537
Views
33
CrossRef citations to date
0
Altmetric
Review

Animal models in tuberculosis research – where is the beef?

, , &

Bibliography

  • World Health Organization. Global tuberculosis report 2014. 2014. Available from: http://www.who.int/tb/publications/global_report/en/
  • Riley RL. Airborne pulmonary tuberculosis. Bacteriol Rev 1961;25:243-8
  • Jones-Lopez EC, Namugga O, Mumbowa F, et al. Cough aerosols of Mycobacterium tuberculosis predict new infection: A household contact study. Am J Respir Crit Care Med 2013;187:1007-15
  • O’Garra A, Redford PS, McNab FW, et al. The immune response in tuberculosis. Annu Rev Immunol 2013;31:475-527
  • Dara M, Acosta CD, Rusovich V, et al. Bacille calmette-guerin vaccination: The current situation in europe. Eur Respir J 2014;43:24-35
  • Roy A, Eisenhut M, Harris RJ, et al. Effect of BCG vaccination against Mycobacterium tuberculosis infection in children: systematic review and meta-analysis. BMJ 2014;349:g4643
  • Arbues A, Aguilo JI, Gonzalo-Asensio J, et al. Construction, characterization and preclinical evaluation of MTBVAC, the first live-attenuated M. tuberculosis-based vaccine to enter clinical trials. Vaccine 2013;31:4867-73
  • Kaufmann SH, Cotton MF, Eisele B, et al. The BCG replacement vaccine VPM1002: From drawing board to clinical trial. Expert Rev Vaccines 2014;13:619-30
  • Reither K, Katsoulis L, Beattie T, et al. Safety and immunogenicity of H1/IC31(R), an adjuvanted TB subunit vaccine, in HIV-infected adults with CD4+ lymphocyte counts greater than 350 cells/mm3: A phase II, multi-centre, double-blind, randomized, placebo-controlled trial. PLoS ONE 2014;9:e114602
  • Kagina BM, Abel B, Scriba TJ, et al. Specific T cell frequency and cytokine expression profile do not correlate with protection against tuberculosis after bacillus calmette-guerin vaccination of newborns. Am J Respir Crit Care Med 2010;182:1073-9
  • Andersen P, Kaufmann SH. Novel vaccination strategies against tuberculosis. Cold Spring Harb Perspect Med 2014;4. doi:10.1101/cshperspect.a018523
  • Kanesa-thasan N, Shaw A, Stoddard JJ, Vernon TM. Ensuring the optimal safety of licensed vaccines: A perspective of the vaccine research, development, and manufacturing companies. Pediatrics 2011;127(Suppl 1):S16-22
  • Esmail H, Barry CEIII, Young DB, Wilkinson RJ. The ongoing challenge of latent tuberculosis. Philos Trans R Soc Lond B Biol Sci 2014;369:20130437
  • Barry CEIII, Boshoff HI, Dartois V, et al. The spectrum of latent tuberculosis: Rethinking the biology and intervention strategies. Nat Rev Microbiol 2009;7:845-55
  • Ramakrishnan L. Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol 2012;12:352-66
  • Philips JA, Ernst JD. Tuberculosis pathogenesis and immunity. Annu Rev Pathol 2012;7:353-84
  • Armstrong JA, Hart PD. Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J Exp Med 1971;134:713-40
  • Divangahi M, Desjardins D, Nunes-Alves C, et al. Eicosanoid pathways regulate adaptive immunity to Mycobacterium tuberculosis. Nat Immunol 2010;11:751-8
  • Martin CJ, Booty MG, Rosebrock TR, et al. Efferocytosis is an innate antibacterial mechanism. Cell Host Microbe 2012;12:289-300
  • Khan N, Vidyarthi A, Pahari S, Agrewala JN. Distinct strategies employed by dendritic cells and macrophages in restricting Mycobacterium tuberculosis infection: Different philosophies but same desire. Int Rev Immunol 2015. [Epub ahead of print]
  • Cooper AM, Dalton DK, Stewart TA, et al. Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med 1993;178:2243-7
  • Flynn JL, Chan J, Triebold KJ, et al. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 1993;178:2249-54
  • Chackerian AA, Perera TV, Behar SM. Gamma interferon-producing CD4+ T lymphocytes in the lung correlate with resistance to infection with Mycobacterium tuberculosis. Infect Immun 2001;69:2666-74
  • Sakai S, Mayer-Barber KD, Barber DL. Defining features of protective CD4 T cell responses to Mycobacterium tuberculosis. Curr Opin Immunol 2014;29:137-42
  • Derrick SC, Yabe IM, Yang A, Morris SL. Vaccine-induced anti-tuberculosis protective immunity in mice correlates with the magnitude and quality of multifunctional CD4 T cells. Vaccine 2011;29:2902-9
  • Jasenosky LD, Scriba TJ, Hanekom WA, Goldfeld AE. T cells and adaptive immunity to Mycobacterium tuberculosis in humans. Immunol Rev 2015;264:74-87
  • Tameris MD, Hatherill M, Landry BS, et al. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: A randomised, placebo-controlled phase 2b trial. Lancet 2013;381:1021-8
  • Via LE, Lin PL, Ray SM, et al. Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect Immun 2008;76:2333-40
  • Tsai MC, Chakravarty S, Zhu G, et al. Characterization of the tuberculous granuloma in murine and human lungs: Cellular composition and relative tissue oxygen tension. Cell Microbiol 2006;8:218-32
  • Dharmadhikari AS, Nardell EA. What animal models teach humans about tuberculosis. Am J Respir Cell Mol Biol 2008;39:503-8
  • Kelly BP, Furney SK, Jessen MT, Orme IM. Low-dose aerosol infection model for testing drugs for efficacy against Mycobacterium tuberculosis. Antimicrob Agents Chemother 1996;40:2809-12
  • Bai X, Kim SH, Azam T, et al. IL-32 is a host protective cytokine against Mycobacterium tuberculosis in differentiated THP-1 human macrophages. J Immunol 2010;184:3830-40
  • Bai X, Shang S, Henao-Tamayo M, et al. Human IL-32 expression protects mice against a hypervirulent strain of Mycobacterium tuberculosis. Proc Natl Acad Sci USA 2015;112:5111-16
  • Rhoades ER, Frank AA, Orme IM. Progression of chronic pulmonary tuberculosis in mice aerogenically infected with virulent Mycobacterium tuberculosis. Tuber Lung Dis 1997;78:57-66
  • Orme IM, Basaraba RJ. The formation of the granuloma in tuberculosis infection. Semin Immunol 2014;26:601-9
  • McCune RMJr, Tompsett R. Fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. I. the persistence of drug-susceptible tubercle bacilli in the tissues despite prolonged antimicrobial therapy. J Exp Med 1956;104:737-62
  • Pan H, Yan BS, Rojas M, et al. Ipr1 gene mediates innate immunity to tuberculosis. Nature 2005;434:767-72
  • Dutta NK, Illei PB, Jain SK, Karakousis PC. Characterization of a novel necrotic granuloma model of latent tuberculosis infection and reactivation in mice. Am J Pathol 2014;184:2045-55
  • Calderon VE, Valbuena G, Goez Y, et al. A humanized mouse model of tuberculosis. PLoS ONE 2013;8:e63331
  • Acosta A, Norazmi MN, Hernandez-Pando R, et al. The importance of animal models in tuberculosis vaccine development. Malays J Med Sci 2011;18:5-12
  • Orme IM. Mouse and guinea pig models for testing new tuberculosis vaccines. Tuberculosis (Edinb) 2005;85:13-17
  • Franzblau SG, DeGroote MA, Cho SH, et al. Comprehensive analysis of methods used for the evaluation of compounds against Mycobacterium tuberculosis. Tuberculosis (Edinb) 2012;92:453-88
  • Young D. Animal models of tuberculosis. Eur J Immunol 2009;39:2011-14
  • Kaufmann SH. Koch’s dilemma revisited. Scand J Infect Dis 2001;33:5-8
  • Padilla-Carlin DJ, McMurray DN, Hickey AJ. The guinea pig as a model of infectious diseases. Comp Med 2008;58:324-40
  • Smith DW, McMurray DN, Wiegeshaus EH, et al. Host-parasite relationships in experimental airborne tuberculosis. IV. early events in the course of infection in vaccinated and nonvaccinated guinea pigs. Am Rev Respir Dis 1970;102:937-49
  • Dharmadhikari AS, Basaraba RJ, Van Der Walt ML, et al. Natural infection of guinea pigs exposed to patients with highly drug-resistant tuberculosis. Tuberculosis (Edinb) 2011;91:329-38
  • Tree JA, Smith S, Baker N, et al. Method for assessing IFN-gamma responses in guinea pigs during TB vaccine trials. Lett Appl Microbiol 2012;55:295-300
  • Baldwin SL, D’Souza C, Roberts AD, et al. Evaluation of new vaccines in the mouse and guinea pig model of tuberculosis. Infect Immun 1998;66:2951-9
  • Ordway DJ, Shanley CA, Caraway ML, et al. Evaluation of standard chemotherapy in the guinea pig model of tuberculosis. Antimicrob Agents Chemother 2010;54:1820-33
  • Shang S, Shanley CA, Caraway ML, et al. Drug treatment combined with BCG vaccination reduces disease reactivation in guinea pigs infected with Mycobacterium tuberculosis. Vaccine 2012;30:1572-82
  • Williams A, Goonetilleke NP, McShane H, et al. Boosting with poxviruses enhances mycobacterium bovis BCG efficacy against tuberculosis in guinea pigs. Infect Immun 2005;73:3814-16
  • Dirisala VR, Jeevan A, Ly LH, McMurray DN. Prokaryotic expression and in vitro functional analysis of IL-1beta and MCP-1 from guinea pig. Mol Biotechnol 2013;54:312-19
  • Lurie MB. The fate of human and bovine tubercle bacilli in various organs of the rabbit. J Exp Med 1928;48:155-82
  • Manabe YC, Dannenberg AMJr, Tyagi SK, et al. Different strains of Mycobacterium tuberculosis cause various spectrums of disease in the rabbit model of tuberculosis. Infect Immun 2003;71:6004-11
  • Mendez S, Hatem CL, Kesavan AK, et al. Susceptibility to tuberculosis: Composition of tuberculous granulomas in thorbecke and outbred new zealand white rabbits. Vet Immunol Immunopathol 2008;122:167-74
  • Dannenberg AMJr. Perspectives on clinical and preclinical testing of new tuberculosis vaccines. Clin Microbiol Rev 2010;23:781-94
  • Subbian S, Tsenova L, O’Brien P, et al. Spontaneous latency in a rabbit model of pulmonary tuberculosis. Am J Pathol 2012;181:1711-24
  • Lurie MB, Abramson S, Heppleston AG. On the response of genetically resistant and susceptible rabbits to the quantitative inhalation of human type tubercle bacilli and the nature of resistance to tuberculosis. J Exp Med 1952;95:119-34
  • Dorman SE, Hatem CL, Tyagi S, et al. Susceptibility to tuberculosis: Clues from studies with inbred and outbred new zealand white rabbits. Infect Immun 2004;72:1700-5
  • Subbian S, Bandyopadhyay N, Tsenova L, et al. Early innate immunity determines outcome of Mycobacterium tuberculosis pulmonary infection in rabbits. Cell Commun Signal 2013;11:60
  • Liu X, Jia W, Wang H, et al. Establishment of a rabbit model of spinal tuberculosis using Mycobacterium tuberculosis strain H37Rv. Jpn J Infect Dis 2015;68:89-97
  • Gertz EM, Schaffer AA, Agarwala R, et al. Accuracy and coverage assessment of oryctolagus cuniculus (rabbit) genes encoding immunoglobulins in the whole genome sequence assembly (OryCun2.0) and localization of the IGH locus to chromosome 20. Immunogenetics 2013;65:749-62
  • Lerche NW, Yee JL, Capuano SV, Flynn JL. New approaches to tuberculosis surveillance in nonhuman primates. ILAR J 2008;49:170-8
  • Capuano SVIII, Croix DA, Pawar S, et al. Experimental Mycobacterium tuberculosis infection of cynomolgus macaques closely resembles the various manifestations of human M. tuberculosis infection. Infect Immun 2003;71:5831-44
  • Lin PL, Pawar S, Myers A, et al. Early events in Mycobacterium tuberculosis infection in cynomolgus macaques. Infect Immun 2006;74:3790-803
  • Lin PL, Rodgers M, Smith L, et al. Quantitative comparison of active and latent tuberculosis in the cynomolgus macaque model. Infect Immun 2009;77:4631-42
  • Lin PL, Myers A, Smith L, et al. Tumor necrosis factor neutralization results in disseminated disease in acute and latent Mycobacterium tuberculosis infection with normal granuloma structure in a cynomolgus macaque model. Arthritis Rheum 2010;62:340-50
  • McShane H, Williams A. A review of preclinical animal models utilised for TB vaccine evaluation in the context of recent human efficacy data. Tuberculosis (Edinb) 2014;94:105-10
  • Sharpe SA, McShane H, Dennis MJ, et al. Establishment of an aerosol challenge model of tuberculosis in rhesus macaques and an evaluation of endpoints for vaccine testing. Clin Vaccine Immunol 2010;17:1170-82
  • Via LE, Weiner DM, Schimel D, et al. Differential virulence and disease progression following Mycobacterium tuberculosis complex infection of the common marmoset (callithrix jacchus). Infect Immun 2013;81:2909-19
  • Palmer MV. Mycobacterium bovis: characteristics of wildlife reservoir hosts. Transbound Emerg Dis 2013;60(Suppl 1):1-13
  • Pesciaroli M, Alvarez J, Boniotti MB, et al. Tuberculosis in domestic animal species. Res Vet Sci 2014;97(Suppl):S78-85
  • Cassidy JP. The pathogenesis and pathology of bovine tuberculosis with insights from studies of tuberculosis in humans and laboratory animal models. Vet Microbiol 2006;112:151-61
  • Nol P, Palmer MV, Waters WR, et al. Efficacy of oral and parenteral routes of mycobacterium bovis bacille calmette-guerin vaccination against experimental bovine tuberculosis in white-tailed deer (odocoileus virginianus): A feasibility study. J Wildl Dis 2008;44:247-59
  • Corner LA, Buddle BM. Conjunctival vaccination of the brushtail possum (trichosurus vulpecula) with bacille calmette-guerin. N Z Vet J 2005;53:133-6
  • Pym AS, Brodin P, Brosch R, et al. Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines mycobacterium bovis BCG and mycobacterium microti. Mol Microbiol 2002;46:709-17
  • Thom ML, McAulay M, Vordermeier HM, et al. Duration of immunity against mycobacterium bovis following neonatal vaccination with bacillus calmette-guerin danish: Significant protection against infection at 12, but not 24, months. Clin Vaccine Immunol 2012;19:1254-60
  • Rizzi C, Bianco MV, Blanco FC, et al. Vaccination with a BCG strain overexpressing Ag85B protects cattle against mycobacterium bovis challenge. PLoS One 2012;7:e51396
  • Blanco FC, Bianco MV, Garbaccio S, et al. Mycobacterium bovis Deltamce2 double deletion mutant protects cattle against challenge with virulent M. bovis. Tuberculosis (Edinb) 2013;93:363-72
  • Gonzalez-Juarrero M, Bosco-Lauth A, Podell B, et al. Experimental aerosol mycobacterium bovis model of infection in goats. Tuberculosis (Edinb) 2013;93:558-64
  • Sanchez J, Tomas L, Ortega N, et al. Microscopical and immunological features of tuberculoid granulomata and cavitary pulmonary tuberculosis in naturally infected goats. J Comp Pathol 2011;145:107-17
  • Perez de Val B, Villarreal-Ramos B, Nofrarias M, et al. Goats primed with mycobacterium bovis BCG and boosted with a recombinant adenovirus expressing Ag85A show enhanced protection against tuberculosis. Clin Vaccine Immunol 2012;19:1339-47
  • Solomon JM, Leung GS, Isberg RR. Intracellular replication of mycobacterium marinum within dictyostelium discoideum: Efficient replication in the absence of host coronin. Infect Immun 2003;71:3578-86
  • Peracino B, Wagner C, Balest A, et al. Function and mechanism of action of dictyostelium Nramp1 (Slc11a1) in bacterial infection. Traffic 2006;7:22-38
  • Dionne MS, Ghori N, Schneider DS. Drosophila melanogaster is a genetically tractable model host for mycobacterium marinum. Infect Immun 2003;71:3540-50
  • Pozos TC, Ramakrishnan L. New models for the study of mycobacterium-host interactions. Curr Opin Immunol 2004;16:499-505
  • Stinear TP, Seemann T, Harrison PF, et al. Insights from the complete genome sequence of mycobacterium marinum on the evolution of Mycobacterium tuberculosis. Genome Res 2008;18:729-41
  • Swaim LE, Connolly LE, Volkman HE, et al. Mycobacterium marinum infection of adult zebrafish causes caseating granulomatous tuberculosis and is moderated by adaptive immunity. Infect Immun 2006;74:6108-17
  • Dionne MS, Pham LN, Shirasu-Hiza M, Schneider DS. Akt and FOXO dysregulation contribute to infection-induced wasting in drosophila. Curr Biol 2006;16:1977-85
  • Hagedorn M, Soldati T. Flotillin and RacH modulate the intracellular immunity of dictyostelium to mycobacterium marinum infection. Cell Microbiol 2007;9:2716-33
  • Hagedorn M, Rohde KH, Russell DG, Soldati T. Infection by tubercular mycobacteria is spread by nonlytic ejection from their amoeba hosts. Science 2009;323:1729-33
  • Ramet M. The fruit fly drosophila melanogaster unfolds the secrets of innate immunity. Acta Paediatr 2012;101:900-5
  • Manzanillo PS, Ayres JS, Watson RO, et al. The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 2013;501:512-16
  • Lohi O, Parikka M, Ramet M. The zebrafish as a model for paediatric diseases. Acta Paediatr 2013;102:104-10
  • Meijer AH, Spaink HP. Host-pathogen interactions made transparent with the zebrafish model. Curr Drug Targets 2011;12:1000-17
  • Parikka M, Hammaren MM, Harjula SK, et al. Mycobacterium marinum causes a latent infection that can be reactivated by gamma irradiation in adult zebrafish. PLoS Pathog 2012;8:e1002944
  • Oksanen KE, Halfpenny NJ, Sherwood E, et al. An adult zebrafish model for preclinical tuberculosis vaccine development. Vaccine 2013;31:5202-9
  • Clay H, Davis JM, Beery D, et al. Dichotomous role of the macrophage in early mycobacterium marinum infection of the zebrafish. Cell Host Microbe 2007;2:29-39
  • Cambier CJ, Takaki KK, Larson RP, et al. Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids. Nature 2014;505:218-22
  • Clay H, Volkman HE, Ramakrishnan L. Tumor necrosis factor signaling mediates resistance to mycobacteria by inhibiting bacterial growth and macrophage death. Immunity 2008;29:283-94
  • Roca FJ, Ramakrishnan L. TNF dually mediates resistance and susceptibility to mycobacteria via mitochondrial reactive oxygen species. Cell 2013;153:521-34
  • Yang CT, Cambier CJ, Davis JM, et al. Neutrophils exert protection in the early tuberculous granuloma by oxidative killing of mycobacteria phagocytosed from infected macrophages. Cell Host Microbe 2012;12:301-12
  • Davis JM, Clay H, Lewis JL, et al. Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity 2002;17:693-702
  • Cosma CL, Humbert O, Ramakrishnan L. Superinfecting mycobacteria home to established tuberculous granulomas. Nat Immunol 2004;5:828-35
  • Davis JM, Ramakrishnan L. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 2009;136:37-49
  • Hammaren MM, Oksanen KE, Nisula HM, et al. Adequate Th2-type response associates with restricted bacterial growth in latent mycobacterial infection of zebrafish. PLoS Pathog 2014;10:e1004190
  • van Meijgaarden KE, Haks MC, Caccamo N, et al. Human CD8+ T-cells recognizing peptides from Mycobacterium tuberculosis (mtb) presented by HLA-E have an unorthodox Th2-like, multifunctional, mtb inhibitory phenotype and represent a novel human T-cell subset. PLoS Pathog 2015;11:e1004671
  • Adams KN, Takaki K, Connolly LE, et al. Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell 2011;145:39-53
  • Fitzgerald LE, Abendano N, Juste RA, Alonso-Hearn M. Three-dimensional in vitro models of granuloma to study bacteria-host interactions, drug-susceptibility, and resuscitation of dormant mycobacteria. Biomed Res Int 2014;2014:623856
  • Goonetilleke NP, McShane H, Hannan CM, et al. Enhanced immunogenicity and protective efficacy against Mycobacterium tuberculosis of bacille calmette-guerin vaccine using mucosal administration and boosting with a recombinant modified vaccinia virus ankara. J Immunol 2003;171:1602-9
  • Sweeney KA, Dao DN, Goldberg MF, et al. A recombinant mycobacterium smegmatis induces potent bactericidal immunity against Mycobacterium tuberculosis. Nat Med 2011;17:1261-8
  • Dutt AK, Moers D, Stead WW. Smear- and culture-negative pulmonary tuberculosis: Four-month short-course chemotherapy. Am Rev Respir Dis 1989;139:867-70
  • Adams KN, Szumowski JD, Ramakrishnan L. Verapamil, and its metabolite norverapamil, inhibit macrophage-induced, bacterial efflux pump-mediated tolerance to multiple anti-tubercular drugs. J Infect Dis 2014;210:456-66

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.