444
Views
7
CrossRef citations to date
0
Altmetric
Review

High-density lipoprotein-based drug discovery for treatment of atherosclerosis

, & (Professor)

Bibliography

  • Rader DJ, Hovingh GK. HDL and cardiovascular disease. Lancet 2014;384(9943):618-25
  • Rosenson RS, Brewer HBJr, Davidson WS, et al. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation 2012;125(15):1905-19
  • Patel S, Drew BG, Nakhla S, et al. Reconstituted high-density lipoprotein increases plasma high-density lipoprotein anti-inflammatory properties and cholesterol efflux capacity in patients with type 2 diabetes. J Am Coll Cardiol 2009;53(11):962-71
  • Kontush A, Therond P, Zerrad A, et al. Preferential sphingosine-1-phosphate enrichment and sphingomyelin depletion are key features of small dense HDL3 particles: relevance to antiapoptotic and antioxidative activities. Arterioscler Thromb Vasc Biol 2007;27(8):1843-9
  • Calkin AC, Drew BG, Ono A, et al. Reconstituted high-density lipoprotein attenuates platelet function in individuals with type 2 diabetes mellitus by promoting cholesterol efflux. Circulation 2009;120(21):2095-104
  • Boden WE, Probstfield JL, Anderson T, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med 2011;365:2255-67
  • HPS2-THRIVE Collaborative Group. HPS2-THRIVE randomized placebo-controlled trial in 25 673 high-risk patients of ER niacin/laropiprant: trial design, pre-specified muscle and liver outcomes, and reasons for stopping study treatment. Eur Heart J 2013;34(17):1279-91
  • Fayad ZA, Mani V, Woodward M, et al. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial. Lancet 2011;378(9802):1547-59
  • Schwartz GG, Olsson AG, Abt M, et al. dal-OUTCOMES Investigators. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med 2012;367(22):2089-99
  • Otvos JD, Collins D, Freedman DS, et al. Low-density lipoprotein and high-density lipoprotein particle subclasses predict coronary events and are favorably changed by gemfibrozil therapy in the Veterans Affairs High-Density Lipoprotein Intervention Trial. Circulation 2006;113(12):1556-63
  • Mora S, Glynn RJ, Ridker PM. High-density lipoprotein cholesterol, size, particle number, and residual vascular risk after potent statin therapy. Circulation 2013;128(11):1189-97
  • Rosenson RS, Davidson MH, Le NA, et al. Underappreciated Opportunities for High-Density Lipoprotein Particles in Risk Stratification and Potential Targets of Therapy. Cardiovasc Drugs Ther 2015;29(1):41-50
  • Franceschini G, Sirtori CR, Capurso AII, et al. A-I Milano apoprotein. Decreased high density lipoprotein cholesterol levels with significant lipoprotein modifications and without clinical atherosclerosis in an Italian family. J Clin Invest 1980;66(5):892-900
  • Frikke-Schmidt R. Genetic variation in ABCA1 and risk of cardiovascular disease. Atherosclerosis 2011;218(2):281-2
  • Voight BF, Peloso GM, Orho-Melander M, et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet 2012;380(9841):572-80
  • Mackey RH, Greenland P, Goff DCJr, et al. High-density lipoprotein cholesterol and particle concentrations, carotid atherosclerosis, and coronary events: MESA (multi-ethnic study of atherosclerosis). J Am Coll Cardiol 2012;60(6):508-16
  • Degoma EM, Rader DJ. Novel HDL-directed pharmacotherapeutic strategies. Nat Rev Cardiol 2011;8(5):266-77
  • Rye KA, Barter PJ. Regulation of high-density lipoprotein metabolism. Circ Res 2014;114(1):143-56
  • Rousset X, Vaisman B, Amar M, et al. Lecithin:cholesterol acyltransferase--from biochemistry to role in cardiovascular disease. Curr Opin Endocrinol Diabetes Obes 2009;16(2):163-71
  • Gauthier A, Lau P, Zha X, et al. Cholesteryl ester transfer protein directly mediates selective uptake of high density lipoprotein cholesteryl esters by the liver. Arterioscler Thromb Vasc Biol 2005;25:2177-84
  • Zhang Y, Zanotti I, Reilly MP, et al. Overexpression of apolipoprotein A-I promotes reverse transport of cholesterol from macrophages to feces in vivo. Circulation 2003;108(6):661-3
  • Chen Z, O’Neill EA, Meurer RD, et al. Reconstituted HDL elicits marked changes in plasma lipids following single-dose injection in C57Bl/6 mice. J Cardiovasc Pharmacol Ther 2012;17(3):315-23
  • Diditchenko S, Gille A, Pragst I, et al. Novel formulation of a reconstituted HDL (CSL112) dramatically enhances ABCA1-dependent cholesterol efflux. Arterioscler Thromb Vasc Biol 2013;33:2202-11
  • Gille A, Easton R, D’Andrea D, et al. CSL112 enhances biomarkers of reverse cholesterol transport after single and multiple infusions in healthy subjects. Arterioscler Thromb Vasc Biol 2014;34(9):2106-14
  • Gille A, D’Andrea D, Easton R, et al. CSL112, A novel formulation of human Apolipoprotein A-I, dramatically increases cholesterol efflux capacity in patients with stable atherothrombotic disease: a multicenter, randomized, double-Blind, placebo-controlled, ascending-dose study. Circulation 2013;128:A15780
  • Tardif JC, Ballantyne CM, Barter P, et al. Effects of the high-density lipoprotein mimetic agent CER-001 on coronary atherosclerosis in patients with acute coronary syndromes: a randomized trial. Eur Heart J 2014;35(46):3277-86
  • Fogelman AM. Trying to harness the potential of HDL: wishful thinking or sound strategy? Eur Heart J 2014;35(46):3248-9
  • Kootte RS, Smits LP, van der Valk FM, et al. Effect of open-label infusion of an apoA-I-containing particle (CER-001) on RCT and artery wall thickness in patients with FHA. J Lipid Res 2015;56(3):703-12
  • Alexander ET, Weibel GL, Joshi MR, et al. Macrophage reverse cholesterol transport in mice expressing ApoA-I Milano. Arterioscler Thromb Vasc Biol 2009;29:1496-501
  • Kempen HJ, Schranz DB, Asztalos BF, et al. Incubation of MDCO-216 (ApoA-IMilano/POPC) with human serum potentiates ABCA1-mediated cholesterol efflux capacity, generates new prebeta-1 HDL, and causes an increase in HDL size. J Lipids 2014;2014:923903
  • Bobillier A, Belibas SE, Kempen H, et al. A single infusion of MDCO-216 (ApoA-1 Milano/POPC) induces marked changes on the lipid profile. Circulation 2014;130:A9907
  • Belibas SE, Bobillier A, Kallend D, et al. MDCO-216 (ApoA-I Milano/POPC) induces reverse cholesterol transport in stable coronary artery disease patients with a dose proportional pharmacokinetics after single ascending doses. Circulation 2014;130:A13357
  • Belibas SE, Kallend D, Bobillier A, et al. Single ascending dose pharmacokinetics and pharmacodynamics of MDCO-216 (ApoA-I Milano/POPC) in healthy volunteers. Circulation 2014;130:A13324
  • Duivenvoorden R, Tang J, Cormode DP, et al. A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation. Nat Commun 2014;5:3065
  • Vickers KC, Remaley AT. HDL and cholesterol: life after the divorce? J Lipid Res 2014;55(1):4-12
  • McMahon KM, Thaxton CS. High-density lipoproteins for the systemic delivery of short interfering RNA. Expert Opin Drug Deliv 2014;11(2):231-47
  • Sherman CB, Peterson SJ, Frishman WH. Apolipoprotein A-I mimetic peptides: a potential new therapy for the prevention of atherosclerosis. Cardiol Rev 2010;18(3):141-7
  • Bloedon LT, Dunbar R, Duffy D, et al. Safety, pharmacokinetics, and pharmacodynamics of oral apoA-I mimetic peptide D-4F in high-risk cardiovascular patients. J Lipid Res 2008;49(6):1344-52
  • Navab M, Reddy ST, Anantharamaiah GM, et al. D-4F-mediated reduction in metabolites of arachidonic and linoleic acids in the small intestine is associated with decreased inflammation in low-density lipoprotein receptor-null mice. J Lipid Res 2012;53(3):437-45
  • Watson CE, Weissbach N, Kjems L, et al. Treatment of patients with cardiovascular disease with L-4F, an apo-A1 mimetic, did not improve select biomarkers of HDL function. J Lipid Res 2011;52(2):361-73
  • Uehara Y, Ando S, Yahiro E, et al. FAMP, a novel apoA-I mimetic peptide, suppresses aortic plaque formation through promotion of biological HDL function in ApoE-deficient mice. J Am Heart Assoc 2013;2(3):e000048
  • Iwata A, Miura S, Zhang B, et al. Antiatherogenic effects of newly developed apolipoprotein A-I mimetic peptide/phospholipid complexes against aortic plaque burden in Watanabe-heritable hyperlipidemic rabbits. Atherosclerosis 2011;218(2):300-7
  • Chattopadhyay A, Navab M, Hough G, et al. A novel approach to oral ApoA-I mimetic therapy. J Lipid Res 2013;54:995-1010
  • Bielicki JK, Zhang H, Cortez Y, et al. A new HDL mimetic peptide that stimulates cellular cholesterol efflux with high efficiency greatly reduces atherosclerosis in mice. J Lipid Res 2010;51(6):1496-503
  • Hafiane A, Bielicki JK, Johansson JO, et al. Apolipoprotein E derived HDL mimetic peptide ATI-5261 promotes nascent HDL formation and reverse cholesterol transport in vitro. Biochim Biophys Acta 2014;1842(10):1498-512
  • Bailey D, Jahagirdar R, Gordon A, et al. RVX-208: a small molecule that increases apolipoprotein A-I and high-density lipoprotein cholesterol in vitro and in vivo. J Am Coll Cardiol 2010;55(23):2580-9
  • McLure KG, Gesner EM, Tsujikawa L, et al. RVX-208, an inducer of ApoA-I in humans, is a BET bromodomain antagonist. PLoS One 2013;8(12):e83190
  • Nicholls SJ, Gordon A, Johansson J, et al. Efficacy and safety of a novel oral inducer of apolipoprotein a-I synthesis in statin-treated patients with stable coronary artery disease a randomized controlled trial. J Am Coll Cardiol 2011;57:1111-19
  • Nicholls SJ, Gordon A, Johannson J, et al. ApoA-I induction as a potential cardioprotective strategy: rationale for the SUSTAIN and ASSURE studies. Cardiovasc Drugs Ther 2012;26(2):181-7
  • RVX-208 has completed a two Phase 2b clinical trials ‘SUSTAIN’ and ‘ASSURE’. Resverlogix. 2015. Available from: http://www.resverlogix.com/programs/clinical-cardiovascular-program/rvx-208-clinical-program/rvx-208-clinical-development.html
  • Mooradian AD, Haas MJ, Wong NC, et al. Transcriptional control of apolipoprotein A-I gene expression in diabetes. Diabetes 2004;53(3):513-20
  • Deng T, Ji W, Lian JH, et al. Identifying natural derived upregulators of human ApoA-I expression via a cell-based drug screening system. Pharma Biol 2008;46:610-15
  • Du Y, Wang L, Wang LF, et al. Establishment of a high-throughput screening model for identifying up-regulator of human ApoA-I expression. Chin Med Biotechnol 2011;6:178-83; in Chinese
  • Du Y, Wang L, Si S, et al. A novel compound 4010B-30 upregulates apolipoprotein A-I gene expression through activation of PPARγ in HepG2 cells. Atherosclerosis 2015;239(2):589-98
  • Du Y, Yang Y, Jiang W, et al. Substituted benzamides containing azaspiro rings as upregulators of apolipoprotein A-I transcription. Molecules 2012;17(6):7379-86
  • Chung CW, Coste H, White JH, et al. Discovery and characterization of small molecule inhibitors of the BET family bromodomains. J Med Chem 2011;54(11):3827-38
  • Gosmini R, Nguyen VL, Toum J, et al. The discovery of I-BET726 (GSK1324726A), a potent tetrahydroquinoline ApoA1 up-regulator and selective BET bromodomain inhibitor. J Med Chem 2014;57(19):8111-31
  • Gao J, Xu Y, Yang Y, et al. Identification of upregulators of human ATP-binding cassette transporter A1 via high-throughput screening of a synthetic and natural compound library. 2008;13(7):648-56
  • Jung CG, Horike H, Cha BY, et al. Honokiol increases ABCA1 expression level by activating retinoid X receptor beta. Biol Pharm Bull 2010;33(7):1105-11
  • Xu Y, Lai F, Xu Y, et al. Mycophenolic acid induces ATP-binding cassette transporter A1 (ABCA1) expression through the PPARγ-LXRα-ABCA1 pathway. Biochem Biophys Res Commun 2011;414:779-82
  • Xu Y, Liu Q, Xu Y, et al. Rutaecarpine suppresses atherosclerosis in ApoE-/- mice through upregulating ABCA1 and SR-BI within RCT. J Lipid Res 2014;55(8):1634-47
  • Li Y, Feng T, Liu P, et al. Optimization of rutaecarpine as ABCA1 up-Regulator for treating atherosclerosis. ACS Med Chem Lett 2014;5(8):884-8
  • Sankaranarayanan S, Kellner-Weibel G, de la Llera-Moya M, et al. A sensitive assay for ABCA1-mediated cholesterol efflux using BODIPY-cholesterol. J Lipid Res 2011;52(12):2332-40
  • Sviridov D. Monoclonal antibody against ABCA1. US20070178086Al; 2007
  • Liu J, Zhang Z, Xu Y, et al. IMB2026791, a xanthone, stimulates cholesterol efflux by increasing the binding of apolipoprotein A-I to ATP-binding cassette transporter A1. Molecules 2012;17(3):2833-54
  • Marquart TJ, Allen RM, Ory DS, et al. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci USA 2010;107:12228-32
  • Najafi-Shoushtari SH, Kristo F, Li Y, et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 2010;328:1566-9
  • Rayner KJ, Suárez Y, Dávalos A, et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science 2010;328(5985):1570-3
  • Wang L, Jia XJ, Jiang HJ, et al. MicroRNAs 185, 96, and 223 repress selective high-density lipoprotein cholesterol uptake through posttranscriptional inhibition. Mol Cell Biol 2013;33:1956-64
  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;136(2):215-33
  • Rayner KJ, Sheedy FJ, Esau CC, et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Invest 2011;121(7):2921-31
  • Rayner KJ, Esau CC, Hussain FN, et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 2011;478(7369):404-7
  • Wang L, Yang Y, Hong B. Advances in the role of microRNAs in lipid metabolism-related anti-atherosclerotic drug discovery. Expert Opin Drug Discov 2013;8(8):977-90
  • Aryal B, Rotllan N, Fernandez-Hernando C. Noncoding RNAs and atherosclerosis. Curr Atheroscler Rep 2014;16:407
  • Connelly CM, Thomas M, Deiters A. High-throughput luciferase reporter assay for small-molecule inhibitors of microRNA function. J Biomol Screen 2012;17:822-8
  • Gumireddy K, Young DD, Xiong X, et al. Small-molecule inhibitors of microRNA miR-21 function. Angew Chem Int Ed Engl 2008;47:7482-4
  • Young DD, Connelly CM, Grohmann C, et al. Small molecule modifiers of microRNA miR-122 function for the treatment of hepatitis C virus infection and hepatocellular carcinoma. J Am Chem Soc 2010;132:7976-81
  • Ma W, Ding H, Gong X, et al. Methyl protodioscin increases ABCA1 expression and cholesterol efflux while inhibiting gene expressions for synthesis of cholesterol and triglycerides by suppressing SREBP transcription and microRNA 33a/b levels. Atherosclerosis 2015;239:566-70
  • Baselga-Escudero L, Arola-Arnal A, Pascual-Serrano A, et al. Chronic administration of proanthocyanidins or docosahexaenoic acid reverses the increase of miR-33a and miR-122 in dyslipidemic obese rats. PLoS One 2013;8(7):e69817
  • Inazu A, Mabuchi H. Therapeutic implications of cholesteryl ester transfer protein inhibitors in hyperlipidemia and low high-density lipoprotein-cholesterolemia. Curr Opin Investig Drugs 2003;4(3):291-7
  • Remaley AT, Norata GD, Catapano AL. Novel concepts in HDL pharmacology. Cardiovasc Res 2014;103(3):423-8
  • Fielding CJ, Havel RJ. Cholesteryl ester transfer protein: friend or foe? J Clin Invest 1996;97(12):2687-8
  • Barter PJ, Caulfield M, Eriksson M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med 2007;357(21):2109-22
  • Forrest MJ, Bloomfield D, Briscoe RJ, et al. Torcetrapib-induced blood pressure elevation is independent of CETP inhibition and is accompanied by increased circulating levels of aldosterone. Br J Pharmacol 2008;154(7):1465-73
  • Kingwell BA, Chapman MJ, Kontush A, et al. HDL-targeted therapies: progress, failures and future. Nat Rev Drug Discov 2014;13(6):445-64
  • Bloomfield D, Carlson GL, Sapre A, et al. Efficacy and safety of the cholesteryl ester transfer protein inhibitor anacetrapib as monotherapy and coadministered with atorvastatin in dyslipidemic patients. Am Heart J 2009;157(2):352-60
  • Cao G, Beyer TP, Zhang Y, et al. Evacetrapib is a novel, potent, and selective inhibitor of cholesteryl ester transfer protein that elevates HDL cholesterol without inducing aldosterone or increasing blood pressure. J Lipid Res 2011;52(12):2169-76
  • Ford J, Lawson M, Fowler D, et al. Tolerability, pharmacokinetics and pharmacodynamics of TA-8995, a selective cholesteryl ester transfer protein (CETP) inhibitor, in healthy subjects. Br J Clin Pharmacol 2014;78(3):498-508
  • Krieger M. Charting the fate of the “good cholesterol”: identification and characterization of the high-density lipoprotein receptor SR-BI. Annu Rev Biochem 1999;68:523-58
  • Zhang Y, Da Silva JR, Reilly M, et al. Hepatic expression of scavenger receptor class B type I (SR-BI) is a positive regulator of macrophage reverse cholesterol transport in vivo. J Clin Invest 2005;115(10):2870-4
  • Kozarsky KF, Donahee MH, Glick JM, et al. Gene transfer and hepatic overexpression of the HDL receptor SR-BI reduces atherosclerosis in the cholesterol-fed LDL receptor-deficient mouse. Arterioscler Thromb Vasc Biol 2000;20(3):721-7
  • Braun A, Trigatti BL, Post MJ, et al. Loss of SR-BI expression leads to the early onset of occlusive atherosclerotic coronary artery disease, spontaneous myocardial infarctions, severe cardiac dysfunction, and premature death in apolipoprotein E-deficient mice. Circ Res 2002;90(3):270-6
  • Vergeer M, Korporaal SJ, Franssen R, et al. Genetic variant of the scavenger receptor BI in humans. N Engl J Med 2011;364(2):136-45
  • Brunham LR, Tietjen I, Bochem AE, et al. Novel mutations in scavenger receptor BI associated with high HDL cholesterol in humans. Clin Genet 2011;79(6):575-81
  • Yang Y, Zhang Z, Jiang W, et al. Identification of novel human high-density lipoprotein receptor up-regulators using a cell-based high-throughput screening assay. J Biomol Screen 2007;12(2):211-19
  • Yang Y, Jiang W, Wang L, et al. Characterization of the isoflavone pratensein as a novel transcriptional up-regulator of scavenger receptor class B type I in HepG2 cells. Biol Pharm Bull 2009;32(7):1289-94
  • Bao Y, Yang Y, Wang L, et al. Identification of trichostatin A as a novel transcriptional up-regulator of scavenger receptor BI both in HepG2 and RAW 264.7 cells. Atherosclerosis 2009;204(1):127-35
  • Chen X, Wang L, Du Y, et al. Design, synthesis and biological evaluation of hydroxamic acid derivatives as potential high density lipoprotein (HDL) receptor CLA-1 up-regulating agents. Molecules 2011;16(11):9178-93
  • Hu Z, Shen WJ, Kraemer FB, et al. MicroRNAs 125a and 455 repress lipoprotein-supported steroidogenesis by targeting scavenger receptor class B type I in steroidogenic cells. Mol Cell Biol 2012;32(24):5035-45
  • Nieland TJ, Penman M, Dori L, et al. Discovery of chemical inhibitors of the selective transfer of lipids mediated by the HDL receptor SR-BI. Proc Natl Acad Sci USA 2002;99(24):15422-7
  • Dockendorff C, Faloon PW, Yu M, et al. Indolinyl-thiazole based inhibitors of Scavenger Receptor-BI (SR-BI)-mediated lipid transport. ACS Med Chem Lett 2015; doi:10.1021/ml500154q
  • Sulkowski MS, Kang M, Matining R, et al. Safety and antiviral activity of the HCV entry inhibitor ITX5061 in treatment-naive HCV-infected adults: a randomized, double-blind, phase 1b study. J Infect Dis 2014;209(5):658-67
  • Masson D, Koseki M, Ishibashi M, et al. Increased HDL cholesterol and apoA-I in humans and mice treated with a novel SR-BI inhibitor. Arterioscler Thromb Vasc Biol 2009;29(12):2054-60
  • Kitayama K, Nishizawa T, Abe K, et al. Blockade of scavenger receptor class B type I raises high density lipoprotein cholesterol levels but exacerbates atherosclerotic lesion formation in apolipoprotein E deficient mice. J Pharm Pharmacol 2006;58(12):1629-38
  • Kunnen S, Van Eck M. Lecithin:cholesterol acyltransferase: old friend or foe in atherosclerosis? J Lipid Res 2012;53(9):1783-99
  • Calabresi L, Baldassarre D, Simonelli S, et al. Plasma lecithin:cholesterol acyltransferase and carotid intima-media thickness in European individuals at high cardiovascular risk. J Lipid Res 2011;52(8):1569-74
  • Duivenvoorden R, Holleboom AG, van den Bogaard B, et al. Carriers of lecithin cholesterol acyltransferase gene mutations have accelerated atherogenesis as assessed by carotid 3.0-T magnetic resonance imaging. J Am Coll Cardiol 2011;58(24):2481-7
  • Shamburek R, Freeman L, Sampson M, et al. Human enzyme replacement therapy in a patient with familial lecithin cholesterol acyltransferase deficiency: rapid appearance of normal appearing HDL. Circulation 2013;128:A18673
  • Rousset X, Vaisman B, Auerbach B, et al. Effect of recombinant human lecithin cholesterol acyltransferase infusion on lipoprotein metabolism in mice. J Pharmacol Exp Ther 2010;335(1):140-8
  • Rigamonti E, Helin L, Lestavel S, et al. Liver X receptor activation controls intracellular cholesterol trafficking and esterification in human macrophages. Circ Res 2005;97(7):682-9
  • Joseph SB, Castrillo A, Laffitte BA, et al. Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med 2003;9(2):213-19
  • Hong C, Tontonoz P. Liver X receptors in lipid metabolism: opportunities for drug discovery. Nat Rev Drug Discov 2014;13(6):433-44
  • Joseph SB, McKilligin E, Pei L, et al. Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci USA 2002;99(11):7604-9
  • Chen J, Zhao L, Sun D, et al. Liver X receptor activation attenuates plaque formation and improves vasomotor function of the aortic artery in atherosclerotic ApoE-/- mice. Inflamm Res 2012;61(12):1299-307
  • Schultz JR, Tu H, Luk A, et al. Role of LXRs in control of lipogenesis. Genes Dev 2000;14(22):2831-8
  • Teupser D, Kretzschmar D, Tennert C, et al. Effect of macrophage overexpression of murine liver X receptor-α (LXR-α) on atherosclerosis in LDL-receptor deficient mice. Arterioscler Thromb Vasc Biol 2008;28(11):2009-15
  • Lo Sasso G, Murzilli S, Salvatore L, et al. Intestinal specific LXR activation stimulates reverse cholesterol transport and protects from atherosclerosis. Cell Metab 2010;12(2):187-93
  • Yasuda T, Grillot D, Billheimer JT, et al. Tissue-specific liver X receptor activation promotes macrophage reverse cholesterol transport in vivo. Arterioscler Thromb Vasc Biol 2010;30(4):781-6
  • Jun HJ, Hoang MH, Yeo SK, et al. Induction of ABCA1 and ABCG1 expression by the liver X receptor modulator cineole in macrophages. Bioorg Med Chem Lett 2013;23(2):579-83
  • Bradley MN, Hong C, Chen M, et al. Ligand activation of LXRβ reverses atherosclerosis and cellular cholesterol overload in mice lacking LXRα and apoE. J Clin Invest 2007;117(8):2337-46
  • Bischoff ED, Daige CL, Petrowski M, et al. Non-redundant roles for LXRalpha and LXRbeta in atherosclerosis susceptibility in low density lipoprotein receptor knockout mice. J Lipid Res 2010;51(5):900-6
  • Hong C, Bradley MN, Rong X, et al. LXRα is uniquely required for maximal reverse cholesterol transport and atheroprotection in ApoE-deficient mice. J Lipid Res 2012;53(6):1126-33
  • Li N, Xu Y, Feng T, et al. Identification of a selective agonist for liver X receptor α (LXRα) via screening of a synthetic compound library. J Biomol Screen 2014;19(4):566-74
  • Li N, Wang X, Zhang J, et al. Identification of a novel partial agonist of liver X receptor α (LXRα) via screening. Biochem Pharmacol 2014;92(3):438-47
  • Katz A, Udata C, Ott E, et al. Safety, pharmacokinetics, and pharmacodynamics of single doses of LXR-623, a novel liver X-receptor agonist, in healthy participants. J Clin Pharmacol 2009;49(6):643-9
  • Sahebkar A, Chew GT, Watts GF. Recent advances in pharmacotherapy for hypertriglyceridemia. Prog Lipid Res 2014;56:47-66
  • Staels B, Auwerx J. Regulation of apo A-I gene expression by fibrates. Atherosclerosis 1998;137(Suppl):S19-23
  • Chinetti G, Lestavel S, Bocher V, et al. PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 2001;7(1):53-8
  • Pirat C, Farce A, Lebègue N, et al. Targeting peroxisome proliferator-activated receptors (PPARs): development of modulators. J Med Chem 2012;55(9):4027-61
  • Ishibashi S, Yamashita S, Arai H, et al. Efficacy and safety of K-877, a potent and selective PPAR-α agonist, in Japanese patients with dyslipidemia. Circulation 2013;128:A10718
  • Ishibashi S, Arai H, Yamashita S, et al. Benefical effects of K-877, a potent and highly selective PPARα agonist, on plasma lipoprotein profile in patients with atherogenic dyslipidemia. Abstract 525. Available from: http://www.kenes.com/eas2012/abstracts/pdf/525.pdf
  • Yamashita S, Ishibashi S, Arai H, et al. Comparison of the novel peroxisome proliferator-activated receptor alpha agonist K-877 and fenofibrate on High-density lipoprotein subclass distribution determined by high-performance liquid chromatography in patients with dyslipidemia. Circulation 2013;128:A15652
  • Glomset JA. The plasma lecithin:cholesterol acyltransferase reaction. J Lipid Res 1968;9:155-67
  • Cuchel M, Rader DJ. Macrophage reverse cholesterol transport: key to the regression of atherosclerosis? Circulation 2006;113(21):2548-55
  • Rohatgi A, Khera A, Berry JD, et al. HDL cholesterol efflux capacity and incident cardiovascular events. N Engl J Med 2014;371(25):2383-93
  • Yang Y, Wang L, Si S, et al. How can high-throughput screening deliver drugs to treat atherosclerosis? Expert Opin Drug Discov 2010;5(12):1175-88
  • Huang Y, DiDonato JA, Levison BS, et al. An abundant dysfunctional apolipoprotein A1 in human atheroma. Nat Med 2014;20(2):193-203
  • Huang Y, Wu Z, Riwanto M, et al. Myeloperoxidase, paraoxonase-1, and HDL form a functional ternary complex. J Clin Invest 2013;123(9):3815-28
  • Gordon SM, Hofmann S, Askew DS, et al. High density lipoprotein: it’s not just about lipid transport anymore. Trends Endocrinol Metab 2011;22(1):9-15
  • Davidson WS. HDL-C vs HDL-P: how changing one letter could make a difference in understanding the role of high-density lipoprotein in disease. Clin Chem 2014;60(11):e1-3
  • Gordon S, Durairaj A, Lu JL, et al. High-density lipoprotein proteomics: identifying new drug targets and biomarkers by understanding functionality. Curr Cardiovasc Risk Rep 2010;4(1):1-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.