618
Views
26
CrossRef citations to date
0
Altmetric
Review

Designing drugs that combat kidney damage

, PhD, , BsC, , PhD, , PhD, , MD, , MD, , MD, , PhD & , MD PhD (Professor) show all

Bibliography

  • GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015;385(9963):117-71
  • Bellomo R, Kellum JA, Ronco C. Acute kidney injury. Lancet 2012;380(9843):756-66
  • Fine J, Seligman A, Frank HA. Peritoneal dialysis for acute renal failure. NY Med 1949;5(10):16-20
  • Himmelfarb J, Ikizler TA. Hemodialysis. N Engl J Med 2010;363(19):1833-45
  • Dharnidharka VR, Fiorina P, Harmon WE. Kidney transplantation in children. N Engl J Med 2014;371(6):549-58
  • Ortiz A. Translational Nephrology: what translational research is and a bird’s-eye view on translational research in Nephrology. Clin Kidney J 2015;8(1):14-22
  • Strippoli GF, Craig JC, Schena FP. The number, quality, and coverage of randomized controlled trials in nephrology. J Am Soc Nephrol 2004;15(2):411-19
  • KDIGO CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 2013;3:1-150
  • Ortiz A, Covic A, Fliser D, et al. Epidemiology, contributors to, and clinical trials of mortality risk in chronic kidney failure. Lancet 2014;383(9931):1831-43
  • Sanz AB, Sanchez-Niño MD, Martín-Cleary C, et al. Progress in the development of animal models of acute kidney injury and its impact on drug discovery. Expert Opin Drug Discov 2013;8(7):879-95
  • Ortiz A, Cianciaruso B, Cizmarik M, et al. End-stage renal disease in patients with Fabry disease: natural history data from the Fabry Registry. Nephrol Dial Transplant 2010;25(3):769-75
  • Mischak H, Ioannidis JP, Argiles A, et al. Implementation of proteomic biomarkers: making it work. Eur J Clin Invest 2012;42(9):1027-36
  • Fernandez-Fernandez B, Ortiz A, Gomez-Guerrero C, et al. Therapeutic approaches to diabetic nephropathy beyond the RAS. Nat Rev Nephrol 2014;10(6):325-46
  • Dolman ME, Harmsen S, Pieters EH, et al. Targeting of a platinum-bound sunitinib analog to renal proximal tubular cells. Int J Nanomedicine 2012;7:417-33
  • Poosti F, Yazdani S, Dolman ME, et al. Targeted inhibition of renal Rho kinase reduces macrophage infiltration and lymphangiogenesis in acute renal allograft rejection. Eur J Pharmacol 2012;694(1-3):111-19
  • Stokman G, Qin Y, Booij TH, et al. Epac-Rap signaling reduces oxidative stress in the tubular epithelium. J Am Soc Nephrol 2014;25(7):1474-85
  • Falke LL, van Vuuren SH, Kazazi-Hyseni F, et al. Local therapeutic efficacy with reduced systemic side effects by rapamycin-loaded subcapsular microspheres. Biomaterials 2015;42:151-60
  • Linkermann A, Bräsen JH, Himmerkus N, et al. Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury. Kidney Int 2012;81(8):751-61
  • Linkermann A, Bräsen JH, Darding M, et al. Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. Proc Natl Acad Sci USA 2013;110(29):12024-9
  • Linkermann A, Chen G, Dong G, et al. Regulated cell death in AKI. J Am Soc Nephrol 2014;25(12):2689-701
  • Sanz AB, Santamaría B, Ruiz-Ortega M, et al. Mechanisms of renal apoptosis in health and disease. J Am Soc Nephrol 2008;19(9):1634-42
  • Santamaría B, Benito-Martin A, Ucero AC, et al. A nanoconjugate Apaf-1 inhibitor protects mesothelial cells from cytokine-induced injury. PLoS One 2009;4(8):e6634
  • Ucero AC, Berzal S, Ocaña-Salceda C, et al. A polymeric nanomedicine diminishes inflammatory events in renal tubular cells. PLoS One 2013;8(1):e51992
  • Orzáez M, Sancho M, Marchán S, et al. Apaf-1 inhibitors protect from unwanted cell death in in vivo models of kidney ischemia and chemotherapy induced ototoxicity. PLoS One 2014;9(10):e110979
  • Linkermann A, Stockwell BR, Krautwald S, et al. Regulated cell death and inflammation: an auto-amplification loop causes organ failure. Nat Rev Immunol 2014;14(11):759-67
  • Skouta R, Dixon SJ, Wang J, et al. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc 2014;136(12):4551-6
  • Linkermann A, Skouta R, Himmerkus N, et al. Synchronized renal tubular cell death involves ferroptosis. Proc Natl Acad Sci USA 2014;111(47):16836-41
  • Sanchez-Niño MD, Sanz AB, Lorz C, et al. BASP1 promotes apoptosis in diabetic nephropathy. J Am Soc Nephro 2010;21(4):610-21
  • Moreno JA, Moreno S, Rubio-Navarro A, et al. Role of chemokines in proteinuric kidney disorders. Expert Rev Mol Med 2014;16:e3
  • Ruiz-Ortega M, Ortiz A, Ramos AM. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and kidney disease. Curr Opin Nephrol Hypertens 2014;23(1):93-100
  • Miossec P, Korn T, Kuchroo VK. Interleukin-17 and type 17 helper T cells. N Engl J Med 2009;361(9):888-98
  • Turner JE, Paust HJ, Steinmetz OM, Panzer U. The Th17 immune response in renal inflammation. Kidney Int 2010;77(12):1070-5
  • Kitching AR, Holdsworth SR. The emergence of TH17 cells as effectors of renal injury. J Am Soc Nephrol 2011;22(2):235-8
  • Rodrigues-Díez R, Rodrigues-Díez RR, Rayego-Mateos S, et al. The C-terminal module IV of connective tissue growth factor is a novel immune modulator of theTh17 response. Lab Invest 2013;93(7):812-24
  • Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006;441(7090):235-8
  • Mahajan D, Wang Y, Qin X, et al. CD4+CD25+ regulatory T cells protect against injury in an innate murine model of chronic kidney disease. J Am Soc Nephrol 2006;17(10):2731-41
  • Kanellakis P, Dinh TN, Agrotis A, et al. CD4+CD25+Foxp3+ regulatory T cells suppress cardiac fibrosis in the hypertensive heart. J Hypertens 2011;29(9):1820-8
  • Rodrigues-Díez R, Aroeira LS, Orejudo M, et al. IL-17A is a novel player in dialysis-induced peritoneal damage. Kidney Int 2014;86(2):303-15
  • Langley RG, Elewski BE, Lebwohl M, et al. Secukinumab in plaque psoriasis-results of two phase 3 trials. N Engl J Med 2014;371(4):326-38
  • Kanamori H, Matsubara T, Mima A, et al. Inhibition of MCP-1/CCR2 pathway ameliorates the development of diabetic nephropathy. Biochem Biophys Res Commun 2007;360(4):772-7
  • Kang YS, Lee MH, Song HK, et al. CCR2 antagonism improves insulin resistance, lipid metabolism, and diabetic nephropathy in type 2 diabetic mice. Kidney Int 2010;78(9):883-94
  • Sullivan TJ, Miao Z, Zhao BN, et al. Experimental evidence for the use of CCR2 antagonists in the treatment of type 2 diabetes. Metabolism 2013;62(11):1623-32
  • Sullivan T, Miao Z, Dairaghi DJ, et al. CCR2 antagonist CCX140-B provides renal and glycemic benefits in diabetic transgenic human CCR2 knock-in mice. Am J Physiol Renal Physiol 2013;305(9):F1288-97
  • ChemoCentryx announces positive results in phase II diabetic nephropathy trial with CCR2 inhibitor CCX140. Available form: http://ir.chemocentryx.com/releasedetail.cfm?ReleaseID=887402 [Last accessed 20 March 2015]
  • Sanz AB, Izquierdo MC, Sanchez-Niño MD, et al. TWEAK and the progression of renal disease: clinical translation. Nephrol Dial Transplant 2014;29(Suppl 1):i54-62
  • Schwartz N, Su L, Burkly LC, et al. Urinary TWEAK and the activity of lupus nephritis. J Autoimmun 2006;27(4):242-50
  • Xia Y, Campbell SR, Broder A, et al. Inhibition of the TWEAK/Fn14 pathway attenuates renal disease in nephrotoxic serum nephritis. Clin Immunol 2012;145(2):108-21
  • Xia Y, Herlitz LC, Gindea S, et al. Deficiency of fibroblast growth factor-inducible 14 (Fn14) preserves the filtration barrier and ameliorates lupus nephritis. J Am Soc Nephrol 2014. [Epub ahead of print]
  • BIIB023 (Anti-TWEAK) in Subjects with Rheumatoid Arthritis. Available from: https://clinicaltrials.gov/ct2/results?term=NCT00771329&Search=Search [Last accessed 20 March 2015]
  • BIIB023 long-term extension study in subjects with lupus nephritis. Available from: https://clinicaltrials.gov/ct2/results?term=NCT01930890&Search=Search [Last accessed 20 March 2015]
  • Sanz AB, Justo P, Sanchez-Niño MD, et al. The cytokine TWEAK modulates renal tubulointerstitial inflammation. J Am Soc Nephrol 2008;19(4):695-703
  • Sanz AB, Sanchez-Niño MD, Izquierdo MC, et al. Tweak induces proliferation in renal tubular epithelium: a role in uninephrectomy induced renal hyperplasia. J Cell Mol Med 2009;13(9B):3329-42
  • Sanchez-Niño MD, Poveda J, Sanz AB, et al. Fn14 in podocytes and proteinuric kidney disease. Biochim Biophys Acta 2013;1832(12):2232-43
  • Ucero AC, Benito-Martin A, Fuentes-Calvo I, et al. TNF-related weak inducer of apoptosis (TWEAK) promotes kidney fibrosis and Ras-dependent proliferation of cultured renal fibroblast. Biochim Biophys Acta 2013;1832(10):1744-55
  • Martín P, Mora I, Cortes MA, et al. Relevant role of PKG in the progression of fibrosis induced by TNF-like weak inducer of apoptosis. Am J Physiol Renal Physiol 2014;307(1):F75-85
  • Liu H, Jia Z, Soodvilai S, et al. Nitro-oleic acid protects the mouse kidney from ischemia and reperfusion injury. Am J Physiol Renal Physiol 2008;295(4):F942-9
  • Wang H, Liu H, Jia Z, et al. Nitro-oleic acid protects against endotoxin-induced endotoxemia and multiorgan injury in mice. Am J Physiol Renal Physiol 2010;298(3):F754-62
  • Liu S, Jia Z, Zhou L, et al. Nitro-oleic acid protects against adriamycin-induced nephropathy in mice. Am J Physiol Renal Physiol 2013;305(11):F1533-41
  • Liu Y, Jia Z, Liu S, et al. Combined losartan and nitro-oleic acid remarkably improves diabetic nephropathy in mice. Am J Physiol Renal Physiol 2013;305(11):F1555-62
  • Open-label study of safety, tolerability and PK of IV CXA-10 emulsion in subjects with stage 3 and 4 chronic kidney injury. Available from: https://clinicaltrials.gov/ct2/results?term=NCT02248501&Search=Search [Last accessed 20 March 2015]
  • Oral CXA-10 study in healthy volunteers. Available from: https://clinicaltrials.gov/ct2/results?term=NCT02313064&Search=Search [Last accessed 20 March 2015]
  • Peters E, Heemskerk S, Masereeuw R, et al. Alkaline phosphatase: a possible treatment for sepsis-associated acute kidney injury in critically ill patients. Am J Kidney Dis 2014;63(6):1038-48
  • A safety, tolerability, efficacy and QoL study of human recAP in the treatment of patients with SA-AKI. Available from: https://clinicaltrials.gov/ct2/results?term=NCT02182440&Search=Search [Last accessed 20 March 2015]
  • Eltzschig HK, Sitkovsky MV, Robson SC. Purinergic signaling during inflammation. N Engl J Med 2012;367(24):2322-33
  • Lavoz C, Rodrigues-Diez R, Benito-Martin A. Angiotensin II contributes to renal fibrosis independently of Notch pathway activation. PLoS One 2012;7(7):e40490
  • Bechtel W, McGoohan S, Zeisberg EM, et al. Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat Med 2010;16(5):544-50
  • Sugimoto H, LeBleu VS, Bosukonda D, et al. Activin-like kinase 3 is important for kidney regeneration and reversal of fibrosis. Nat Med 2012;18(3):396-404
  • A study of THR-184 in patients at risk of developing cardiac surgery associated-acute kidney injury (CSA-AKI). Available from: https://clinicaltrials.gov/ct2/results?term=NCT01830920&Search=Search. [Last accessed 20 March 2015]
  • Berger K, Bangen JM, Hammerich L, et al. Origin of regenerating tubular cells after acute kidney injury. Proc Natl Acad Sci USA 2014;111(4):1533-8
  • Wanner N, Hartleben B, Herbach N, et al. Unraveling the role of podocyte turnover in glomerular aging and injury. J Am Soc Nephrol 2014;25(4):707-16
  • Peired A, Angelotti ML, Ronconi E, et al. Proteinuria impairs podocyte regeneration by sequestering retinoic acid. J Am Soc Nephrol 2013;24(11):1756-68
  • Berzal S, Alique M, Ruiz-Ortega M, et al. GSK3, snail, and adhesion molecule regulation by cyclosporine A in renal tubular cells. Toxicol Sci 2012;127(2):425-37
  • Roxanas M, Grace BS, George CR. Renal replacement therapy associated with lithium nephrotoxicity in Australia. Med J Aust 2014;200(4):226-8
  • Bao H, Ge Y, Wang Z, et al. Delayed administration of a single dose of lithium promotes recovery from AKI. J Am Soc Nephrol 2014;25(3):488-500
  • Jesinkey SR, Funk JA, Stallons LJ, et al. Formoterol restores mitochondrial and renal function after ischemia-reperfusion injury. J Am Soc Nephrol 2014;25(6):1157-62
  • Kulkarni OP, Hartter I, Mulay SR, et al. Toll-like receptor 4-induced IL-22 accelerates kidney regeneration. J Am Soc Nephrol 2014;25(5):978-89
  • Doi K, Hu X, Yuen PS, et al. AP214, an analogue of alpha-melanocyte-stimulating hormone, ameliorates sepsis-induced acute kidney injury and mortality. Kidney Int 2008;73(11):1266-74
  • Simmons MN, Subramanian V, Crouzet S, et al. Alpha-melanocyte stimulating hormone analogue AP214 protects against ischemia induced acute kidney injury in a porcine surgical model. J Urol 2010;183(4):1625-9
  • Si J, Ge Y, Zhuang S, et al. Adrenocorticotropic hormone ameliorates acute kidney injury by steroidogenic-dependent and -independent mechanisms. Kidney Int 2013;83(4):635-46
  • Vesey DA, Cheung C, Pat B, et al. Erythropoietin protects against ischaemic acute renal injury. Nephrol Dial Transplant 2004;19(2):348-55
  • Johnson DW, Pat B, Vesey DA, et al. Delayed administration of darbepoetin or erythropoietin protects against ischemic acute renal injury and failure. Kidney Int 2006;69(10):1806-13
  • Salahudeen AK, Haider N, Jenkins J, et al. Antiapoptotic properties of erythropoiesis-stimulating proteins in models of cisplatin-induced acute kidney injury. Am J Physiol Renal Physiol 2008;294(6):F1354-65
  • Souza AC, Volpini RA, Shimizu MH, et al. Erythropoietin prevents sepsis-related acute kidney injury in rats by inhibiting NF-κB and upregulating endothelial nitric oxide synthase. Am J Physiol Renal Physiol 2012;302(8):F1045-54
  • Pallet N, Bouvier N, Legendre C, et al. Antiapoptotic properties of recombinant human erythropoietin protects against tubular cyclosporine toxicity. Pharmacol Res 2010;61(1):71-5
  • Nakazawa Y, Nishino T, Obata Y, et al. Recombinant human erythropoietin attenuates renal tubulointerstitial injury in murine adriamycin-induced nephropathy. J Nephrol 2013;26(3):527-33
  • Eliopoulos N, Zhao J, Forner K, et al. Erythropoietin gene-enhanced marrow mesenchymal stromal cells decrease cisplatin-induced kidney injury and improve survival of allogeneic mice. Mol Ther 2011;19(11):2072-83
  • Liu N, Tian J, Cheng J, et al. Effect of erythropoietin on the migration of bone marrow-derived mesenchymal stem cells to the acute kidney injury microenvironment. Exp Cell Res 2013;319(13):2019-27
  • Coldewey SM, Khan AI, Kapoor A, et al. Erythropoietin attenuates acute kidney dysfunction in murine experimental sepsis by activation of the β-common receptor. Kidney Int 2013;84(3):482-90
  • Patel NS, Kerr-Peterson HL, Brines M, et al. Delayed administration of pyroglutamate helix B surface peptide (pHBSP), a novel nonerythropoietic analog of erythropoietin, attenuates acute kidney injury. Mol Med 2012;18:719-27
  • Pfeffer MA, Burdmann EA, Chen CY, et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N Engl J Med 2009;361(21):2019-32
  • Shah SV, Rajapurkar MM, Baliga R. The role of catalytic iron in acute kidney injury. Clin J Am Soc Nephrol 2011;6(10):2329-31
  • Lele SS, Mukhopadhyay BN, Mardikar MM, et al. Impact of catalytic iron on mortality in patients with acute coronary syndrome exposed to iodinated radiocontrast-The Iscom Study. Am Heart J 2013;165(5):744-51
  • Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012;149(5):1060-72
  • Friedmann Angeli JP, Schneider M, Proneth B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 2014;16(12):1180-91
  • Deferiprone for the prevention of contrast-induced acute kidney injury. Available from: https://clinicaltrials.gov/ct2/results?term=NCT01146925&Search=Search. [Last accessed 20 March 2015]
  • Díaz-García JD, Gallegos-Villalobos A, Gonzalez-Espinoza L, et al. Deferasirox nephrotoxicity - the knowns and unknowns. Nat Rev Nephrol 2014;10(10):574-86
  • Kohan DE, Pollock DM. Endothelin antagonists for diabetic and non-diabetic chronic kidney disease. Br J Clin Pharmacol 2013;76(4):573-9
  • Study of diabetic nephropathy with atrasentan. Available from: https://clinicaltrials.gov/ct2/results?term=NCT01858532&Search=Search [Last accessed 20 March 2015]
  • A study of atrasentan on reducing albuminuria in type 2 diabetic nephropathy treated with renin-angiotensin system inhibitors. Available from: https://clinicaltrials.gov/ct2/results?term=NCT00920764&Search=Search [Last accessed 20 March 2015]
  • Mutig K, Paliege A, Kahl T, et al. Vasopressin V2 receptor expression along rat, mouse, and human renal epithelia with focus on TAL. Am J Physiol Renal Physiol 2007;293(4):F1166-77
  • Torres VE. Vasopressin antagonists in polycystic kidney disease. Kidney In 2005;68(5):2405-18
  • Yasuda G, Jeffries WB. Regulation of cAMP production in initial and terminal inner medullary collecting ducts. Kidney Int 1998;54(1):80-6
  • Yamaguchi T, Nagao S, Kasahara M, et al. Renal accumulation and excretion of cyclic adenosine monophosphate in a murine model of slowly progressive polycystic kidney disease. Am J Kidney Dis 1997;30(5):703-9
  • Yamaguchi T, Pelling JC, Ramaswamy NT, et al. cAMP stimulates the in vitro proliferation of renal cyst epithelial cells by activating the extracellular signal-regulated kinase pathway. Kidney Int 2000;57(4):1460-71
  • Torres VE, Wang X, Qian Q, et al. Effective treatment of an orthologous model of autosomal dominant polycystic kidney disease. Nat Med 2004;10(4):363-4
  • Wang X, Gattone VII, Harris PC, et al. Effectiveness of vasopressin V2 receptor antagonists OPC-31260 and OPC-41061 on polycystic kidney disease development in the PCK rat. J Am Soc Nephrol 2005;16(4):846-51
  • Wang X, Wu Y, Ward CJ, et al. Vasopressin directly regulates cyst growth in polycystic kidney disease. J Am Soc Nephrol 2008;19(1):102-8
  • Gattone VHII, Maser RL, Tian C, et al. Developmental expression of urine concentration-associated genes and their altered expression in murine infantile-type polycystic kidney disease. Dev Genet 1999;24(3-4):309-18
  • Nagao S, Nishii K, Katsuyama M, et al. Increased water intake decreases progression of polycystic kidney disease in the PCK rat. J Am Soc Nephrol 2006;17(8):2220-7
  • Torres VE, Chapman AB, Devuyst O, et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med 2012;367(25):2407-18
  • Correa-Rotter R, Wesseling C, Johnson RJ. CKD of unknown origin in Central America: the case for a Mesoamerican nephropathy. Am J Kidney Dis 2014;63(3):506-20
  • Johnson RJ, Rodriguez-Iturbe B, Roncal-Jimenez C, et al. Hyperosmolarity drives hypertension and CKD-water and salt revisited. Nat Rev Nephrol 2014;10(7):415-20
  • Wesseling C, Crowe J, Hogstedt C, et al. Resolving the enigma of the mesoamerican nephropathy: a research workshop summary. Am J Kidney Dis 2014;63(3):396-404
  • Raines N, González M, Wyatt C, et al. Risk factors for reduced glomerular filtration rate in a Nicaraguan community affected by Mesoamerican nephropathy. MEDICC Rev 2014;16(2):16-22
  • Moreno JA, Sanchez-Niño MD, Sanz AB. A slit in podocyte death. Curr Med Chem 2008;15(16):1645-54
  • Fiorina P, Vergani A, Bassi R, et al. Role of podocyte B7-1 in diabetic nephropathy. J Am Soc Nephrol 2014;25(7):1415-29
  • Faul C, Donnelly M, Merscher-Gomez S, et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat Med 2008;14(9):931-8
  • Fornoni A, Sageshima J, Wei C. Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci Transl Med 2011;3(85):85ra46
  • Reiser J, von Gersdorff G, Loos M, et al. Induction of B7-1 in podocytes is associated with nephrotic syndrome. J Clin Invest 2004;113(10):1390-7
  • Yu CC, Fornoni A, Weins A, et al. Abatacept in B7-1-positive proteinuric kidney disease. N Engl J Med 2013;369(25):2416-23
  • Efficacy and safety study of abatacept to treat lupus nephritis. Available from: https://clinicaltrials.gov/ct2/results?term=NCT01714817.&Search=Searchhttps://clinicaltrials.gov/ct2/results?term=NCT01714817.&Search=Search [Last accessed 20 March 2015]
  • Beck LHJr, Fervenza FC, Beck DM, et al. Rituximab-induced depletion of anti-PLA2R autoantibodies predicts response in membranous nephropathy. J Am Soc Nephrol 2011;22(8):1543-50
  • Rituximab in progressive IgA nephropathy. Available from: https://clinicaltrials.gov/ct2/results?term=NCT00498368&Search=Search [Last accessed 20 March 2015]
  • Rituximab to prevent recurrence of proteinuria. Available from: https://clinicaltrials.gov/ct2/results?term=NCT01164098&Search=Search [Last accessed 20 March 2015]
  • Rituximab plus cyclosporine in idiopathic membranous nephropathy. Available from: https://clinicaltrials.gov/ct2/results?term=NCT00977977&Search=Search [Last accessed 20 March 2015]
  • Study of rituximab to treat chronic renal transplant rejection. Available from: https://clinicaltrials.gov/ct2/show/NCT00476164?term=NCT00476164&rank=1 [Last accessed 20 March 2015]
  • Mathieson PW. Proteinuria and immunity–an overstated relationship? N Engl J Med 2008;359(23):2492-4
  • Hillmen P, Young NS, Schubert J, et al. The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. N Engl J Med 2006;355(12):1233-43
  • Manrique J, Cravedi P. Role of monoclonal antibodies in the treatment of immune-mediated glomerular diseases. Nefrologia 2014;34(3):388-97
  • El-Husseini A, Hannan S, Awad A, et al. Thrombotic microangiopathy in systemic lupus erythematosus: efficacy of eculizumab. Am J Kidney Dis 2015;65(1):127-30
  • Vivarelli M, Pasini A, Emma F. Eculizumab for the treatment of dense-deposit disease. N Engl J Med 2012;366(12):1163-5
  • Le Quintrec M, Lionet A, Kandel C, et al. Eculizumab for treatment of rapidly progressive c3 glomerulopathy. Am J Kidney Dis 2015;65(3):484-9
  • Cybulsky AV, Quigg RJ, Salant DJ. Experimental membranous nephropathy redux. Am J Physiol Renal Physiol 2005;289(4):F660-71
  • Wang Y, Hu Q, Madri JA, et al. Amelioration of lupus-like autoimmune disease in NZB/WF1 mice after treatment with a blocking monoclonal antibody specific for complement component C5. Proc Natl Acad Sci USA 1996;93(16):8563-8
  • Molitoris BA, Dagher PC, Sandoval RM, et al. siRNA targeted to p53 attenuates ischemic and cisplatin-induced acute kidney injury. J Am Soc Nephrol 2009;20(8):1754-64
  • Ying Y, Kim J, Westphal SN, et al. Targeted deletion of p53 in the proximal tubule prevents ischemic renal injury. J Am Soc Nephrol 2014;25(12):2707-160
  • Yang L, Besschetnova TY, Brooks CR, et al. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med 2010;16(5):535-43
  • Kelly KJ, Plotkin Z, Stacey L, et al. P53 mediates the apoptotic response to GTP depletion after renal ischemia-reperfusion: protective role of a p53 inhibitor. J Am Soc Nephrol 2003;14(1):128-38
  • Thompson JD, Kornbrust DJ, Foy JW, et al. Toxicological and pharmacokinetic properties of chemically modified siRNAs targeting p53 RNA following intravenous administration. Nucleic Acid Ther 2012;22(4):255-64
  • A dose escalation and safety study of I5NP in patients undergoing major cardiovascular surgery. Available from: https://clinicaltrials.gov/ct2/results?term= NCT00554359&Search=Search [Last accessed 20 March 2015]
  • A dose escalation and safety study of I5NP to prevent acute kidney injury (AKI) in patients at high risk of AKI undergoing major cardiovascular surgery (QRK.004). Available from: https://clinicaltrials.gov/ct2/results?term= NCT00683553&Search=Search [Last accessed 20 March 2015]
  • I5NP for prophylaxis of delayed graft function in kidney transplantation. Available from: https://clinicaltrials.gov/ct2/results?term= NCT00802347&Search=Search [Last accessed 20 March 2015]
  • Quark Pharmaceuticals reports favorable results from phase II clinical trial evaluating investigational siRNA QPI-1002. Available from: http://www.quarkpharma.com/QBI-EN/2014/Quark-Pharmaceuticals-Reports-Favorable-Results-from-Phase-II-Clinical-Trial-Evaluating-Investigational-siRNA-QPI-1002/. [ Last accessed 20 March 2015]
  • Westenfelder C, Togel FE. Protective actions of administered mesenchymal stem cells in acute kidney injury: relevance to clinical trials. Kidney Int Suppl 2011;1(3):103-6
  • Allogeneic multipotent stromal cell treatment for acute kidney injury following cardiac surgery. Available from: https://clinicaltrials.gov/ct2/results?term= NCT00733876&Search=Search [Last accessed 20 March 2015]
  • A study to evaluate the safety and efficacy of AC607 for the treatment of kidney injury in cardiac surgery subjects. Available from: https://clinicaltrials.gov/ct2/results?term= NCT01602328&Search=Search [Last accessed 20 March 2015]
  • Swaminathan M, Mazer D et al. ACT-AKI: A Phase 2 Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial of AC607 for the Treatment of Acute Kidney Injury in Cardiac Surgery Subjects., ASN kidney week. 2014
  • Akhter S, Ahmad I, Ahmad MZ, et al. Nanomedicines as cancer therapeutics: current status. Curr Cancer Drug Targets 2013;13(4):362-78
  • Lorz C, Benito-Martín A, Boucherot A, et al. The death ligand TRAIL in diabetic nephropathy. J Am Soc Nephrol 2008;19(5):904-1
  • Beck LHJr, Bonegio RG, Lambeau G, et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med 2009;361(1):11-21
  • Fresquet M, Jowitt TA, Gummadova J, et al. Identification of a major epitope recognized by PLA2R autoantibodies in primary membranous nephropathy. J Am Soc Nephrol 2015;26(2):302-13
  • Kao L, Lam V, Waldman M, et al. Identification of the immunodominant epitope region in phospholipase a2 receptor-mediating autoantibody binding in idiopathic membranous nephropathy. J Am Soc Nephrol 2014;26(2):291-301
  • Álvarez-Prats A, Hernández-Perera O, Díaz-Herrera P, et al. Combination therapy with an angiotensin II receptor blocker and an HMG-CoA reductase inhibitor in experimental subtotal nephrectomy. Nephrol Dial Transplant 2012;27(7):2720-33
  • Ruggenenti P, Remuzzi G. Dual RAS blockade-controversy resolved. Nat Rev Nephrol 2013;9(11):640
  • Zoja C, Corna D, Nava V, et al. Analogs of bardoxolone methyl worsen diabetic nephropathy in rats with additional adverse effects. Am J Physiol Renal Physiol 2013;304(6):F808-19
  • Chin MP, Wrolstad D, Bakris G, et al. Risk factors for heart failure in patients with type 2 diabetes mellitus and stage 4 chronic kidney disease treated with bardoxolone methyl. J Card Fail 2014;20(12):953-8
  • Carrero JJ, Ortiz A, Qureshi AR, et al. Additive effects of soluble TWEAK and inflammation on mortality in hemodialysis patients. Clin J Am Soc Nephrol 2009;4(1):110-18
  • Muñoz-García B, Moreno JA, López-Franco O, et al. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) enhances vascular and renal damage induced by hyperlipidemic diet in ApoE-knockout mice. Arterioscler Thromb Vasc Biol 2009;29(12):2061-8
  • Sanz AB, Sanchez-Niño MD, Izquierdo MC, et al. TWEAK activates the non-canonical NFkappaB pathway in murine renal tubular cells: modulation of CCL21. PLoS One 2010;5(1):e8955
  • Moreno JA, Izquierdo MC, Sanchez-Niño MD, et al. The inflammatory cytokines TWEAK and TNFα reduce renal Klotho expression through NFκB. J Am Soc Nephrol 2011;22(7):1315-25
  • Izquierdo MC, Sanz AB, Mezzano S, et al. TWEAK (tumor necrosis factor-like weak inducer of apoptosis) activates CXCL16 expression during renal tubulointerstitial inflammation. Kidney Int 2012;81(11):1098-107
  • Rayego-Mateos S, Morgado-Pascual JL, Sanz AB, et al. TWEAK transactivation of the epidermal growth factor receptor mediates renal inflammation. J Pathol 2013;231(4):480-94
  • Berzal S, González-Guerrero C, Rayego-Mateos S, et al. TNF-related weak inducer of apoptosis (TWEAK) regulates junctional proteins in tubular epithelial cells via canonical NF-κB pathway and ERK activation. J Cell Physiol 2014. [Epub ahead of print]
  • ONTARGET Investigators. Yusuf S, Teo KK, Pogue J, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med 2008;358(15):1547-59

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.