438
Views
21
CrossRef citations to date
0
Altmetric
Review

Sigma-1 receptors and animal studies centered on pain and analgesia

, MD FCCP FAAHPM (Professor of Medicine, Director, Clinical Fellowship Program)

Bibliography

  • Su TP, Hayashi T, Maurice T, et al. The sigma-1 receptor chaperone as an inter-organelle signaling modulator. Trends Pharmacol Sci 2010;31:557-66
  • Hayashi T, Su TP. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 2007;131:596-610
  • Itzhak Y, Stein I. Sigma binding sites in the brain; an emerging concept for multiple sites and their relevance for psychiatric disorders. Life Sci 1990;47:1073-81
  • Quirion R, Bowen WD, Itzhak Y, et al. A proposal for the classification of sigma binding sites. Trends Pharmacol Sci 1992;13:85-6
  • Hellewell SB, Bowen WD. A sigma-like binding site in rat pheochromocytoma (PC12) cells: decreased affinity for (+)-benzomorphans and lower molecular weight suggest a different sigma receptor form from that of guinea pig brain. Brain Res 1990;527:244-53
  • Hanner M, Moebius FF, Flandorfer A, et al. Purification, molecular cloning, and expression of the mammalian sigma1-binding site. Proc Natl Acad Sci USA 1996;93:8072-7
  • Kourrich S, Su TP, Fujimoto M, et al. The sigma-1 receptor: roles in neuronal plasticity and disease. Trends Neurosci 2012;35:762-71
  • Su TP. Evidence for sigma opioid receptor: binding of [3H]SKF-10047 to etorphine-inaccessible sites in guinea-pig brain. J Pharmacol Exp Ther 1982;223:284-90
  • DeHaven-Hudkins DL, Ford-Rice FY, Allen JT, et al. Allosteric modulation of ligand binding to [3H](+)pentazocine-defined sigma recognition sites by phenytoin. Life Sci 1993;53:41-8
  • Mishra AK, Mavlyutov TA, Singh DR, et al. The sigma 1 receptors are present in monomeric and oligomeric forms in living cells in the presence and absence of ligands. Biochem J 2015;466(2):263-71
  • Itzhak Y. Multiple affinity binding states of the sigma receptor: effect of GTP-binding protein-modifying agents. Mol Pharmacol 1989;36:512-17
  • Hayashi T, Justinova Z, Hayashi E, et al. Regulation of sigma-1 receptors and endoplasmic reticulum chaperones in the brain of methamphetamine self-administering rats. J Pharmacol Exp Ther 2010;332:1054-63
  • Hashimoto K. Activation of sigma-1 receptor chaperone in the treatment of neuropsychiatric diseases and its clinical implication. J Pharmacol Sci 2015;127:6-9
  • Hayashi T, Su TP, Kagaya A, et al. Neuroleptics with differential affinities at dopamine D2 receptors and sigma receptors affect differently the N-methyl-D-aspartate-induced increase in intracellular calcium concentration: involvement of protein kinase. Synapse 1999;31:20-8
  • Lang A, Soosaar A, Koks S, et al. Pharmacological comparison of antipsychotic drugs and sigma-antagonists in rodents. Pharmacol Toxicol 1994;75:222-7
  • Zhang Y, Lv X, Bai Y, et al. Involvement of sigma-1 receptor in astrocyte activation induced by methamphetamine via up-regulation of its own expression. J Neuroinflammation 2015;12:29
  • Alonso G, Phan V, Guillemain I, et al. Immunocytochemical localization of the sigma(1) receptor in the adult rat central nervous system. Neuroscience 2000;97:155-70
  • Tejada MA, Montilla-Garcia A, Sanchez-Fernandez C, et al. Sigma-1 receptor inhibition reverses acute inflammatory hyperalgesia in mice: role of peripheral sigma-1 receptors. Psychopharmacology (Berl) 2014;231:3855-69
  • Sanchez-Fernandez C, Nieto FR, Gonzalez-Cano R, et al. Potentiation of morphine-induced mechanical antinociception by sigma(1) receptor inhibition: role of peripheral sigma(1) receptors. Neuropharmacology 2013;70:348-58
  • Bangaru ML, Weihrauch D, Tang QB, et al. Sigma-1 receptor expression in sensory neurons and the effect of painful peripheral nerve injury. Mol Pain 2013;9:47
  • Maurice T, Su TP. The pharmacology of sigma-1 receptors. Pharmacol Ther 2009;124:195-206
  • Moon JY, Roh DH, Yoon SY, et al. Sigma1 receptors activate astrocytes via p38 MAPK phosphorylation leading to the development of mechanical allodynia in a mouse model of neuropathic pain. Br J Pharmacol 2014;171:5881-97
  • Carnally SM, Johannessen M, Henderson RM, et al. Demonstration of a direct interaction between sigma-1 receptors and acid-sensing ion channels. Biophys J 2010;98:1182-91
  • Cobos EJ, Baeyens JM, Del Pozo E. Phenytoin differentially modulates the affinity of agonist and antagonist ligands for sigma 1 receptors of guinea pig brain. Synapse 2005;55:192-5
  • Fu Y, Zhao Y, Luan W, et al. Sigma-1 receptors amplify dopamine D1 receptor signaling at presynaptic sites in the prelimbic cortex. Biochim Biophys Acta 2010;1803:1396-408
  • Gonzalez LG, Sanchez-Fernandez C, Cobos EJ, et al. Sigma-1 receptors do not regulate calcium influx through voltage-dependent calcium channels in mouse brain synaptosomes. Eur J Pharmacol 2012;677:102-6
  • Hayashi T, Maurice T, Su TP. Ca(2+) signaling via sigma(1)-receptors: novel regulatory mechanism affecting intracellular Ca(2+) concentration. J Pharmacol Exp Ther 2000;293:788-98
  • Cobos EJ, Entrena JM, Nieto FR, et al. Pharmacology and therapeutic potential of sigma(1) receptor ligands. Curr Neuropharmacol 2008;6:344-66
  • Weatherspoon JK, Gonzalez-Alvear GM, Werling LL. Regulation of [3H]norepinephrine release from guinea pig hippocampus by sigma2 receptors. Eur J Pharmacol 1997;326:133-8
  • Weatherspoon JK, Gonzalez-Alvear GM, Frank AR, et al. Regulation of [3H] dopamine release from mesolimbic and mesocortical areas of guinea pig brain by sigma receptors. Schizophr Res 1996;21:51-62
  • Gonzalez-Alvear GM, Werling LL. Sigma-1 receptors in rat striatum regulate NMDA-stimulated [3H]dopamine release via a presynaptic mechanism. Eur J Pharmacol 1995;294:713-19
  • Gonzalez-Alvear GM, Werling LL. Sigma receptor regulation of norepinephrine release from rat hippocampal slices. Brain Res 1995;673:61-9
  • Gonzalez-Alvear GM, Werling LL. Regulation of [3H]dopamine release from rat striatal slices by sigma receptor ligands. J Pharmacol Exp Ther 1994;271:212-19
  • Ruscher K, Inacio AR, Valind K, et al. Effects of the sigma-1 receptor agonist 1-(3,4-dimethoxyphenethyl)-4-(3-phenylpropyl)-piperazine dihydro-chloride on inflammation after stroke. PLoS ONE 2012;7:e45118
  • Skuza G. Potential antidepressant activity of sigma ligands. Pol J Pharmacol 2003;55:923-34
  • Matsumoto RR, Liu Y, Lerner M, et al. Sigma receptors: potential medications development target for anti-cocaine agents. Eur J Pharmacol 2003;469:1-12
  • Rowley M, Bristow LJ, Hutson PH. Current and novel approaches to the drug treatment of schizophrenia. J Med Chem 2001;44:477-501
  • de la Puente B, Nadal X, Portillo-Salido E, et al. Sigma-1 receptors regulate activity-induced spinal sensitization and neuropathic pain after peripheral nerve injury. Pain 2009;145:294-303
  • Furuse T, Hashimoto K. Sigma-1 receptor agonist fluvoxamine for delirium in patients with Alzheimer’s disease. Ann Gen Psychiatry 2010;9:6
  • Jansen KL, Faull RL, Storey P, et al. Loss of sigma binding sites in the CA1 area of the anterior hippocampus in Alzheimer’s disease correlates with CA1 pyramidal cell loss. Brain Res 1993;623:299-302
  • Tsai SY, Pokrass MJ, Klauer NR, et al. Sigma-1 receptor chaperones in neurodegenerative and psychiatric disorders. Expert Opin Ther Targets 2014;18(12):1461-76
  • Miki Y, Mori F, Kon T, et al. Accumulation of the sigma-1 receptor is common to neuronal nuclear inclusions in various neurodegenerative diseases. Neuropathology 2014;34:148-58
  • Maurice T, Hiramatsu M, Kameyama T, et al. Behavioral evidence for a modulating role of sigma ligands in memory processes. II. Reversion of carbon monoxide-induced amnesia. Brain Res 1994;647:57-64
  • Maurice T, Hiramatsu M, Itoh J, et al. Behavioral evidence for a modulating role of sigma ligands in memory processes. I. Attenuation of dizocilpine (MK-801)-induced amnesia. Brain Res 1994;647:44-56
  • Bura AS, Guegan T, Zamanillo D, et al. Operant self-administration of a sigma ligand improves nociceptive and emotional manifestations of neuropathic pain. Eur J Pain 2013;17:832-43
  • Nieto FR, Cendan CM, Sanchez-Fernandez C, et al. Role of sigma-1 receptors in paclitaxel-induced neuropathic pain in mice. J Pain 2012;13:1107-21
  • Romero L, Zamanillo D, Nadal X, et al. Pharmacological properties of S1RA, a new sigma-1 receptor antagonist that inhibits neuropathic pain and activity-induced spinal sensitization. Br J Pharmacol 2012;166:2289-306
  • Diaz JL, Zamanillo D, Corbera J, et al. Selective sigma-1 (sigma1) receptor antagonists: emerging target for the treatment of neuropathic pain. Cent Nerv Syst Agents Med Chem 2009;9:172-83
  • Roh DH, Kim HW, Yoon SY, et al. Intrathecal injection of the sigma(1) receptor antagonist BD1047 blocks both mechanical allodynia and increases in spinal NR1 expression during the induction phase of rodent neuropathic pain. Anesthesiology 2008;109:879-89
  • Kim FJ, Kovalyshyn I, Burgman M, et al. Sigma 1 receptor modulation of G-protein-coupled receptor signaling: potentiation of opioid transduction independent from receptor binding. Mol Pharmacol 2010;77:695-703
  • Mei J, Pasternak GW. Modulation of brainstem opiate analgesia in the rat by sigma 1 receptors: a microinjection study. J Pharmacol Exp Ther 2007;322:1278-85
  • Chien CC, Pasternak GW. Sigma antagonists potentiate opioid analgesia in rats. Neurosci Lett 1995;190:137-9
  • Chien CC, Pasternak GW. Selective antagonism of opioid analgesia by a sigma system. J Pharmacol Exp Ther 1994;271:1583-90
  • Chien CC, Pasternak GW. Functional antagonism of morphine analgesia by (+)-pentazocine: evidence for an anti-opioid sigma 1 system. Eur J Pharmacol 1993;250:R7-8
  • Vidal-Torres A, de la Puente B, Rocasalbas M, et al. Sigma-1 receptor antagonism as opioid adjuvant strategy: enhancement of opioid antinociception without increasing adverse effects. Eur J Pharmacol 2013;711:63-72
  • Daw JL, Cohen-Cole SA. Haloperidol analgesia. South Med J 1981;74:364-5
  • Maltbie AA, Cavenar JOJr, Sullivan JL, et al. Analgesia and haloperidol: a hypothesis. J Clin Psychiatry 1979;40:323-6
  • Head M, Lal H, Puri S, et al. Enhancement of morphine analgesia after acute and chronic haloperidol. Life Sci 1979;24:2037-43
  • Maltbie AA, Cavenar JOJr. Haloperidol and analgesia: case reports. Mil Med 1977;142:946-8
  • Zamanillo D, Romero L, Merlos M, et al. Sigma 1 receptor: a new therapeutic target for pain. Eur J Pharmacol 2013;716:78-93
  • Prezzavento O, Parenti C, Marrazzo A, et al. A new sigma ligand, (+/-)-PPCC, antagonizes kappa opioid receptor-mediated antinociceptive effect. Life Sci 2008;82:549-53
  • Piergentili A, Amantini C, Del Bello F, et al. Novel highly potent and selective sigma 1 receptor antagonists related to spipethiane. J Med Chem 2010;53:1261-9
  • Liang X, Wang RY. Biphasic modulatory action of the selective sigma receptor ligand SR 31742A on N-methyl-D-aspartate-induced neuronal responses in the frontal cortex. Brain Res 1998;807:208-13
  • Roh DH, Kim HW, Yoon SY, et al. Intrathecal administration of sigma-1 receptor agonists facilitates nociception: involvement of a protein kinase C-dependent pathway. J Neurosci Res 2008;86:3644-54
  • Kim HW, Roh DH, Yoon SY, et al. Activation of the spinal sigma-1 receptor enhances NMDA-induced pain via PKC- and PKA-dependent phosphorylation of the NR1 subunit in mice. Br J Pharmacol 2008;154:1125-34
  • Hayashi T, Su TP. Sigma-1 receptors (sigma(1) binding sites) form raft-like microdomains and target lipid droplets on the endoplasmic reticulum: roles in endoplasmic reticulum lipid compartmentalization and export. J Pharmacol Exp Ther 2003;306:718-25
  • Su TP, Hayashi T. Understanding the molecular mechanism of sigma-1 receptors: towards a hypothesis that sigma-1 receptors are intracellular amplifiers for signal transduction. Curr Med Chem 2003;10:2073-80
  • Mueller BHII, Park Y, Daudt DRIII, et al. Sigma-1 receptor stimulation attenuates calcium influx through activated L-type Voltage Gated Calcium Channels in purified retinal ganglion cells. Exp Eye Res 2013;107:21-31
  • Zhang H, Cuevas J. Sigma receptors inhibit high-voltage-activated calcium channels in rat sympathetic and parasympathetic neurons. J Neurophysiol 2002;87:2867-79
  • Tchedre KT, Yorio T. sigma-1 receptors protect RGC-5 cells from apoptosis by regulating intracellular calcium, Bax levels, and caspase-3 activation. Invest Ophthalmol Vis Sci 2008;49:2577-88
  • Pan B, Guo Y, Kwok WM, et al. Sigma-1 receptor antagonism restores injury-induced decrease of voltage-gated Ca2+ current in sensory neurons. J Pharmacol Exp Ther 2014;350:290-300
  • Hogan QH, McCallum JB, Sarantopoulos C, et al. Painful neuropathy decreases membrane calcium current in mammalian primary afferent neurons. Pain 2000;86:43-53
  • Vergara C, Latorre R, Marrion NV, et al. Calcium-activated potassium channels. Curr Opin Neurobiol 1998;8:321-9
  • Martina M, Metz AE, Bean BP. Voltage-dependent potassium currents during fast spikes of rat cerebellar Purkinje neurons: inhibition by BDS-I toxin. J Neurophysiol 2007;97:563-71
  • Zhang H, Katnik C, Cuevas J. Sigma receptor activation inhibits voltage-gated sodium channels in rat intracardiac ganglion neurons. Int J Physiol Pathophysiol Pharmacol 2009;2:1-11
  • Cheng ZX, Lan DM, Wu PY, et al. Neurosteroid dehydroepiandrosterone sulphate inhibits persistent sodium currents in rat medial prefrontal cortex via activation of sigma-1 receptors. Exp Neurol 2008;210:128-36
  • Johannessen M, Ramachandran S, Riemer L, et al. Voltage-gated sodium channel modulation by sigma-receptors in cardiac myocytes and heterologous systems. Am J Physiol Cell Physiol 2009;296:C1049-57
  • Soriani O, Le Foll F, Galas L, et al. The sigma-ligand (+)-pentazocine depresses M current and enhances calcium conductances in frog melanotrophs. Am J Physiol 1999;277:E73-80
  • Soriani O, Foll FL, Roman F, et al. A-Current down-modulated by sigma receptor in frog pituitary melanotrope cells through a G protein-dependent pathway. J Pharmacol Exp Ther 1999;289:321-8
  • Wilke RA, Lupardus PJ, Grandy DK, et al. K+ channel modulation in rodent neurohypophysial nerve terminals by sigma receptors and not by dopamine receptors. J Physiol 1999;517(Pt 2):391-406
  • Kinoshita M, Matsuoka Y, Suzuki T, et al. Sigma-1 receptor alters the kinetics of Kv1.3 voltage gated potassium channels but not the sensitivity to receptor ligands. Brain Res 2012;1452:1-9
  • Crottes D, Martial S, Rapetti-Mauss R, et al. Sig1R protein regulates hERG channel expression through a post-translational mechanism in leukemic cells. J Biol Chem 2011;286:27947-58
  • Mavlyutov TA, Ruoho AE. Ligand-dependent localization and intracellular stability of sigma-1 receptors in CHO-K1 cells. J Mol Signal 2007;2:8
  • Herrera Y, Katnik C, Rodriguez JD, et al. Sigma-1 receptor modulation of acid-sensing ion channel a (ASIC1a) and ASIC1a-induced Ca2+ influx in rat cortical neurons. J Pharmacol Exp Ther 2008;327:491-502
  • Fishback JA, Robson MJ, Xu YT, et al. Sigma receptors: potential targets for a new class of antidepressant drug. Pharmacol Ther 2010;127:271-82
  • Pabba M, Wong AY, Ahlskog N, et al. NMDA receptors are upregulated and trafficked to the plasma membrane after sigma-1 receptor activation in the rat hippocampus. J Neurosci 2014;34:11325-38
  • Balasuriya D, Stewart AP, Edwardson JM. The sigma-1 receptor interacts directly with GluN1 but not GluN2A in the GluN1/GluN2A NMDA receptor. J Neurosci 2013;33:18219-24
  • Martina M, Turcotte ME, Halman S, et al. The sigma-1 receptor modulates NMDA receptor synaptic transmission and plasticity via SK channels in rat hippocampus. J Physiol 2007;578:143-57
  • Skuza G, Rogoz Z. The synergistic effect of selective sigma receptor agonists and uncompetitive NMDA receptor antagonists in the forced swim test in rats. J Physiol Pharmacol 2006;57:217-29
  • Kitaichi K, Chabot JG, Moebius FF, et al. Expression of the purported sigma(1) (sigma(1)) receptor in the mammalian brain and its possible relevance in deficits induced by antagonism of the NMDA receptor complex as revealed using an antisense strategy. J Chem Neuroanat 2000;20:375-87
  • Nishikawa H, Hashino A, Kume T, et al. Involvement of direct inhibition of NMDA receptors in the effects of sigma-receptor ligands on glutamate neurotoxicity in vitro. Eur J Pharmacol 2000;404:41-8
  • Yamamoto H, Yamamoto T, Sagi N, et al. Sigma ligands indirectly modulate the NMDA receptor-ion channel complex on intact neuronal cells via sigma 1 site. J Neurosci 1995;15:731-6
  • Monnet FP, de Costa BR, Bowen WD. Differentiation of sigma ligand-activated receptor subtypes that modulate NMDA-evoked [3H]-noradrenaline release in rat hippocampal slices. Br J Pharmacol 1996;119:65-72
  • Guitart X, Mendez R, Ovalle S, et al. Regulation of ionotropic glutamate receptor subunits in different rat brain areas by a preferential sigma(1) receptor ligand and potential atypical antipsychotic. Neuropsychopharmacology 2000;23:539-46
  • Guitart X, Codony X, Monroy X. Sigma receptors: biology and therapeutic potential. Psychopharmacology (Berl) 2004;174:301-19
  • Roh DH, Choi SR, Yoon SY, et al. Spinal neuronal NOS activation mediates sigma-1 receptor-induced mechanical and thermal hypersensitivity in mice: involvement of PKC-dependent GluN1 phosphorylation. Br J Pharmacol 2011;163:1707-20
  • Brenner GJ, Ji RR, Shaffer S, et al. Peripheral noxious stimulation induces phosphorylation of the NMDA receptor NR1 subunit at the PKC-dependent site, serine-896, in spinal cord dorsal horn neurons. Eur J Neurosci 2004;20:375-84
  • Woolf CJ, Thompson SW. The induction and maintenance of central sensitization is dependent on N-methyl-D-aspartic acid receptor activation; implications for the treatment of post-injury pain hypersensitivity states. Pain 1991;44:293-9
  • Yoon SY, Roh DH, Seo HS, et al. Intrathecal injection of the neurosteroid, DHEAS, produces mechanical allodynia in mice: involvement of spinal sigma-1 and GABA receptors. Br J Pharmacol 2009;157:666-73
  • Yagasaki Y, Numakawa T, Kumamaru E, et al. Chronic antidepressants potentiate via sigma-1 receptors the brain-derived neurotrophic factor-induced signaling for glutamate release. J Biol Chem 2006;281:12941-9
  • Moriguchi S, Yamamoto Y, Ikuno T, et al. Sigma-1 receptor stimulation by dehydroepiandrosterone ameliorates cognitive impairment through activation of CaM kinase II, protein kinase C and extracellular signal-regulated kinase in olfactory bulbectomized mice. J Neurochem 2011;117:879-91
  • Yao H, Yang Y, Kim KJ, et al. Molecular mechanisms involving sigma receptor-mediated induction of MCP-1: implication for increased monocyte transmigration. Blood 2010;115:4951-62
  • Son JS, Kwon YB. Sigma-1 Receptor Antagonist BD1047 Reduces Allodynia and Spinal ERK Phosphorylation Following Chronic Compression of Dorsal Root Ganglion in Rats. Korean J Physiol Pharmacol 2010;14:359-64
  • Moon JY, Roh DH, Yoon SY, et al. Sigma-1 receptor-mediated increase in spinal p38 MAPK phosphorylation leads to the induction of mechanical allodynia in mice and neuropathic rats. Exp Neurol 2013;247:383-91
  • Chen L, Dai XN, Sokabe M. Chronic administration of dehydroepiandrosterone sulfate (DHEAS) primes for facilitated induction of long-term potentiation via sigma 1 (sigma1) receptor: optical imaging study in rat hippocampal slices. Neuropharmacology 2006;50:380-92
  • Ji RR, Berta T, Nedergaard M. Glia and pain: is chronic pain a gliopathy? Pain 2013;154(Suppl 1):S10-28
  • Mavlyutov TA, Epstein ML, Andersen KA, et al. The sigma-1 receptor is enriched in postsynaptic sites of C-terminals in mouse motoneurons. An anatomical and behavioral study. Neuroscience 2010;167:247-55
  • Schetz JA, Perez E, Liu R, et al. A prototypical Sigma-1 receptor antagonist protects against brain ischemia. Brain Res 2007;1181:1-9
  • Caplan JP. Delirium, sigma-1 receptors, dopamine, and glutamate: how does haloperidol keep the genie in the bottle? Crit Care Med 2012;40:982-3
  • Sanchez-Fernandez C, Montilla-Garcia A, Gonzalez-Cano R, et al. Modulation of peripheral mu-opioid analgesia by sigma1 receptors. J Pharmacol Exp Ther 2014;348:32-45
  • Chien CC, Pasternak GW. (-)-Pentazocine analgesia in mice: interactions with a sigma receptor system. Eur J Pharmacol 1995;294:303-8
  • Takebayashi M, Hayashi T, Su TP. A perspective on the new mechanism of antidepressants: neuritogenesis through sigma-1 receptors. Pharmacopsychiatry 2004;37(Suppl 3):S208-13
  • Kimura Y, Fujita Y, Shibata K, et al. Sigma-1 receptor enhances neurite elongation of cerebellar granule neurons via TrkB signaling. PLoS One 2013;8:e75760
  • Ishima T, Hashimoto K. Potentiation of nerve growth factor-induced neurite outgrowth in PC12 cells by ifenprodil: the role of sigma-1 and IP3 receptors. PLoS One 2012;7:e37989
  • Ishima T, Nishimura T, Iyo M, et al. Potentiation of nerve growth factor-induced neurite outgrowth in PC12 cells by donepezil: role of sigma-1 receptors and IP3 receptors. Prog Neuropsychopharmacol Biol Psychiatry 2008;32:1656-9
  • Nishimura T, Ishima T, Iyo M, et al. Potentiation of nerve growth factor-induced neurite outgrowth by fluvoxamine: role of sigma-1 receptors, IP3 receptors and cellular signaling pathways. PLoS ONE 2008;3:e2558
  • Rossi D, Pedrali A, Urbano M, et al. Identification of a potent and selective sigma(1) receptor agonist potentiating NGF-induced neurite outgrowth in PC12 cells. Bioorg Med Chem 2011;19:6210-24
  • Mei J, Pasternak GW. Molecular cloning and pharmacological characterization of the rat sigma1 receptor. Biochem Pharmacol 2001;62:349-55
  • Patte-Mensah C, Kibaly C, Boudard D, et al. Neurogenic pain and steroid synthesis in the spinal cord. J Mol Neurosci 2006;28:17-31
  • Kim HW, Kwon YB, Roh DH, et al. Intrathecal treatment with sigma1 receptor antagonists reduces formalin-induced phosphorylation of NMDA receptor subunit 1 and the second phase of formalin test in mice. Br J Pharmacol 2006;148:490-8
  • Cendan CM, Pujalte JM, Portillo-Salido E, et al. Formalin-induced pain is reduced in sigma(1) receptor knockout mice. Eur J Pharmacol 2005;511:73-4
  • Petrenko AB, Yamakura T, Baba H, et al. The role of N-methyl-D-aspartate (NMDA) receptors in pain: a review. Anesth Analg 2003;97:1108-16
  • Cendan CM, Pujalte JM, Portillo-Salido E, et al. Antinociceptive effects of haloperidol and its metabolites in the formalin test in mice. Psychopharmacology (Berl) 2005;182:485-93
  • Lirk P, Poroli M, Rigaud M, et al. Modulators of calcium influx regulate membrane excitability in rat dorsal root ganglion neurons. Anesth Analg 2008;107:673-85
  • Moon JY, Roh DH, Yoon SY, et al. Sigma1s activate astrocytes via p38 MAPK phosphorylation leading to the development of mechanical allodynia in a mouse model of neuropathic pain. Br J Pharmacol 2014;171(24):5881-97
  • Pyun K, Son JS, Kwon YB. Chronic activation of sigma-1 receptor evokes nociceptive activation of trigeminal nucleus caudalis in rats. Pharmacol Biochem Behav 2014;124:278-83
  • Choi SR, Roh DH, Yoon SY, et al. Spinal sigma-1 receptors activate NADPH oxidase 2 leading to the induction of pain hypersensitivity in mice and mechanical allodynia in neuropathic rats. Pharmacol Res 2013;74:56-67
  • Entrena JM, Cobos EJ, Nieto FR, et al. Sigma-1 receptors are essential for capsaicin-induced mechanical hypersensitivity: studies with selective sigma-1 ligands and sigma-1 knockout mice. Pain 2009;143:252-61
  • Yoon SY, Roh DH, Seo HS, et al. An increase in spinal dehydroepiandrosterone sulfate (DHEAS) enhances NMDA-induced pain via phosphorylation of the NR1 subunit in mice: involvement of the sigma-1 receptor. Neuropharmacology 2010;59:460-7
  • Frecska E, Szabo A, Winkelman MJ, et al. A possibly sigma-1 receptor mediated role of dimethyltryptamine in tissue protection, regeneration, and immunity. J Neural Transm 2013;120:1295-303
  • Dhir A, Kulkarni S. Involvement of sigma (sigma1) receptors in modulating the anti-depressant effect of neurosteroids (dehydroepiandrosterone or pregnenolone) in mouse tail-suspension test. J Psychopharmacol 2008;22:691-6
  • Maurice T. Neurosteroids and sigma1 receptors, biochemical and behavioral relevance. Pharmacopsychiatry 2004;37(Suppl 3):S171-82
  • Mensah-Nyagan AG, Kibaly C, Schaeffer V, et al. Endogenous steroid production in the spinal cord and potential involvement in neuropathic pain modulation. J Steroid Biochem Mol Biol 2008;109:286-93
  • Patte-Mensah C, Meyer L, Schaeffer V, et al. Selective regulation of 3 alpha-hydroxysteroid oxido-reductase expression in dorsal root ganglion neurons: a possible mechanism to cope with peripheral nerve injury-induced chronic pain. Pain 2010;150:522-34
  • Schaeffer V, Meyer L, Patte-Mensah C, et al. Progress in dorsal root ganglion neurosteroidogenic activity: basic evidence and pathophysiological correlation. Prog Neurobiol 2010;92:33-41
  • Schaeffer V, Meyer L, Patte-Mensah C, et al. Sciatic nerve injury induces apoptosis of dorsal root ganglion satellite glial cells and selectively modifies neurosteroidogenesis in sensory neurons. Glia 2010;58:169-80
  • Patte-Mensah C, Meyer L, Taleb O, et al. Potential role of allopregnanolone for a safe and effective therapy of neuropathic pain. Prog Neurobiol 2014;113:70-8
  • Meyer L, Patte-Mensah C, Taleb O, et al. Allopregnanolone prevents and suppresses oxaliplatin-evoked painful neuropathy: multi-parametric assessment and direct evidence. Pain 2011;152:170-81
  • Meyer L, Patte-Mensah C, Taleb O, et al. Neurosteroid 3alpha-androstanediol efficiently counteracts paclitaxel-induced peripheral neuropathy and painful symptoms. PLoS One 2013;8:e80915
  • Flatters SJ, Bennett GJ. Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: evidence for mitochondrial dysfunction. Pain 2006;122:245-57
  • Jin HW, Flatters SJ, Xiao WH, et al. Prevention of paclitaxel-evoked painful peripheral neuropathy by acetyl-L-carnitine: effects on axonal mitochondria, sensory nerve fiber terminal arbors, and cutaneous Langerhans cells. Exp Neurol 2008;210:229-37
  • Verkhratsky A, Parpura V. Calcium signalling and calcium channels: evolution and general principles. Eur J Pharmacol 2014;739:1-3
  • Verkhratsky A, Fernyhough P. Calcium signalling in sensory neurones and peripheral glia in the context of diabetic neuropathies. Cell Calcium 2014;56(5):362-71
  • VanLandingham JW, Cekic M, Cutler SM, et al. Progesterone and its metabolite allopregnanolone differentially regulate hemostatic proteins after traumatic brain injury. J Cereb Blood Flow Metab 2008;28:1786-94
  • Stein DG. Progesterone exerts neuroprotective effects after brain injury. Brain Res Rev 2008;57:386-97
  • Schumacher M, Guennoun R, Stein DG, et al. Progesterone: therapeutic opportunities for neuroprotection and myelin repair. Pharmacol Ther 2007;116:77-106
  • Labombarda F, Gonzalez S, Lima A, et al. Progesterone attenuates astro- and microgliosis and enhances oligodendrocyte differentiation following spinal cord injury. Exp Neurol 2011;231:135-46
  • Cutrer FM, Moskowitz MA. Wolff Award 1996. The actions of valproate and neurosteroids in a model of trigeminal pain. Headache 1996;36:579-85
  • Aouad M, Charlet A, Rodeau JL, et al. Reduction and prevention of vincristine-induced neuropathic pain symptoms by the non-benzodiazepine anxiolytic etifoxine are mediated by 3alpha-reduced neurosteroids. Pain 2009;147:54-9
  • Charlet A, Lasbennes F, Darbon P, et al. Fast non-genomic effects of progesterone-derived neurosteroids on nociceptive thresholds and pain symptoms. Pain 2008;139:603-9
  • Shibuya K, Takata N, Hojo Y, et al. Hippocampal cytochrome P450s synthesize brain neurosteroids which are paracrine neuromodulators of synaptic signal transduction. Biochim Biophys Acta 2003;1619:301-16
  • Kibaly C, Meyer L, Patte-Mensah C, et al. Biochemical and functional evidence for the control of pain mechanisms by dehydroepiandrosterone endogenously synthesized in the spinal cord. FASEB J 2008;22:93-104
  • Nieto FR, Cendan CM, Canizares FJ, et al. Genetic inactivation and pharmacological blockade of sigma-1 receptors prevent paclitaxel-induced sensory-nerve mitochondrial abnormalities and neuropathic pain in mice. Mol Pain 2014;10:11
  • Diaz JL, Cuberes R, Berrocal J, et al. Synthesis and biological evaluation of the 1-arylpyrazole class of sigma(1) receptor antagonists: identification of 4-{2-[5-methyl-1-(naphthalen-2-yl)-1H-pyrazol-3-yloxy]ethyl}morpholine (S1RA, E-52862). J Med Chem 2012;55:8211-24
  • Laurini E, Da Col V, Wunsch B, et al. Analysis of the molecular interactions of the potent analgesic S1RA with the sigma1 receptor. Bioorg Med Chem Lett 2013;23:2868-71
  • Wunsch B. The sigma(1) receptor antagonist S1RA is a promising candidate for the treatment of neurogenic pain. J Med Chem 2012;55:8209-10
  • Vidal-Torres A, Fernandez-Pastor B, Carceller A, et al. Effects of the selective sigma-1 receptor antagonist S1RA on formalin-induced pain behavior and neurotransmitter release in the spinal cord in rats. J Neurochem 2014;129:484-94
  • Gonzalez-Cano R, Merlos M, Baeyens JM, et al. Sigma1 receptors are involved in the visceral pain induced by intracolonic administration of capsaicin in mice. Anesthesiology 2013;118:691-700
  • Gris G, Merlos M, Vela JM, et al. S1RA, a selective sigma-1 receptor antagonist, inhibits inflammatory pain in the carrageenan and complete Freund’s adjuvant models in mice. Behav Pharmacol 2014;25:226-35
  • Abadias M, Escriche M, Vaque A, et al. Safety, tolerability and pharmacokinetics of single and multiple doses of a novel sigma-1 receptor antagonist in three randomized phase I studies. Br J Clin Pharmacol 2013;75:103-17
  • Parenti C, Marrazzo A, Arico G, et al. Effects of a selective sigma 1 antagonist compound on inflammatory pain. Inflammation 2014;37:261-6
  • Walker JM, Bowen WD, Walker FO, et al. Sigma receptors: biology and function. Pharmacol Rev 1990;42:355-402
  • Bhuiyan MS, Tagashira H, Fukunaga K. Crucial interactions between selective serotonin uptake inhibitors and sigma-1 receptor in heart failure. J Pharmacol Sci 2013;121:177-84
  • Ito K, Hirooka Y, Matsukawa R, et al. Decreased brain sigma-1 receptor contributes to the relationship between heart failure and depression. Cardiovasc Res 2012;93:33-40
  • Balasuriya D, D’Sa L, Talker R, et al. A direct interaction between the sigma-1 receptor and the hERG voltage-gated K+ channel revealed by atomic force microscopy and homogeneous time-resolved fluorescence (HTRF(R)). J Biol Chem 2014;289:32353-63
  • Suessbrich H, Schonherr R, Heinemann SH, et al. The inhibitory effect of the antipsychotic drug haloperidol on HERG potassium channels expressed in Xenopus oocytes. Br J Pharmacol 1997;120:968-74
  • Murrough JW, Burdick KE, Levitch CF, et al. Neurocognitive Effects of Ketamine and Association with Antidepressant Response in Individuals with Treatment-Resistant Depression: A Randomized Controlled Trial. Neuropsychopharmacology 2014;40(5):1084-90
  • Diamond PR, Farmery AD, Atkinson S, et al. Ketamine infusions for treatment resistant depression: a series of 28 patients treated weekly or twice weekly in an ECT clinic. J Psychopharmacol 2014;28:536-44
  • Robson MJ, Elliott M, Seminerio MJ, et al. Evaluation of sigma (sigma) receptors in the antidepressant-like effects of ketamine in vitro and in vivo. Eur Neuropsychopharmacol 2012;22:308-17
  • Ishima T, Fujita Y, Hashimoto K. Interaction of new antidepressants with sigma-1 receptor chaperones and their potentiation of neurite outgrowth in PC12 cells. Eur J Pharmacol 2014;727:167-73
  • Hardy J, Quinn S, Fazekas B, et al. Randomized, double-blind, placebo-controlled study to assess the efficacy and toxicity of subcutaneous ketamine in the management of cancer pain. J Clin Oncol 2012;30:3611-17
  • Hayashi T, Tsai SY, Mori T, et al. Targeting ligand-operated chaperone sigma-1 receptors in the treatment of neuropsychiatric disorders. Expert Opin Ther Targets 2011;15:557-77
  • Niitsu T, Iyo M, Hashimoto K. Sigma-1 receptor agonists as therapeutic drugs for cognitive impairment in neuropsychiatric diseases. Curr Pharm Des 2012;18:875-83
  • Almansa C, Vela JM. Selective sigma-1 receptor antagonists for the treatment of pain. Future Med Chem 2014;6:1179-99
  • Phan VL, Urani A, Sandillon F, et al. Preserved sigma1 (sigma1) receptor expression and behavioral efficacy in the aged C57BL/6 mouse. Neurobiol Aging 2003;24:865-81
  • Kawamura K, Kubota K, Kobayashi T, et al. Evaluation of [11C]SA5845 and [11C]SA4503 for imaging of sigma receptors in tumors by animal PET. Ann Nucl Med 2005;19:701-9
  • Kawamura K, Kimura Y, Tsukada H, et al. An increase of sigma receptors in the aged monkey brain. Neurobiol Aging 2003;24:745-52
  • Tsai SY, Hayashi T, Mori T, et al. Sigma-1 receptor chaperones and diseases. Cent Nerv Syst Agents Med Chem 2009;9:184-9
  • Prasad PD, Li HW, Fei YJ, et al. Exon-intron structure, analysis of promoter region, and chromosomal localization of the human type 1 sigma receptor gene. J Neurochem 1998;70:443-51
  • Seth P, Fei YJ, Li HW, et al. Cloning and functional characterization of a sigma receptor from rat brain. J Neurochem 1998;70:922-31
  • Seth P, Leibach FH, Ganapathy V. Cloning and structural analysis of the cDNA and the gene encoding the murine type 1 sigma receptor. Biochem Biophys Res Commun 1997;241:535-40
  • Yamamoto H, Karasawa J, Sagi N, et al. Multiple pathways of sigma(1) receptor ligand uptakes into primary cultured neuronal cells. Eur J Pharmacol 2001;425:1-9
  • Straube S, Derry S, McQuay HJ, et al. Enriched enrollment: definition and effects of enrichment and dose in trials of pregabalin and gabapentin in neuropathic pain. A systematic review. Br J Clin Pharmacol 2008;66:266-75
  • Jongen JL, Hans G, Benzon HT, et al. Neuropathic pain and pharmacological treatment. Pain Pract 2014;14:283-95
  • Kaneria A. Opioid-induced hyperalgesia: when pain killers make pain worse. BMJ Case Rep 2014; 2014. pii: bcr2014204551
  • Voepel-Lewis T, Wagner D, Burke C, et al. Early adjuvant use of nonopioids associated with reduced odds of serious postoperative opioid adverse events and need for rescue in children. Paediatr Anaesth 2013;23:162-9
  • Caraceni A, Zecca E, Martini C, et al. Gabapentin as an adjuvant to opioid analgesia for neuropathic cancer pain. J Pain Symptom Manage 1999;17:441-5
  • Pachman DR, Watson JC, Lustberg MB, et al. Management options for established chemotherapy-induced peripheral neuropathy. Support Care Cancer 2014;22:2281-95
  • Targownik LE, Nugent Z, Singh H, et al. The prevalence and predictors of opioid use in inflammatory bowel disease: a population-based analysis. Am J Gastroenterol 2014;109:1613-20
  • Guo RX, Zhang M, Liu W, et al. NMDA receptors are involved in upstream of the spinal JNK activation in morphine antinociceptive tolerance. Neurosci Lett 2009;467:95-9
  • Inturrisi CE. The role of N-methyl-D-aspartate (NMDA) receptors in pain and morphine tolerance. Minerva Anestesiol 2005;71:401-3
  • Colclough G, McLarney JT, Sloan PA, et al. Epidural haloperidol enhances epidural morphine analgesia: three case reports. J Opioid Manag 2008;4:163-6
  • Ingvar D, Nilsson E. Central nervous effects of neurolept-analgesia as induced by haloperidol and phenoperidine. Acta Anaesthesiol Scand 1961;5:85-8
  • Salpeter SR, Buckley JS, Bruera E. The use of very-low-dose methadone for palliative pain control and the prevention of opioid hyperalgesia. J Palliat Med 2013;16:616-22
  • Ortiz MI, Molina MA, Arai YC, et al. Analgesic drugs combinations in the treatment of different types of pain. Pain Res Treat 2012;2012:612519
  • Freiman TM, Surges R, Kukolja J, et al. K(+)-evoked [(3)H]-norepinephrine release in human brain slices from epileptic and non-epileptic patients is differentially modulated by gabapentin and pinacidil. Neurosci Res 2006;55:204-10
  • Dooley DJ, Donovan CM, Meder WP, et al. Preferential action of gabapentin and pregabalin at P/Q-type voltage-sensitive calcium channels: inhibition of K+-evoked [3H]-norepinephrine release from rat neocortical slices. Synapse 2002;45:171-90
  • Dooley DJ, Donovan CM, Pugsley TA. Stimulus-dependent modulation of [(3)H]norepinephrine release from rat neocortical slices by gabapentin and pregabalin. J Pharmacol Exp Ther 2000;295:1086-93

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.