensembles of protein–ligand complexes. J Chem Inf Model 2010;50:1682-92
  • Miller BR, McGee TD, Swails JM, et al. MMPBSA.py: an efficient program for end-state free energy calculations. J Chem Theory Comput 2012;8:3314-21
  • Homeyer N, Gohlke H. FEW: A workflow tool for free energy calculations of ligand binding. J Comput Chem 2013;34:965-73
  • Kumari R, Kumar R, Lynn A. G_mmpbsa – a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 2014;54:1951-62
  • Genheden S, Ryde U. How to obtain statistically converged MM/GBSA results. J Comput Chem 2010;31:837-46
  • Sadiq SK, Wright DW, Kenway OA, et al. Accurate ensemble molecular dynamics binding free energy ranking of multidrug-resistant HIV-1 proteases. J Chem Inf Model 2010;50:890-905
  • Adler M, Beroza P. Improved ligand binding energies derived from molecular dynamics: replicate sampling enhances the search of conformational space. J Chem Inf Model 2013;53:2065-72
  • Wright DW, Hall BA, Kenway OA, et al. Computing clinically relevant binding free energies of HIV-1 protease inhibitors. J Chem Theory Comput 2014;10:1228-41
  • Genheden S, Ryde U. A comparison of different initialization protocols to obtain statistically independent molecular dynamics simulations. J Comput Chem 2011;32:187-95
  • Yang T, Wu JC, Yan C, et al. Virtual screening using molecular simulations. Proteins 2011;79:1940-51
  • Oehme DP, Brownlee RT, Wilson DJ. Effect of atomic charge, solvation, entropy and ligand protonation state on MM-PB(GB)SA binding energies for HIV protease. J Comput Chem 2012;33:2566-80
  • Wang J, Hou T. Develop and test a solvent accessible surface area-based model in conformational entropy calculations. J Chem Inf Model 2012;52:1199-212
  • Sun H, Li Y, Tian S, et al. Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Phys Chem Chem Phys 2014;16:16719-1672
  • Genheden S. MM/GBSA and LIE estimates of host–guest affinities: dependence on charges and solvation model. J Comput Aided Mol Des 2011;25:1085-93
  • Genheden S, Luchko T, Gusarov S, et al. An MM/3D-RISM approach for ligand-binding affinities. J Phys Chem B 2010;114:8505-16
  • Freedman H, Huynh LP, Le L, et al. Explicitly solvated ligand contribution to continuum solvation models for binding free energies: selectivity of theophylline binding to and RNA aptamer. J Phys Chem B 2010;114:2227-37
  • Kongsted J, Söderhjelm P, Ryde U. How accurate are continuum solvation models for drug-like molecules? J Comput-Aided Mol Des 2009;23:395-409
  • Tan C, Tan YH, Luo R. Implicit nonpolar models. J Phys Chem B 2007;111:12263-74
  • Söderhjelm P, Kongsted J, Ryde U. Ligand affinities estimated by quantum chemical calculations. J Chem Theory Comput 2010;6:1726-37
  • Genheden S, Kongsted J, Söderhjelm P, et al. Nonpolar solvation free energies of protein–ligand complexes. J Chem Theory Comput 2010;6:3558-68
  • Genheden S, Mikulskis P, Hu L, et al. Accurate predictions of non-polar solvation free energies require explicit consideration of binding site hydration. J Am Chem Soc 2011;133:13081-92
  • Wallnoefer HG, Liedl KR, Fox T. A challenging system: free energy prediction for factor Xa. J Comput Chem 2011;32:1743-52
  • Wong S, Amaro RE, McCammon JA. MM-PBSA computes key role of intercalating water molecules at a protein–protein interface. J Chem Theory Comput 2009;5:422-9
  • Greenidge PA, Kramer C, Mozziconacci JC, et al. MM/GBSA binding energy prediction on the PDBbind data set: successes, failures, and directions for further improvement. J Chem Inf Model 2012;53:201-9
  • Guimarães CR, Mathiowetz AM. Addressing limitations with the MM-GB/SA scoring procedure using the WaterMap method and free energy perturbation calculations. J Chem Inf Model 2010;50:547-59
  • Kohlmann A, Zhu X, Dalgarno D. Application of MM-GB/SA and WaterMap to SRC kinase inhibitors potency prediction. ACS Med Chem Letters 2012;3:94-9
  • Abel R, Salam NK, Shelley JK, et al. Contribution of explicit solvent effects to the binding affinity of small-molecule inhibitors in blood coagulation factor serine proteases. Chem Med Chem 2011;6:1049-66
  • Genheden S, Söderhjelm P, Ryde U. Transferability of conformational dependent charges from protein simulations. Int J Quant Chem 2012;112:1768-85
  • Söderhjelm P, Ryde U. Conformational dependence of charges in protein simulations. J Comput Chem 2009;30:750-60
  • Söderhjelm P, Ryde U. How accurate can a force field become? A polarizable multipole model combined with fragment-wise quantum-mechanical calculations. J Phys Chem A 2009;113:617-27
  • Jiao D, Zhang J, Duke RE, et al. Trypsin–ligand binding free energies from explicit and implicit solvent simulations with polarizable potential. J Comput Chem 2009;30:1701-11
  • Singh N, Warshel A. Absolute binding free energy calculations: on the accuracy of computational scoring of protein-ligand interactions. Proteins 2010;78:1705-23
  • Schutz CN, Warshel A. What are the dielectric ”constants” of proteins and how to validate electrostatic models. Proteins 2001;44:400-17
  • Hou T, Wang J, Li Y, et al. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 2011;51:69-82
  • Ravindranathan K, Tirado-Rives J, Jorgensen WL, et al. Improving MM-GB/SA scoring through the application of the variable dielectric model. J Chem Theory Comput 2011;7:3859-65
  • Kongsted J, Ryde U. An improved method to predict the entropy term with the MM/PBSA approach. J Comput-Aided Mol Design 2009;23:63-71
  • Genheden S, Kuhn O, Mikulskis P, et al. The normal-mode entropy in the MM/GBSA method: effect of system truncation, buffer region, and dielectric constant. J Chem Inf Model 2012;52:2079-88
  • Page CS, Bates PA. Can MM-PBSA calculations predict the specificity of protein kinase inhibitors? J Comput Chem 2006;27:1990-2007
  • Kopitz H, Cashman DA, Pfeiffer-Marek S, et al. Influence of the solvent representation on vibrational entropy calculations: generalized Born versus distance-dependent dielectric model. J Comput Chem 2012;12:1004-13
  • Genheden S, Ryde U. Will molecular dynamics simulations of proteins ever reach equilibrium. Phys Chem Chem Phys 2012;14:8662-77
  • Raha K, Merz KM. Large-scale validation of a quantum mechanics based scoring function: Predicting the binding affinity and the binding mode of a diverse set of protein−ligand complexes. J Med Chem 2005;48:4558-75
  • Gao C, Park MS, Stern HA. Accounting for ligand conformational restrictions in calculations of protein–ligand binding affinities. Biophys J 2010;98:901-10
  • Chang CE, Chen W, Gilson MK. Evaluating the accuracy of the quasiharmonic approximation. J Chem Theory Comput 2005;1:1017-28
  • Guimaraes CR, Cardozo M. MM-GB/SA rescoring of docking poses in structure-based lead optimization. J Chem Inf Model 2008;48:958-70
  • Söderhjelm P, Genheden S, Ryde U. Quantum mechanics in structure-based ligand design. In: Gohlke H, editor. Protein–ligand interactions; Methods and principles in medicinal chemistry. Wiley-VCH Verlag; Weinheim: 2012. p. 53:121-43
  • Diaz N, Suarez D, Merz KM, et al. Molecular dynamics simulations of the TEM-1,beta-lactamase complexed with cephalothin. J Med Chem 2005;48:780-91
  • Anisimov VM, Cavasotto CN. Quantum mechanical binding free energy calculation for phosphopeptide inhibitors of the Lck SH2 domain. J Comput Chem 2011;32:2254-63
  • Mikulskis P, Genheden S, Wichmann K, et al. A semiempirical approach to ligand binding affinities: Dependence on the Hamiltonian and corrections. J Comput Chem 2012;33:1179-89
  • Khandelwal A, Lukacova Comez D, et al. A combination of docking, QM/MM methods, and MD simulation for binding affinity estimation of metalloprotein ligands. J Med Chem 2005;48:5437-47
  • Gräter F, Schwarzl SM, Dejaegere A, et al. Protein/ligand binding free energies calculated with quantum mechanics/molecular mechanics. J Phys Chem B 2005;109:10474-83
  • Kaukonen M, Söderhjelm P, Heimdal J, et al. QM/MM-PBSA method to estimate free energies for reactions in proteins. J Phys Chem B 2008;112:12537-48
  • Ciancetta A, Genheden S, Ryde U. A QM/MM study of the binding of RAPTA ligands to cathepsin B. J Comput-Aided Mol Des 2011;25:729-42
  • Lu H, Huang X, Abdulhameed MD, et al. Binding free energies for nicotine analogs inhibiting cytochrome P450 2A6 by a combined use of molecular dynamics simulations and QM/MM-PBSA calculations. Bioorg Med Chem 2014;22:2149-56
  • Fox SJ, Dziedzic J, Fox T, et al. Density functional theory calculations on entire proteins for free energies of binding: application to a model polar binding site. Proteins 2014;82:3335-46
  • Dziedzic J, Fox SJ, Fox T, et al. Large-scale DFT calculations in implicit solvent: a case study on the T4 lysozyme L99A/M102Q protein. Int J Quant Chem 2013;113:771-85
  • Sure R, Antony J, Grimme S. Blind prediction of binding affinities for charged supramolecular host-guest systems: achievements and shortcomings of DFT-D3. J Phys Chem B 2014;118:3431-40
  • Mikulskis P, Cioloboc D, Andrejic M, et al. Free-energy perturbation and quantum mechanical study of SAMPL4 octa-acid host-guest binding energies. J Comput Aided Mol Design 2014;28:375-400
  • Kolar M, Fanfrlik J, Hobza P. Ligand conformational and solvation/desolvation free energy in protein-ligand complex formation. J Phys Chem B 2011;115:4718-24
  • Retegan M, Milet A, Jame H. Exploring the binding of inhibitors derived from tetrabromobenzimidazole to the CK2 protein using a QM/MM-PB/SA approach. J Chem Inf Model 2009;49:963-71
  • Barril X, Gelpi JL, Lopez JM, et al. How accurate can molecular dynamics/linear response and Poisson-Boltzmann/solvent accessible surface calculations be for predicting relative binding affinities? Acetylcholinesterase Huprine inhibitors as a test case. Theor Chem Acc 2001;106:2-9
  • Kollman PA, Kuhn B. Binding of a diverse set of ligands to avidin and streptavidin: an accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. J Med Chem 2002;43:3786-91
  • Hou T, Guo S, Xu X. Predictions of binding of a diverse set of ligands to gelatinase-A by a combination of molecular dynamics and continuum solvent models. J Phys Chem B 2002;106:5527-35
  • Salvalaglio M, Zamolo L, Busini V, et al. Molecular modeling of Protein A affinity chromatography. J Chrom A 2009;1216:8678-86
  • Muddana HS, Varnado D, Bielawski CW, et al. Blind prediction of host–guest binding affinities: a new SAMPL3 challenge. J Comput-Aided Mol Des 2012;26:475-87
  • Mikulskis P, Genheden S, Rydberg P, et al. Binding affinities in the SAMPL3 trypsin and host–guest blind tests estimated with the MM/PBSA and LIE methods. J Comput-Aided Mol Des 2012;26:527-41
  • Genheden S, Nilsson I, Ryde U. Binding affinities of factor Xa inhibitors estimated by thermodynamic integration and MM/GBSA. J Chem Inf Model 2011;51:947-58
  • Genheden S, Ryde U. Comparison of the efficiency of the LIE and MM/GBSA methods to calculate ligand-binding energies. J Chem Theory Comput 2011;7:3768-78
  • Mikulskis P, Genheden S, Ryde U. A Large-scale test of free-energy simulation estimates of protein–ligand binding affinities. J Chem Inf Model 2014;54:2794-806
  • Laitinen T, Kankare JA, Perakyla M. Free energy simulations and MM-PBSA analyses on the affinity and specificity of steroid binding to antiestradiol antibody. Proteins 2004;55:34-43
  • Guimaraes CR. A direct comparison of the MM-GB/SA scoring procedure and free-energy perturbation calculations using carbonic anhydrase as a test case: strengths and pitfalls of each approach. J Chem Theory Comput 2011;7:2296-306
  • Gouda H, Kuntz ID, Case DA, et al. Free energy calculations for theophylline binding to an RNA aptamer: comparison of MM-PBSA and thermodynamic integration methods. Biopol 2003;68:16-34
  • Wang L, Dent Y, Knight JL, et al. Modeling local structural rearrangements using FEP/REST: application to relative binding affinity predictions of CDK2 inhibitors. J Chem Theory Comput 2012;9:1282-93
  • Bea I, Cervello E, Kollman PA, et al. Molecular recognition by beta-cyclodextrin derivatives: FEP vs MM/PBSA study. Comb Chem High Through Screen 2001;4:605-11