835
Views
50
CrossRef citations to date
0
Altmetric
Review

X-ray crystallography over the past decade for novel drug discovery – where are we heading next?

, , , , &

Bibliography

  • Van Noorden R, Maher B, Nuzzo R. The top 100 papers. Nature 2014;514(7524):550-3
  • Almo SC, Garforth SJ, Hillerich BS, et al. Protein production from the structural genomics perspective: Achievements and future needs. Curr Opin Struct Biol 2013;23(3):335-44
  • Almo SC, Love JD. Better and faster: Improvements and optimization for mammalian recombinant protein production. Curr Opin Struct Biol 2014;26:39-43
  • Anderson WF. Structural genomics and drug discovery for infectious diseases. Infect Disord Drug Targets 2009;9(5):507-17
  • Anderson WF. editor. Structural genomics and drug discovery. 1st edition. Humana Press: New York City; 2014
  • Chen YW. editor. Structural genomics. Humana Press: New York City; 2014
  • Grabowski M, Chruszcz M, Zimmerman MD, et al. Benefits of structural genomics for drug discovery research. Infect Disord Drug Targets 2009;9(5):459-74
  • Joachimiak A. High-throughput crystallography for structural genomics. Curr Opin Struct Biol 2009;19(5):573-84
  • Grabowski M, Joachimiak A, Otwinowski Z, et al. Structural genomics: Keeping up with expanding knowledge of the protein universe. Curr Opin Struct Biol 2007;17(3):347-53
  • Newman J, Egan D, Walter TS, et al. Towards rationalization of crystallization screening for small- to medium-sized academic laboratories: The PACT/JCSG+ strategy. Acta Crystallogr D Biol Crystallogr 2005;61(Pt 10):1426-31
  • Dong A, Xu X, Edwards AM, et al. In situ proteolysis for protein crystallization and structure determination. Nat Methods 2007;4(12):1019-21
  • Kim Y, Quartey P, Li H, et al. Large-scale evaluation of protein reductive methylation for improving protein crystallization. Nat Methods 2008;5(10):853-4
  • Dupeux F, Rower M, Seroul G, et al. A thermal stability assay can help to estimate the crystallization likelihood of biological samples. Acta Crystallogr D Biol Crystallogr 2011;67(Pt 11):915-19
  • Seabrook SA, Newman J. High-throughput thermal scanning for protein stability: Making a good technique more robust. ACS Comb Sci 2013;15(8):387-92
  • Wilson WW. Light scattering as a diagnostic for protein crystal growth--a practical approach. J Struct Biol 2003;142(1):56-65
  • Sheldrick GM. A short history of SHELX. Acta Crystallogr A 2008;64:112-22
  • Minor W, Cymborowski M, Otwinowski Z, et al. HKL-3000: The integration of data reduction and structure solution - from diffraction images to an initial model in minutes. Acta Crystallogr D 2006;62:859-66
  • Adams PD, Afonine PV, Bunkoczi G, et al. PHENIX: A comprehensive python-based system for macromolecular structure solution. Acta Cryst D 2010;66(Pt 2):213-21
  • Murshudov GN, Skubak P, Lebedev AA, et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D 2011;67(Pt 4):355-67
  • Emsley P, Lohkamp B, Scott WG, et al. Features and development of coot. Acta Crystallogr D 2010;66(Pt 4):486-501
  • Panjikar S, Parthasarathy V, Lamzin VS, et al. Auto-rickshaw: an automated crystal structure determination platform as an efficient tool for the validation of an X-ray diffraction experiment. Acta Crystallogr D Biol Crystallogr 2005;61(Pt 4):449-57
  • Berman HM, Coimbatore Narayanan B, Di Costanzo L, et al. Trendspotting in the protein data bank. FEBS Lett 2013;587(8):1036-45
  • Khafizov K, Madrid-Aliste C, Almo SC, et al. Trends in structural coverage of the protein universe and the impact of the protein structure initiative. Proc Natl Acad Sci USA 2014;111(10):3733-8
  • Webb B, Sali A. Protein structure modeling with MODELLER. Methods Mol Biol 2014;1137:1-15
  • Chruszcz M, Wlodawer A, Minor W. Determination of protein structures--a series of fortunate events. Biophys J 2008;95(1):1-9
  • Wlodawer A, Minor W, Dauter Z, et al. Protein crystallography for aspiring crystallographers or how to avoid pitfalls and traps in macromolecular structure determination. FEBS J 2013;280(22):5705-36
  • Wlodawer A, Minor W, Dauter Z, et al. Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures. FEBS J 2008;275(1):1-21
  • Zheng H, Chruszcz M, Lasota P, et al. Data mining of metal ion environments present in protein structures. J Inorg Biochem 2008;102(9):1765-76
  • Chruszcz M, Domagalski M, Osinski T, et al. Unmet challenges of structural genomics. Curr Opin Struct Biol 2010;20(5):587-97
  • Read RJ, Adams PD, Arendall WBIII, et al. A new generation of crystallographic validation tools for the protein data bank. Structure 2011;19(10):1395-412
  • Majorek KA, Kuhn ML, Chruszcz M, et al. Double trouble-buffer selection and his-tag presence may be responsible for nonreproducibility of biomedical experiments. Protein Sci 2014;23(10):1359-68
  • Cooper DR, Porebski PJ, Chruszcz M, et al. X-ray crystallography: Assessment and validation of protein-small molecule complexes for drug discovery. Expert Opin Drug Discov 2011;6(8):771-82
  • Chen VB, Arendall WBIII, Headd JJ, et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D 2010;66(Pt 1):12-21
  • Weichenberger CX, Pozharski E, Rupp B. Visualizing ligand molecules in twilight electron density. Acta Crystallogr F 2013;69(Pt 2):195-200
  • Pozharski E, Weichenberger CX, Rupp B. Techniques, tools and best practices for ligand electron-density analysis and results from their application to deposited crystal structures. Acta Crystallogr D 2013;69:150-67
  • Debreczeni JE, Emsley P. Handling ligands with coot. Acta Crystallogr D Biol Crystallogr 2012;68(Pt 4):425-30
  • Zheng H, Chordia MD, Cooper DR, et al. Validation of metal-binding sites in macromolecular structures with the CheckMyMetal web server. Nat Protoc 2014;9(1):156-70
  • Chruszcz M, Chapman MD, Vailes LD, et al. Crystal structures of mite allergens der f 1 and der p 1 reveal differences in surface-exposed residues that may influence antibody binding. J Mol Biol 2009;386(2):520-30
  • Shabalin IG, Dauter Z, Jaskolski M, et al. Crystallography and chemistry should always go together: a cautionary tale of protein complexes with cisplatin and carboplatin. Acta Crystallogr D 2015;D71. 10.1107/S139900471500629X
  • Collins FS, Tabak LA. Policy: NIH plans to enhance reproducibility. Nature 2014;505(7485):612-13
  • Zheng H, Hou J, Zimmerman MD, et al. The future of crystallography in drug discovery. Expert Opin Drug Discov 2014;9(2):125-37
  • Ezkurdia I, Juan D, Rodriguez JM, et al. The shrinking human protein coding complement: Are there now fewer than 20,000 genes? ArXiv e-Prints. 2013.arXiv:1312.7111. Available from: http://adsabs.harvard.edu/abs/2013arXiv1312.7111E
  • Mancia F, Love J. High throughput platforms for structural genomics of integral membrane proteins. Curr Opin Struct Biol 2011;21(4):517-22
  • Kloppmann E, Punta M, Rost B. Structural genomics plucks high-hanging membrane proteins. Curr Opin Struct Biol 2012;22(3):326-32
  • DiMaio F, Song Y, Li X, et al. Atomic-accuracy models from 4.5-A cryo-electron microscopy data with density-guided iterative local refinement. Nat Methods 2015;12(4):361-5
  • Wang RY, Kudryashev M, Li X, et al. De novo protein structure determination from near-atomic-resolution cryo-EM maps. Nat Methods 2015;12(4):335-8
  • Fischer N, Neumann P, Konevega AL, et al. Structure of the E. coli ribosome-EF-tu complex at <3 A resolution by C-corrected cryo-EM. Nature 2015;520(7548):567-70
  • Kudryashev M, Wang RY, Brackmann M, et al. Structure of the type VI secretion system contractile sheath. Cell 2015;160(5):952-62
  • Linser R, Bardiaux B, Higman V, et al. Structure calculation from unambiguous long-range amide and methyl 1H-1H distance restraints for a microcrystalline protein with MAS solid-state NMR spectroscopy. J Am Chem Soc 2011;133(15):5905-12
  • Torchia DA. NMR studies of dynamic biomolecular conformational ensembles. Prog Nucl Magn Reson Spectrosc 2015;84-85C:14-32
  • Barends TR, Brosi RW, Steinmetz A, et al. Combining crystallography and EPR: Crystal and solution structures of the multidomain cochaperone DnaJ. Acta Crystallogr D Biol Crystallogr 2013;69(Pt 8):1540-52
  • Fleissner MR, Cascio D, Hubbell WL. Structural origin of weakly ordered nitroxide motion in spin-labeled proteins. Protein Sci 2009;18(5):893-908
  • Liu Y, Liu K, Qin S, et al. Epigenetic targets and drug discovery: Part 1: Histone methylation. Pharmacol Ther 2014;143(3):275-94
  • Liu K, Liu Y, Lau JL, et al. Epigenetic targets and drug discovery part 2: Histone demethylation and DNA methylation. Pharmacol Ther 2015;151:121-40
  • Ren RJ, Dammer EB, Wang G, et al. Proteomics of protein post-translational modifications implicated in neurodegeneration. Transl Neurodegener 2014;3(1):23
  • Song F, Chen P, Sun D, et al. Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. Science 2014;344(6182):376-80
  • Srivastava HK, Bohari MH, Sastry GN. Modeling anti-HIV compounds: The role of analogue-based approaches. Curr Comput Aided Drug Des 2012;8(3):224-48
  • Wlodawer A. Rational approach to AIDS drug design through structural biology. Annu Rev Med 2002;53:595-614
  • Feng E, Ye D, Li J, et al. Recent advances in neuraminidase inhibitor development as anti-influenza drugs. ChemMedChem 2012;7(9):1527-36
  • Callens M, Hannaert V. The rational design of trypanocidal drugs: Selective inhibition of the glyceraldehyde-3-phosphate dehydrogenase in trypanosomatidae. Ann Trop Med Parasitol 1995;89(Suppl 1):23-30
  • Kern J, Hattne J, Tran R, et al. Methods development for diffraction and spectroscopy studies of metalloenzymes at X-ray free-electron lasers. Philos Trans R Soc Lond B Biol Sci 2014;369(1647):20130590
  • Faruqi AR, Cross RA, Kendrick-Jones J. Small angle X-ray scattering studies on myosin. J Cell Sci Suppl 1991;14:23-6
  • Zhou ZH. Atomic resolution cryo electron microscopy of macromolecular complexes. Adv Protein Chem Struct Biol 2011;82:1-35
  • Hoenger A. High-resolution cryo-electron microscopy on macromolecular complexes and cell organelles. Protoplasma 2014;251(2):417-27
  • Jiang J, Pentelute BL, Collier RJ, et al. Atomic structure of anthrax protective antigen pore elucidates toxin translocation. Nature 2015;521(7553):545-9
  • Nannenga BL, Shi D, Leslie AG, et al. High-resolution structure determination by continuous-rotation data collection in MicroED. Nat Methods 2014;11(9):927-30
  • Schroder GF. Hybrid methods for macromolecular structure determination: Experiment with expectations. Curr Opin Struct Biol 2015;31:20-7
  • Grimes JM, Fuller SD, Stuart DI. Complementing crystallography: The role of cryo-electron microscopy in structural biology. Acta Crystallogr D Biol Crystallogr 1999;55(Pt 10):1742-9
  • Tao Y, Zhang W. Recent developments in cryo-electron microscopy reconstruction of single particles. Curr Opin Struct Biol 2000;10(5):616-22
  • Amunts A, Brown A, Bai XC, et al. Structure of the yeast mitochondrial large ribosomal subunit. Science 2014;343(6178):1485-9
  • Xiong Y. From electron microscopy to X-ray crystallography: Molecular-replacement case studies. Acta Crystallogr D Biol Crystallogr 2008;64(Pt 1):76-82
  • Dodson EJ. Using electron-microscopy images as a model for molecular replacement. Acta Crystallogr D Biol Crystallogr 2001;57(Pt 10):1405-9
  • Reinisch KM, Nibert ML, Harrison SC. Structure of the reovirus core at 3.6 A resolution. Nature 2000;404(6781):960-7
  • Miyaguchi K. Direct imaging electron microscopy (EM) methods in modern structural biology: Overview and comparison with X-ray crystallography and single-particle cryo-EM reconstruction in the studies of large macromolecules. Biol Cell 2014;106(10):323-45
  • Belnap DM, McDermott BMJr, Filman DJ, et al. Three-dimensional structure of poliovirus receptor bound to poliovirus. Proc Natl Acad Sci USA 2000;97(1):73-8
  • He Y, Bowman VD, Mueller S, et al. Interaction of the poliovirus receptor with poliovirus. Proc Natl Acad Sci USA 2000;97(1):79-84
  • Montabana EA, Agard DA. Bacterial tubulin TubZ-bt transitions between a two-stranded intermediate and a four-stranded filament upon GTP hydrolysis. Proc Natl Acad Sci U S A 2014;111(9):3407-12
  • Brown A, Long F, Nicholls RA, et al. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallogr D Biol Crystallogr 2015;71(Pt 1):136-53
  • Long F, Vagin AA, Young P, et al. BALBES: A molecular-replacement pipeline. Acta Crystallogr D Biol Crystallogr 2008;64(Pt 1):125-32
  • Cheng Y. Single-particle cryo-EM at crystallographic resolution. Cell 2015;161(3):450-7
  • Bai XC, McMullan G, Scheres SH. How cryo-EM is revolutionizing structural biology. Trends Biochem Sci 2015;40(1):49-57
  • Adams PD, Baker D, Brunger AT, et al. Advances, interactions, and future developments in the CNS, phenix, and rosetta structural biology software systems. Annu Rev Biophys 2013;42:265-87
  • Weingarth M, Baldus M. Solid-state NMR-based approaches for supramolecular structure elucidation. Acc Chem Res 2013;46(9):2037-46
  • Tang M, Sperling LJ, Berthold DA, et al. High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data. J Biomol NMR 2011;51(3):227-33
  • Ujwal R, Cascio D, Colletier JP, et al. The crystal structure of mouse VDAC1 at 2.3 A resolution reveals mechanistic insights into metabolite gating. Proc Natl Acad Sci USA 2008;105(46):17742-7
  • Hiller S, Garces RG, Malia TJ, et al. Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 2008;321(5893):1206-10
  • Bayrhuber M, Meins T, Habeck M, et al. Structure of the human voltage-dependent anion channel. Proc Natl Acad Sci USA 2008;105(40):15370-5
  • Gregory SM, Harada E, Liang B, et al. Structure and function of the complete internal fusion loop from ebolavirus glycoprotein 2. Proc Natl Acad Sci USA 2011;108(27):11211-16
  • Petros AM, Dinges J, Augeri DJ, et al. Discovery of a potent inhibitor of the antiapoptotic protein bcl-xL from NMR and parallel synthesis. J Med Chem 2006;49(2):656-63
  • Prisner T, Rohrer M, MacMillan F. Pulsed EPR spectroscopy: Biological applications. Annu Rev Phys Chem 2001;52:279-313
  • Guo Z, Cascio D, Hideg K, et al. Structural determinants of nitroxide motion in spin-labeled proteins: Tertiary contact and solvent-inaccessible sites in helix G of T4 lysozyme. Protein Sci 2007;16(6):1069-86
  • Guo Z, Cascio D, Hideg K, et al. Structural determinants of nitroxide motion in spin-labeled proteins: Solvent-exposed sites in helix B of T4 lysozyme. Protein Sci 2008;17(2):228-39
  • Dong M, Su X, Dzikovski B, et al. Dph3 is an electron donor for Dph1-Dph2 in the first step of eukaryotic diphthamide biosynthesis. J Am Chem Soc 2014;136(5):1754-7
  • Zhang Y, Zhu X, Torelli AT, et al. Diphthamide biosynthesis requires an organic radical generated by an iron-sulphur enzyme. Nature 2010;465(7300):891-6
  • Cieslak JA, Focia PJ, Gross A. Electron spin-echo envelope modulation (ESEEM) reveals water and phosphate interactions with the KcsA potassium channel. Biochemistry 2010;49(7):1486-94
  • Lagerstedt JO, Petrlova J, Hilt S, et al. EPR assessment of protein sites for incorporation of gd(III) MRI contrast labels. Contrast Media Mol Imaging 2013;8(3):252-64
  • Singh P, Panchaud A, Goodlett DR. Chemical cross-linking and mass spectrometry as a low-resolution protein structure determination technique. Anal Chem 2010;82(7):2636-42
  • Merkley ED, Cort JR, Adkins JN. Cross-linking and mass spectrometry methodologies to facilitate structural biology: Finding a path through the maze. J Struct Funct Genomics 2013;14(3):77-90
  • Shumilin IA, Cymborowski M, Chertihin O, et al. Identification of unknown protein function using metabolite cocktail screening. Structure 2012;20(10):1715-25
  • Zimmerman MD, Grabowski M, Domagalski MJ, et al. Data management in the modern structural biology and biomedical research environment. Methods Mol Biol 2014;1140:1-25
  • Nienaber VL, Richardson PL, Klighofer V, et al. Discovering novel ligands for macromolecules using X-ray crystallographic screening. Nat Biotechnol 2000;18(10):1105-8
  • Badger J. Crystallographic fragment screening. Methods Mol Biol 2012;841:161-77
  • Zhang R, Monsma F. Fluorescence-based thermal shift assays. Curr Opin Drug Discov Devel 2010;13(4):389-402
  • Sasse J, Gallagher SR. Staining proteins in gels. Curr Protoc Immunol 2004;Chapter 8-Unit 8; 9
  • Giuliani SE, Frank AM, Collart FR. Functional assignment of solute-binding proteins of ABC transporters using a fluorescence-based thermal shift assay. Biochemistry 2008;47(52):13974-84
  • Lo MC, Aulabaugh A, Jin G, et al. Evaluation of fluorescence-based thermal shift assays for hit identification in drug discovery. Anal Biochem 2004;332(1):153-9
  • Ciulli A, Abell C. Fragment-based approaches to enzyme inhibition. Curr Opin Biotechnol 2007;18(6):489-96
  • Freyer MW, Lewis EA. Isothermal titration calorimetry: Experimental design, data analysis, and probing macromolecule/ligand binding and kinetic interactions. Methods Cell Biol 2008;84:79-113
  • Torres FE, Recht MI, Coyle JE, et al. Higher throughput calorimetry: Opportunities, approaches and challenges. Curr Opin Struct Biol 2010;20(5):598-605
  • van de Weert M, Stella L. Fluorescence quenching and ligand binding: A critical discussion of a popular methodology. J Mol Struct 2011;998(1–3):144-50
  • Lea WA, Simeonov A. Fluorescence polarization assays in small molecule screening. Expert Opin Drug Discov 2011;6(1):17-32
  • Lakowicz JR. editor. Principles of fluorescence spectroscopy. 3rd edition. Springer: New York City; 2006
  • Campbell CT, Kim G. SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials 2007;28(15):2380-92
  • Patching SG. Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery. Biochim Biophys Acta 2014;1838(1 Pt A):43-55
  • Myszka DG, Rich RL. SPR’s high impact on drug discovery: Resolution, throughput, and versatility. Drug Discovery World 2003;Spring:1-5
  • SPR instruments [Internet]. 2015. Available from: http://www.sprpages.nl/instruments [Cited 28 May 2015]
  • Khan MTH. editor. Recent trends on QSAR in the pharmaceutical perceptions. Bentham Science Publishers: Sharjah, United Arab Emirates; 2012
  • Kinch MS, Haynesworth A, Kinch SL, et al. An overview of FDA-approved new molecular entities: 1827-2013. Drug Discov Today 2014;19(8):1033-9
  • Alex AA, Millan DS. In: Livingstone DJ, Davis AM, editors. Contribution of structure-based drug design to the discovery of marketed drugs. Drug Design Strategies: Quantitative Approaches. Royal Society of Chemistry Publishing: Cambridge, UK; 2011. p-108-63
  • Hartshorn MJ, Murray CW, Cleasby A, et al. Fragment-based lead discovery using X-ray crystallography. J Med Chem 2005;48(2):403-13
  • Wyatt PG, Woodhead AJ, Berdini V, et al. Identification of N-(4-piperidinyl)-4-(2,6-dichlorobenzoylamino)-1H-pyrazole-3-carboxamide (AT7519), a novel cyclin dependent kinase inhibitor using fragment-based X-ray crystallography and structure based drug design. J Med Chem 2008;51(16):4986-99
  • Sharma PS, Sharma R, Tyagi R. Inhibitors of cyclin dependent kinases: Useful targets for cancer treatment. Curr Cancer Drug Targets 2008;8(1):53-75
  • Astex pharmaceuticals, clinical pipeline products [Internet]. 2015. Available from: http://astx.com/pipeline/products/clinical [Cited 28 April 2015]
  • The center for open science [Internet]. 2015. Available from: http://centerforopenscience.org [Cited 28 April 2015]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.