2,563
Views
61
CrossRef citations to date
0
Altmetric
Review

Latest approaches for the treatment of obesity

, , , , , , , & show all

Bibliography

  • Malik VS, Willett WC, Hu FB. Global obesity: trends, risk factors and policy implications. Nat Rev Endocrinol 2013;9:13-27
  • Schneider BE, Mun EC. Surgical management of morbid obesity. Diabetes Care 2005;28:475-80
  • Suter M, Calmes JM, Paroz A, et al. Results of Roux-en-Y gastric bypass in morbidly obese vs superobese patients: similar body weight loss, correction of comorbidities, and improvement of quality of life. Arch Surg 2009;144:312-18
  • Cooper TC, Simmons EB, Webb K, et al. Trends in weight regain following roux-en-Y gastric bypass (RYGB) bariatric surgery. Obes Surg 2015. 10.1007/s11695-014-1560-z
  • Pories WJ. Bariatric surgery: risks and rewards. J Clin Endocrinol Metab 2008;93:S89-96
  • Jackson VM, Price DA, Carpino PA. Investigational drugs in Phase II clinical trials for the treatment of obesity: implications for future development of novel therapies. Expert Opin Invest Drugs 2014;23:1055-66
  • Nathan PJ, O’Neill BV, Napolitano A, et al. Neuropsychiatric adverse effects of centrally acting antiobesity drugs. CNS Neurosci Ther 2011;17:490-505
  • Scheen AJ. Cardiovascular risk-benefit profile of sibutramine. Am J Cardiovasc Drugs 2010;10:321-34
  • Yanovski SZ, Yanovski JA. Long-term drug treatment for obesity: a systematic and clinical review. J Amer Med Assoc 2014;311:74-86
  • Aronne LJ, Wadden TA, Peterson C, et al. Evaluation of phentermine and topiramate versus phentermine/topiramate extended-release in obese adults. Obesity 2013;21:2163-71
  • Shin JH, Gadde KM. Clinical utility of phentermine/topiramate (Qsymia) combination for the treatment of obesity. Diabetes Metab Syndr Obes 2013;6:131-9
  • Apovian CM, Aronne L, Rubino D, et al. A randomized, phase 3 trial of naltrexone SR/bupropion SR on weight and obesity-related risk factors (COR-II). Obesity 2013;21:935-43
  • Adan RAH, Tiesjema B, Hillebrand JJG, et al. The MC4 receptor and control of appetite. Br J Pharmacol 2006;149:815-27
  • Fani L, Bak S, Delhanty P, et al. The melanocortin-4 receptor as target for obesity treatment: a systematic review of emerging pharmacological therapeutic options. Int J Obes 2014;38:163-9
  • Emmerson PJ, Fisher MJ, Yan LZ, et al. Melanocortin-4 receptor agonists for the treatment of obesity. Curr Top Med Chem 2007;7:1121-30
  • Xu Y, Elmquist JK, Fukuda M. Central nervous control of energy and glucose balance: focus on the central melanocortin system. Ann N Y Acad Sci 2011;1243:1-14
  • Collins S, Cao W, Daniel KW, et al. Adrenoceptors, uncoupling proteins, and energy expenditure. Exp Biol Med 2001;226:982-90
  • Antel J, Gregory PC, Nordheim U. CB1 cannabinoid receptor antagonists for treatment of obesity and prevention of comorbid metabolic disorders. J Med Chem 2006;49:4008-16
  • Cota D, Tschop MH, Horvath TL, et al. Cannabinoids, opioids and eating behavior: The molecular face of hedonism? Brain Res Rev 2006;51:85-107
  • Volkow ND, Wang G-J, Baler RD. Reward, dopamine and the control of food intake: Implications for obesity. Trends Cognit Sci 2011;15:37-46
  • Berthoud H-R. Metabolic and hedonic drives in the neural control of appetite: who is the boss? Curr Opin Neurobiol 2011;21:888-96
  • Barsh GS, Farooqi IS, O’Rahilly S. Genetics of body-weight regulation. Nature 2000;404:644-51
  • Farooqi S. Genetic strategies to understand physiological pathways regulating body weight. Mamm Genome 2014;25:377-83
  • Farooqi IS, O’Rahilly S. Monogenic obesity in humans. Annu Rev Med 2005;56:443-58
  • Krude H, Biebermann h, Luck W, et al. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet 1998;19:155-7
  • Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 2007;316:889-94
  • Loos RJF, Lindgren CM, Li S, et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet 2008;40:768-75
  • Thorleifsson G, Walters GB, Gudbjartsson DF, et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat Genet 2009;41:18-24
  • Lindgren CM, Heid IM, Randall JC, et al. Genome-wide association scan meta-analysis identifies three loci influencing adiposity and fat distribution. PLoS Genet 2009;5:e1000508
  • Speliotes EK, Willer CJ, Berndt SI, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 2010;42:937-48
  • Willer CJ, Speliotes EK, Loos RJF, et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet 2009;41:25-34
  • Heid IM, Jackson AU, Randall JC, et al. Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat Genet 2010;42:949-60
  • Locke AE, Kahali B, Berndt SI, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 2015;518:197-206
  • Montague CT, Farooqi IS, Whitehead JP, et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 1997;387:903-7
  • Farooqi IS, Matarese G, Lord GM, et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest 2002;110:1093-103
  • Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature 1998;395:763-70
  • Munzberg H, Morrison CD. Structure, production and signaling of leptin. Metab, Clin Exp 2015;64:13-23
  • Halaas JL, Boozer C, Blair-West J, et al. Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. Proc Natl Acad Sci USA 1997;94:8878-83
  • Myers MGJr, Leibel RL, Seeley RJ, et al. Obesity and leptin resistance: distinguishing cause from effect. Trends Endocrinol Metab 2010;21:643-51
  • Farooqi IS, Jebb SA, Langmack G, et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med 1999;341:879-84
  • Paz-Filho G, Mastronardi CA, Licinio J. Leptin treatment: Facts and expectations. Metab, Clin Exp 2015;64:146-56
  • Ahima RS, Prabakaran D, Mantzoros C, et al. Role of leptin in the neuroendocrine response to fasting. Nature 1996;382:250-2
  • Ravussin Y, Gutman R, Diano S, et al. Effects of chronic weight perturbation on energy homeostasis and brain structure in mice. Am J Physiol 2011;300:R1352-R62
  • Rosenbaum M, Murphy EM, Heymsfield SB, et al. Low dose leptin administration reverses effects of sustained weight-reduction on energy expenditure and circulating concentrations of thyroid hormones. J Clin Endocrinol Metab 2002;87:2391-4
  • Mueller TD, Sullivan LM, Habegger K, et al. Restoration of leptin responsiveness in diet-induced obese mice using an optimized leptin analog in combination with exendin-4 or FGF21. J Pept Sci 2012;18:383-93
  • Clemmensen C, Chabenne J, Finan B, et al. GLP-1/glucagon coagonism restores leptin responsiveness in obese mice chronically maintained on an obesogenic diet. Diabetes 2014;63:1422-7
  • Roth JD, Trevaskis JL, Turek VF, et al. “Weighing in” on synergy: Preclinical research on neurohormonal anti-obesity combinations. Brain Res 2010;1350:86-94
  • Ravussin E, Smith SR, Mitchell JA, et al. Enhanced Weight Loss With Pramlintide/Metreleptin: An Integrated Neurohormonal Approach to Obesity Pharmacotherapy. Obesity 2009;17:1736-43
  • Uotani S, Bjorbaek C, Tornoe J, et al. Functional properties of leptin receptor isoforms: internalization and degradation of leptin and ligand-induced receptor downregulation. Diabetes 1999;48:279-86
  • Faouzi M, Leshan R, Bjornholm M, et al. Differential accessibility of circulating leptin to individual hypothalamic sites. Endocrinology 2007;148:5414-23
  • Muenzberg H, Flier JS, Bjorbaek C. Region-specific leptin resistance within the hypothalamus of diet-induced obese mice. Endocrinology 2004;145:4880-9
  • Roujeau C, Jockers R, Dam J. New pharmacological perspectives for the leptin receptor in the treatment of obesity. Front Endocrinol 2014;5:167
  • Seron K, Couturier C, Belouzard S, et al. Endospanins regulate a postinternalization step of the leptin receptor endocytic pathway. J Biol Chem 2011;286:17968-81
  • Couturier C, Sarkis C, Seron K, et al. Silencing of OB-RGRP in mouse hypothalamic arcuate nucleus increases leptin receptor signaling and prevents diet-induced obesity. Proc Natl Acad Sci USA 2007;104:19476-81
  • Vauthier V, Swartz TD, Chen P, et al. Endospanin 1 silencing in the hypothalamic arcuate nucleus contributes to sustained weight loss of high fat diet obese mice. Gene Ther 2014;21:638-44
  • Kim T-H, Choi D-H, Vauthier V, et al. Anti-obesity phenotypic screening looking to increase OBR cell surface expression. J Biomol Screening 2014;19:88-99. 12
  • Allison MB, Myers MGJr. 20 years of leptin: connecting leptin signaling to biological function. J Endocrinol 2014;223:T25-35
  • Bjorbaek C, El-Haschimi K, Frantz JD, et al. The role of SOCS-3 in leptin signaling and leptin resistance. J Biol Chem 1999;274:30059-65
  • Gu H, Liu L, Ma S, et al. Inhibition of SOCS-3 in adipocytes of rats with diet-induced obesity increases leptin-mediated fatty acid oxidation. Endocrine 2009;36:546-54
  • Tamrakar AK, Maurya CK, Rai AK. PTP1B inhibitors for type 2 diabetes treatment: a patent review (2011 – 2014). Expert Opin Ther Pat 2014;24:1101-15
  • Isis Pharmaceuticals Reports Data From Phase 2 Study of ISIS-PTP1B Rx in Patients With Type 2 Diabetes. 2015. Available from: http://www.prnewswire.com/news-releases/isis-pharmaceuticals-reports-data-from-phase-2-study-of-isis-ptp1b-rx-in-patients-with-type-2-diabetes-300029629.html
  • Panzhinskiy E, Ren J, Nair S. Pharmacological inhibition of protein tyrosine phosphatase 1B: a promising strategy for the treatment of obesity and type 2 diabetes mellitus. Curr Med Chem 2013;20:2609-25
  • El-Haschimi K, Pierroz DD, Hileman SM, et al. Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. J Clin Invest 2000;105:1827-32
  • Banks WA, DiPalma CR, Farrell CL. Impaired transport of leptin across the blood-brain barrier in obesity. Peptides 1999;20:1341-5
  • Golden PL, Maccagnan TJ, Pardridge WM. Human blood-brain barrier leptin receptor: binding and endocytosis in isolated human brain microvessels. J Clin Invest 1997;99:14-18
  • Hileman SM, Pierroz DD, Masuzaki H, et al. Characterization of short isoforms of the leptin receptor in rat cerebral microvessels and of brain uptake of leptin in mouse models of obesity. Endocrinology 2002;143:775-83
  • Balland E, Dam J, Langlet F, et al. Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain. Cell Metab 2014;19:293-301
  • Yi X, Yuan D, Farr SA, et al. Pluronic modified leptin with increased systemic circulation, brain uptake and efficacy for treatment of obesity. J Controlled Release 2014;191:34-46
  • Ozcan L, Ergin AS, Lu A, et al. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab 2009;9:35-51
  • Hosoi T, Sasaki M, Miyahara T, et al. Endoplasmic reticulum stress induces leptin resistance. Mol Pharmacol 2008;74:1610-19
  • Cao SS, Kaufman RJ. Targeting endoplasmic reticulum stress in metabolic disease. Expert Opin Ther Targets 2013;17:437-48
  • Sohn J-W, Harris LE, Berglund ED, et al. Melanocortin 4 receptors reciprocally regulate sympathetic and parasympathetic preganglionic neurons. Cell 2013;152:612-19
  • Morgan DA, Jiang J, McDaniel LN, et al. Regulation of glucose tolerance and sympathetic activity by MC4R signaling in the lateral hypothalamus. Diabetes 2015. 10.2337/db14-1257
  • Atasoy D, Betley JN, Li W-P, et al. A genetically specified connectomics approach applied to long-range feeding regulatory circuits. Nat Neurosci 2014;17:1830-9
  • Ghamari-Langroudi M, Digby GJ, Sebag JA, et al. G-protein-independent coupling of MC4R to Kir7.1 in hypothalamic neurons. Nature 2015;520:94-8
  • Rene P, Le Gouill C, Pogozheva ID, et al. Pharmacological chaperones restore function to MC4R mutants responsible for severe early-onset obesity. J Pharmacol Exp Ther 2010;335:520-32
  • Wang X-H, Wang H-M, Zhao B-L, et al. Rescue of defective MC4R cell-surface expression and signaling by a novel pharmacoperone Ipsen 17. J Mol Endocrinol 2014;53:17-29
  • Huang H, Tao Y-X. A small molecule agonist THIQ as a novel pharmacoperone for intracellularly retained melanocortin-4 receptor mutants. Int J Biol Sci 2014;10:817-24
  • Tao Y-X, Huang H. Ipsen 5i is a novel potent pharmacoperone for intracellularly retained melanocortin-4 receptor mutants. Front Endocrinol 2014;5:131
  • Granell S, Mohammad S, Ramanagoudr-Bhojappa R, et al. Obesity-linked variants of melanocortin-4 receptor are misfolded in the endoplasmic reticulum and can be rescued to the cell surface by a chemical chaperone. Mol Endocrinol 2010;24:1805-21
  • Fan Z-C, Tao Y-X. Functional characterization and pharmacological rescue of melanocortin-4 receptor mutations identified from obese patients. J Cell Mol Med 2009;13:3268-82
  • Nargund RP, Strack AM, Fong TM. Melanocortin-4 receptor (MC4R) agonists for the treatment of obesity. J Med Chem 2006;49:4035-43
  • Lee EC, Carpino PA. Melanocortin receptor-4 modulators for the treatment of obesity: a patent analysis (2008-2014). Pharm Pat Analyst 2015;4:95-107
  • Hadley ME. Discovery that a melanocortin regulates sexual functions in male and female humans. Peptides 2005;26:1687-9
  • Bertolini A, Tacchi R, Vergoni AV. Brain effects of melanocortins. Pharmacol Res 2009;59:13-47
  • Greenfield JR. Melanocortin signalling and the regulation of blood pressure in human obesity. J Neuroendocrinol 2011;23:186-93
  • Krishna R, Gumbiner B, Stevens C, et al. Potent and Selective Agonism of the Melanocortin Receptor 4 With MK-0493 Does Not Induce Weight Loss in Obese Human Subjects: Energy Intake Predicts Lack of Weight Loss Efficacy. Clin Pharmacol Ther 2009;86:659-66
  • Royalty JE, Konradsen G, Eskerod O, et al. Investigation of safety, tolerability, pharmacokinetics, and pharmacodynamics of single and multiple doses of a long-acting α-MSH analog in healthy overweight and obese subjects. J Clin Pharmacol 2014;54:394-404
  • Kievit P, Halem H, Marks DL, et al. Chronic treatment with a melanocortin-4 receptor agonist causes weight loss, reduces insulin resistance, and improves cardiovascular function in diet-induced obese rhesus macaques. Diabetes 2013;62:490-7
  • Chen KY, Muniyappa R, Abel BS, et al. RM-493, a Melanocortin-4 Receptor (MC4R) Agonist, Increases Resting Energy Expenditure in Obese Individuals. J Clin Endocrinol Metab 2015;100:1639-45
  • Dutia R, Kim AJ, Modes M, et al. Effects of AgRP inhibition on energy balance and metabolism in rodent models. PLoS ONE 2013;8:e65317
  • Safety Study of the Inhibition of Agouti-related Protein (AgRP) for the Management of Obesity and Weight Loss. 2011. Available from: https://clinicaltrials.gov/ct2/show/NCT00779519?term=TTP435&rank=1
  • Vanderbilt University, USA. Positive allosteric modulators for melanocortin receptors. WO2013134376A1 2013
  • Gautron L, Lee C, Funahashi H, et al. Melanocortin-4 receptor expression in a vago-vagal circuitry involved in postprandial functions. J Comp Neurol 2010;518:6-24
  • Panaro BL, Tough IR, Engelstoft MS, et al. The melanocortin-4 receptor Is expressed in enteroendocrine L cells and regulates the release of peptide YY and glucagon-like peptide 1 in vivo. Cell Metab 2014;20:1018-29
  • Iqbal J, Li X, Chang BH, et al. An intrinsic gut leptin-melanocortin pathway modulates intestinal microsomal triglyceride transfer protein and lipid absorption. J Lipid Res 2010;51:1929-42
  • Haghighi A, Melka MG, Bernard M, et al. Opioid receptor mu 1 gene, fat intake and obesity in adolescence. Mol Psychiatry 2014;19:63-8
  • Pennock RL, Hentges ST. Differential expression and sensitivity of presynaptic and postsynaptic opioid receptors regulating hypothalamic proopiomelanocortin neurons. J Neurosci 2011;31:281-8
  • Koch M, Varela L, Kim JG, et al. Hypothalamic POMC neurons promote cannabinoid-induced feeding. Nature 2015;519:45-50
  • Berridge KC. Food reward: brain substrates of wanting and liking. Neurosci Biobehav Rev 1996;20:1-25
  • Smith DG, Robbins TW. The neurobiological underpinnings of obesity and binge eating: a rationale for adopting the food addiction model. Biol Psychiatry 2013;73:804-10
  • Zhang M, Balmadrid C, Kelley AE. Nucleus accumbens opioid, GABaergic, and dopaminergic modulation of palatable food motivation: contrasting effects revealed by a progressive ratio study in the rat. Behav Neurosci 2003;117:202-11
  • Bodnar RJ. Endogenous opioids and feeding behavior: a 30-year historical perspective. Peptides 2004;25:697-725
  • Caixas A, Albert L, Capel I, et al. Naltrexone sustained-release/bupropion sustained-release for the management of obesity: review of the data to date. Drug Des Dev Ther 2014;8:1419-27; 9
  • Billes SK, Sinnayah P, Cowley MA. Naltrexone/bupropion for obesity: an investigational combination pharmacotherapy for weight loss. Pharmacol Res 2014;84:1-11
  • Atkinson RL, Berke LK, Drake CR, et al. Effects of long-term therapy with naltrexone on body weight in obesity. Clin Pharmacol Ther 1985;38:419-22
  • Greenway FL, Whitehouse MJ, Guttadauria M, et al. Rational design of a combination medication for the treatment of obesity. Obesity 2009;17:30-9
  • Ignar DM, Goetz AS, Noble KN, et al. Regulation of ingestive behaviors in the rat by GSK1521498, a novel micro-opioid receptor-selective inverse agonist. J Pharmacol Exp Ther 2011;339:24-34
  • Ziauddeen H, Chamberlain SR, Nathan PJ, et al. Effects of the mu-opioid receptor antagonist GSK1521498 on hedonic and consummatory eating behaviour: a proof of mechanism study in binge-eating obese subjects. Mol Psychiatry 2013;18:1287-93
  • Kreymann B, Williams G, Ghatei MA, et al. Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet 1987;2:1300-4
  • Larsen PJ, Tang-Christensen M, Holst JJ, et al. Distribution of glucagon-like peptide-1 and other preproglucagon-derived peptides in the rat hypothalamus and brainstem. Neuroscience 1997;77:257-70
  • Han VK, Hynes MA, Jin C, et al. Cellular localization of proglucagon/glucagon-like peptide I messenger RNAs in rat brain. J Neurosci Res 1986;16:97-107
  • Vrang N, Grove K. The brainstem preproglucagon system in a non-human primate (Macaca mulatta). Brain Res 2011;1397:28-37
  • Zheng H, Cai L, Rinaman L. Distribution of glucagon-like peptide 1-immunopositive neurons in human caudal medulla. Brain Struct Funct 2015;220:1213-19
  • Wessel J, Chu AY, Willems SM, et al. Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility. Nat Commun 2015;6:5897
  • van Can J, Sloth B, Jensen CB, et al. Effects of the once-daily GLP-1 analog liraglutide on gastric emptying, glycemic parameters, appetite and energy metabolism in obese, non-diabetic adults. Int J Obes 2014;38:784-93
  • Novo Nordisk announces positive results for phase 2 trial with oral semaglutide in people with type 2 diabetes. 2015. Available from: http://www.novonordisk.com/press/sea/novo-nordisk-news.asp?sShowNewsItemGUID=36de7914-81fd-47a9-8c26-d69a527c90a0&sShowLanguageCode=en-GB
  • Dungan KM, Povedano ST, Forst T, et al. Once-weekly dulaglutide versus once-daily liraglutide in metformin-treated patients with type 2 diabetes (AWARD-6): a randomised, open-label, phase 3, non-inferiority trial. The Lancet 384:1349-57
  • Nauck MA, Petrie J, Sesti G. The once-weekly human GLP-1 analogue semaglutide provides significant reductions in Hba1c and body weight in patients with type 2 diabetes. Berlin, Germany: Proceedings of the 48th EASD Annual Meeting 2012:1-5
  • Reusch J, Stewart MW, Perkins CM, et al. Efficacy and safety of once-weekly glucagon-like peptide 1 receptor agonist albiglutide (HARMONY 1 trial): 52-week primary endpoint results from a randomized, double-blind, placebo-controlled trial in patients with type 2 diabetes mellitus not controlled on pioglitazone, with or without metformin. Diabetes Obes Metabol 2014;16:1257-64
  • Ahren B, Johnson SL, Stewart M, et al. HARMONY 3: 104-week randomized, double-blind, placebo- and active-controlled trial assessing the efficacy and safety of albiglutide compared with placebo, sitagliptin, and glimepiride in patients with type 2 diabetes taking metformin. Diabetes Care 2014;37:2141-8
  • Lean MEJ, Carraro R, Finer N, et al. Tolerability of nausea and vomiting and associations with weight loss in a randomized trial of liraglutide in obese, non-diabetic adults. Int J Obes 2014;38:689-97
  • Secher A, Jelsing J, Baquero AF, et al. The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss. J Clin Invest 2014;124:4473-88
  • Nishimura T, Nakatake Y, Konishi M, et al. Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys Acta 2000;1492:203-6
  • Kurosu H, Choi M, Ogawa Y, et al. Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem 2007;282:26687-95
  • Coskun T, Bina HA, Schneider MA, et al. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 2008;149:6018-27
  • Xu J, Stanislaus S, Chinookoswong N, et al. Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models--association with liver and adipose tissue effects. Am J Physiol Endocrinol Metab 2009;297:E1105-14
  • Chu AY, Workalemahu T, Paynter NP, et al. Novel locus including FGF21 is associated with dietary macronutrient intake. Hum Mol Genet 2013;22:1895-902
  • Tanaka T, Ngwa JS, van Rooij FJA, et al. Genome-wide meta-analysis of observational studies shows common genetic variants associated with macronutrient intake. Am J Clin Nutr 2013;97:1395-402
  • Kharitonenkov A, Wroblewski VJ, Koester A, et al. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 2007;148:774-81
  • Adams AC, Halstead CA, Hansen BC, et al. LY2405319, an engineered FGF21 variant, improves the metabolic status of diabetic monkeys. PLoS One 2013;8:e65763
  • Veniant MM, Komorowski R, Chen P, et al. Long-acting FGF21 has enhanced efficacy in diet-induced obese mice and in obese rhesus monkeys. Endocrinology 2012;153:4192-203
  • Gaich G, Chien JY, Fu H, et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab 2013;18:333-40
  • Huang J, Ishino T, Chen G, et al. Development of a novel long-acting antidiabetic FGF21 mimetic by targeted conjugation to a scaffold antibody. J Pharmacol Exp Ther 2013;346:270-80
  • Kharitonenkov A, Beals JM, Micanovic R, et al. Rational design of a fibroblast growth factor 21-based clinical candidate, LY2405319. PLoS One 2013;8:e58575
  • Hecht R, Li Y-S, Sun J, et al. Rationale-based engineering of a potent long-acting FGF21 analog for the treatment of type 2 diabetes. PLoS One 2012;7:e49345
  • Foltz IN, Hu S, King C, et al. Treating diabetes and obesity with an FGF21-mimetic antibody activating the βKlotho/FGFR1c receptor complex. Sci Transl Med 2012;4:162ra53-11
  • Smith R, Duguay A, Bakker A, et al. FGF21 can be mimicked in vitro and in vivo by a novel anti-FGFR1c/β-Klotho bispecific protein. PLoS ONE 2013;8:e61432
  • Adams AC, Yang C, Coskun T, et al. The breadth of FGF21’s metabolic actions are governed by FGFR1 in adipose tissue. Mol Metab 2012;2:31-7
  • Hsuchou H, Pan W, Kastin AJ. The fasting polypeptide FGF21 can enter brain from blood. Peptides 2007;28:2382-6
  • Tan BK, Hallschmid M, Adya R, et al. Fibroblast growth factor 21 (FGF21) in human cerebrospinal fluid: relationship with plasma FGF21 and body adiposity. Diabetes 2011;60:2758-62
  • Sarruf DA, Thaler JP, Morton GJ, et al. Fibroblast growth factor 21 action in the brain increases energy expenditure and insulin sensitivity in obese rats. Diabetes 2010;59:1817-24
  • Owen BM, Ding X, Morgan DA, et al. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab 2014;20:670-7
  • Clemmensen C, Finan B, Fischer K, et al. Dual melanocortin-4 receptor and GLP-1 receptor agonism amplifies metabolic benefits in diet-induced obese mice. EMBO Mol Med 2015
  • Troke RC, Tan TM, Bloom SR. The future role of gut hormones in the treatment of obesity. Ther Adv Chronic Dis 2014;5:4-14. 11
  • Wynne K, Park AJ, Small CJ, et al. Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized, controlled trial. Diabetes 2005;54:2390-5
  • Finan B, Yang B, Ottaway N, et al. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat Med 2015;21:27-36
  • Henao-Mejia J, Elinav E, Jin C, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 2012;482:179-85
  • Turnbaugh PJ, Ridaura VK, Faith JJ, et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 2009;1:6ra14
  • Suez J, Korem T, Zeevi D, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 2014;514:181-6
  • Cox LM, Yamanishi S, Sohn J, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 2014;158:705-21
  • Angelakis E, Armougom F, Million M, et al. The relationship between gut microbiota and weight gain in humans. Future Microbiol 2012;7:91-109
  • Everard A, Belzer C, Geurts L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 2013;110:9066-71
  • Druart C, Alligier M, Salazar N, et al. Modulation of the gut microbiota by nutrients with prebiotic and probiotic properties. Adv Nutr 2014;5:624S-33S
  • Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012;143:913-16 e7
  • Ridaura VK, Faith JJ, Rey FE, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013;341:1241214
  • Smith MI, Yatsunenko T, Manary MJ, et al. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 2013;339:548-54
  • Fang S, Suh JM, Reilly SM, et al. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med 2015
  • Joyce SA, MacSharry J, Casey PG, et al. Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proc Natl Acad Sci USA 2014;111:7421-6
  • Li F, Jiang C, Krausz KW, et al. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat Commun 2013;4:2384
  • Lynch CJ, Adams SH. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev Endocrinol 2014;10:723-36
  • Wu T, Bound MJ, Standfield SD, et al. Effects of rectal administration of taurocholic acid on glucagon-like peptide-1 and peptide YY secretion in healthy humans. Diabetes Obes Metab 2013;15:474-7
  • Tolhurst G, Heffron H, Lam YS, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 2012;61:364-71
  • Psichas A, Sleeth ML, Murphy KG, et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int J Obes 2014; Ahead of print
  • Karaki S, Tazoe H, Hayashi H, et al. Expression of the short-chain fatty acid receptor, GPR43, in the human colon. J Mol Histol 2008;39:135-42
  • Chambers ES, Viardot A, Psichas A, et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 2014
  • Patel SRH, Hakim D, Mason J, et al. The duodenal-jejunal bypass sleeve (EndoBarrier Gastrointestinal Liner) for weight loss and treatment of type 2 diabetes. Surg Obes Relat Dis 2013;9:482-4
  • Mizrahi M, Ben YaA, Ilan Y. Gastric stimulation for weight loss. World J Gastroenterol 2012;18:2309-19
  • Allison C. Intragastric balloons: a temporary treatment for obesity. Issues Emerg Health Technol 2006;1-4
  • Ikramuddin S, Blackstone RP, Brancatisano A, et al. Effect of reversible intermittent intra-abdominal vagal nerve blockade on morbid obesity the recharge randomized clinical trial. JAMA 2014;312:915-22; 8
  • Vagal Blocking for Obesity Control (VBLOC). Available from: http://www.fda.gov/medicaldevices/productsandmedicalprocedures/deviceapprovalsandclearances/recently-approveddevices/ucm430696.htm
  • Apovian CM, Aronne LJ, Bessesen DH, et al. Pharmacological management of obesity: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 2015;100:342-62
  • Powell AG, Apovian CM, Aronne LJ. New drug targets for the treatment of obesity. Clin Pharmacol Ther 2011;90:40-51
  • Xenical® (orlistat) Capsules. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2010/020766s028lbl.pdf
  • FDA approves Belviq to treat some overweight or obese adults. 2012. Available from: http://www.fda.gov/newsevents/newsroom/pressannouncements/ucm309993.htm
  • FDA approves weight-management drug Saxenda. 2014. Available from: http://www.fda.gov/newsevents/newsroom/pressannouncements/ucm427913.htm
  • FDA approves weight-management drug Contrave. 2014. Available from: http://www.fda.gov/newsevents/newsroom/pressannouncements/ucm413896.htm
  • FDA approves weight-management drug Qsymia. FDA. 2012. Available from: http://www.fda.gov/newsevents/newsroom/pressannouncements/ucm312468.htm
  • Hecht R, Li YS, Sun J, et al. Rationale-Based Engineering of a Potent Long-Acting FGF21 Analog for the Treatment of Type 2 Diabetes. PLoS One 2012;7:e49345
  • Mu J, Pinkstaff J, Li Z, et al. FGF21 analogs of sustained action enabled by orthogonal biosynthesis demonstrate enhanced antidiabetic pharmacology in rodents. Diabetes 2012;61:505-12
  • Huang J, Ishino T, Chen G, et al. Development of a Novel Long-Acting Antidiabetic FGF21 Mimetic by Targeted Conjugation to a Scaffold Antibody. J Pharmacol Exp Ther 2013;346:270-80
  • Foltz IN, Hu S, King C, et al. Treating diabetes and obesity with an FGF21-mimetic antibody activating the betaKlotho/FGFR1c receptor complex. Sci Transl Med 2012;4:162ra53

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.