562
Views
36
CrossRef citations to date
0
Altmetric
Review

On the ‘micro’-pharmacodynamic and pharmacokinetic mechanisms that contribute to long-lasting drug action

Bibliography

  • Swinney DC. Biochemical mechanisms of drug action, what does it take for success? Nat Rev Drug Discov 2004;3:801-8
  • Swinney DC. The role of binding kinetics in therapeutically useful drug action. Curr Opin Drug Discov Devel 2009;12:31-9
  • Copeland RA. The dynamics of drug–target interactions: drug–target residence time and its impact of efficacy and safety. Expert Opin Drug Discov 2010;5:305-10
  • Copeland RA. Conformational adaptation in drug- target interactions and residence time. Future Med Chem 2011;3:1491-501
  • Lu H, Tonge PJ. Drug-target residence time, critical information for lead optimization. Curr Opin Chem Biol 2010;14:467-74
  • Vauquelin G, Charlton S. Long-lasting target binding and rebinding as mechanisms to prolong in vivo drug action. Br J Pharmacol 2010;161:488-508
  • Núñez S, Venhorst J, Kruse CG. Target-drug interactions, first principles and their application to drug discovery. Drug Discov Today 2012;17:10-22
  • Dahl G, Akerud T. Pharmacokinetics and the drug-target residence time concept. Drug Discov Today 2013;18:697-707
  • Zhang R, Monsma F. The importance of drug-target residence time. Curr Opin Drug Discov Devel 2009;12:488-96
  • Cusack KP, Wang Y, Hoemann MZ, et al. Design strategies to address kinetics of drug binding and residence time. Bioorgan Med Chem Lett 2015;25(10):2019-27
  • Guo D, Hillger J, IJzerman A, et al. Drug-target residence time - a case for G protein-coupled receptors. Med Res Rev 2014;34:856-92
  • Copeland RA, Pompliano DL, Meek TD. Drug-target residence time and its implications for lead optimization. Nat Rev Drug Disc 2006;5:730-9
  • Swinney DC. Can binding kinetics translate to a clinically differentiated drug? From theory to practice. Lett Drug Des Disc 2006;3:569-74
  • Vauquelin G, Van Liefde I. From slow antagonist dissociation to long- lasting receptor protection. Trends Pharmacol Sci 2006;27:355-9
  • Tummino PJ, Copeland RA. Residence time of receptor-ligand complexes and its effect on biological function. Biochemistry 2008;47:5481-92
  • Vauquelin G. Rebinding, or why drugs may act longer in vivo than expected from their in vitro target residence time. Expert Opin Drug Discov 2010;5:927-41
  • Yin N, Pei J, Lai L. A comprehensive analysis of the influence of drug binding kinetics on drug action at the molecular and systemic levels. Mol Biosyst 2013;9:1381-9
  • Kroll C, Mansi R, Deininger F, et al. Hybrid bombesin analogues: combining an agonist and an antagonist in defined distances for optimized tumor targeting. J Am Chem Soc 2013;135:16793-6
  • Vauquelin G, Van Liefde I, Bricca JP. Avidity and positive allosteric modulation may act hand in hand to increase the residence time of divalent receptor ligands. Fund Clin Pharmacol 2014;28:530-43
  • Christopoulos A, Kenakin TG. Protein-coupled receptor allosterism and complexing. Pharmacol Rev 2002;54:323-74
  • Valant C, Lane JR, Sexton PM, et al. The best of two worlds? Bitopic orthosteric/allosteric ligands of G protein-coupled receptor. Annu Rev Pharmacol Toxicol 2012;52:153-78
  • Lane JR, Sexton PM, Christopoulos A. Bridging the gap, bitopic ligands of G-protein-coupled receptors. Trends Pharmacol Sci 2013;34:59-65
  • Garvey EP. Structural mechanisms of slow-onset, two-step enzyme inhibition. Curr Chem Biol 2010;4:64-73
  • Dror RO, Pana AC, Arlowa DH, et al. Pathway and mechanism of drug binding to G-protein-coupled receptors. Proc Natl Acad Sci USA 2011;108:13118-23
  • Weiland GA, Minneman KP, Molinoff PB. Fundamental difference between the molecular interactions of agonists and antagonists with the beta-adrenergic receptor. Nature 1979;281:114-17
  • Fierens F, Vanderheyden PML, Roggeman C, et al. Distinct binding properties of the AT1 receptor antagonist [3H]candesartan to intact cells and membrane preparations. Biochem Pharmacol 2002;63:1273-9
  • Strickland S, Palmer G, Massey V. Determination of dissociation constants and specific rate constants of enzyme-substrate or protein-ligand interactions from rapid reaction kinetic data. J Biol Chem 1975;250:4048-52
  • Castro M, Nikolaev VO, Palm D, et al. Turn-on switch in parathyroid hormone receptor by a two-step parathyroid hormone binding mechanism. Proc Natl Acad Sci USA 2005;102:16084-9
  • Swinney DC, Beavis P, Chuang K-T, et al. A study into the molecular mechanism of binding kinetics and long residence times of human CCR5 receptor antagonists. Br J Pharmacol 2014;171:3364-75
  • Le MT, Pugsley M, Vauquelin G, et al. Molecular characterisation of the interactions between olmesartan and telmisartan and the human angiotensin II AT1 receptor. Brit J Pharmacol 2007;151:952-62
  • Fierens FLP, Vanderheyden PML, De Backer J-P, et al. Insurmountable angiotensin II AT1 receptor antagonists, the role of tight antagonist binding. Eur J Pharmacol 1999;372:199-206
  • Van Liefde I, Vauquelin G. Sartan- AT1 receptor interactions, in vitro evidence for insurmountable antagonism and inverse agonism. Mol Cell Endocrinol 2009;302:237-43
  • Vauquelin G, Van Liefde I, Vanderheyden P. Models and methods for studying insurmountable antagonism. Trends Pharmacol Sci 2002;23:514-18
  • Kenakin T, Jenkinson S, Watson C. Determining the potency and molecular mechanism of action of insurmountable antagonists. J Pharm Exp Ther 2006;319:710-23
  • Leff P. The two-state model of receptor activation. Trends Pharmacol Sci 1995;16:89-97
  • Gether U, Kobilka B. G-protein-coupled receptors: II Mechanism of agonist activation. J Biol Chem 1998;273:17979-82
  • Vauquelin G. Simplified models for heterobivalent ligand binding, when are they applicable and which are the factors that affect their target residence time. Naunyn-Schmiedeberg’s Arch Pharmacol 2013;386:949-62
  • Kenakin T. Ligand-selective receptor conformations revisited: the promise and the problem. Trends Pharmacol Sci 2003;24:346-54
  • Mammen M, Choi S-K, Whitesides GM. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angewandte Chemie Int Ed 1998;37:2754-94
  • Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol 2005;23:1126-36
  • Rudnick SI, Adams GP. Affinity and avidity in antibody-based tumor targeting. Cancer Biother Radiopharm 2009;242:155-61
  • Mohr K, Tränkle C, Kostenis E, et al. Rational design of dualsteric GPCR ligands, quests and promise. Br J Pharmacol 2010;159:997-1008
  • Guo D, Venhorst SN, Massink A, et al. Molecular mechanism of allosteric modulation: insight from a binding kinetics study at the human adenosine A1 receptor. Br J Pharmacol 2014;171:5295-312
  • Todorovska A, Roovers RC, Dolezal O, et al. Design and application of diabodies, triabodies and tetrabodies for cancer targeting. J Immunol Methods 2001;248:47-66
  • Vauquelin G, Charlton S. Exploring avidity, understanding the potential gains in functional affinity and target residence time of bivalent and heterobivalent ligands. Br J Pharmacol 2013;168:1771-85
  • Plückthun A, Pack P. New protein engineering approaches to multivalent and bispecific antibody fragments. Immunotechnol 1997;3:83-105
  • Kramer RH, Karpen JW. Spanning binding sites on allosteric proteins with polymer-linked ligand dimers. Nature 1998;395:710-13
  • Rocha e Silva M. A thermodynamic approach to problems of drug antagonism. I. The “Charnière theory”. Eur J Pharmacol 1969;6:294-302
  • Coleman RA, Johnson M, Nials AT, et al. Exosites: their current status, and their relevance to the duration of action of long-acting beta2-adrenoceptor agonists. Trends Pharmacol Sci 1996;17:324-30
  • Green SA, Spasoff AP, Coleman RA, et al. Sustained activation of a G-protein- coupled receptor via anchored agonist binding. J Biol Chem 1996;271:24029-35
  • Sykes DA, Charlton SJ. Slow receptor dissociation is not a key factor in the duration of action of inhaled long-acting beta2-adrenoceptor agonists. Br J Pharmacol 2012;165:2672-83
  • Hoare SRJ. Allosteric modulators of class B G-protein-coupled receptors. Curr Neuropharmacol 2007;5:168-79
  • Vauquelin G, Packeu A. Ligands, their receptors and plasma membranes. Mol Cell Endocrinol 2009;311:1-10
  • Sykes DA, Parry C, Reilly J, et al. Observed drug-receptor association rates are governed by membrane affinity, The importance of establishing “Micro-Pharmacokinetic/Pharmacodynamic relationships at the beta2-adrenoceptor. Mol Pharmacol 2014;85:608-17
  • Mason RP, Rhodes DG, Herbette LG. Reevaluating equilibrium and kinetic binding parameters for lipophilic drugs based on a structural model for drug interaction with biological membranes. J Med Chem 1991;34:869-77
  • Herbette LG. Membrane pathways for drug/ion channel interactions: Molecular basis for pharmacokinetic properties. Drug Devel Res 1994;33:214-24
  • Patel S, Summerhill S, Stanley M, et al. The reassertion profiles of long acting beta2-adrenoceptor agonists in the guinea pig isolated trachea and human recombinant beta2-adrenoceptor. Pulmonary Pharmacol Therap 2011;24:247-55
  • Castanho MARB, Fernandes MX. Lipid membrane-induced optimization for ligand-receptor docking: recent tools and insights for the ‘‘membrane catalysis’’ model. Eur Biophys J 2006;35:92-103
  • Austin RP, Barton P, Bonnert RV, et al. QSAR and the rational design of long-acting dual D2-receptor/beta2-adrenoceptor agonists. J Med Chem 2003;46:3210-320
  • Anderson GP. Formoterol: pharmacology, molecular basis of agonism, and mechanism of long duration of a highly potent and selective beta2-adrenoceptor agonist bronchodilator. Life Sci 1993;52:2145-60
  • Johnson M. Beta2-adrenoceptors: mechanisms of action of beta2-agonists. Paediatr Respir Rev 2001;2:57-62
  • Vauquelin G. Determination of drug-receptor residence times by radioligand binding and functional assays: experimental strategies and physiological relevance Med Chem Commun. 2012;3:645-51
  • Jakubik J, Tucek S, El-Fakahany EE. Role of receptor ptoein and membrane lipids in xanomeline wash-resistant binding to muscarinic M1 receptors. J Pharmacol Exp Ther 2004;308:105-10
  • Packeu A, Wennerberg M, Ballendran A, et al. Estimation of the dissociation rate of unlabelled ligand-receptor complexes by a “two-step” competition binding approach. Br J Pharmacol 2010;161:1311-28
  • Hildebrand PW, Scheerer P, Park JH, et al. A ligand channel through the G protein coupled receptor opsin. PLoS ONE 2009;4:e4382
  • Hurst DP, Grossfield A, Lynch DL, et al. A lipid pathway for ligand binding is necessary for a cannabinoid G protein-coupled receptor. J Biol Chem 2010;285:17954-64
  • Hanson MA, Roth CB, Jo E, et al. Crystal structure of a lipid G protein coupled receptor. Science 2012;335:851-5
  • Schwyzer R. 100 Years lock-and-key concept: are peptide keys shaped and guided to their receptors by the target cell membrane? Biopolymers 1995;37:5-16
  • Sargent DF, Schwyzer R. Membrane lipid phase as catalyst for peptide-receptor interactions. Proc Natl Acad Sci USA 1986;83:5774-8
  • Lutz J, Romano-Götsch R, Escrieut C, et al. Mapping of ligand binding sites of the cholecystokinin-B/gastrin receptor with lipo-gastrin peptides and molecular modeling. Biopolymers 1997;41:799-817
  • Moroder L, Romano R. Synthesis, conformational and biological properties of lipophilic derivatives of gastrin and cholecystokinin peptides. Pure and Appl Chem 1994;66:2111-14
  • Johnson M, Coleman RA. Mechanisms of action of beta2-adrenoceptor agonists. In: Busse WW, Holgate ST, editors. Asthma & Rhinitis, Blackwell, Cambridge; 1995. p. 1278-95
  • Clark RB, Allal C, Friedman J, et al. Stable activation and desensitization of beta2-adrenergic receptor stimulation of adenylyl cyclase by salmeterol: evidence for quasi-irreversible binding to an exosite. Mol Pharmacol 1996;49:182-9
  • De Cuyper M, Lievens S, Flo G, et al. Receptor-mediated biological responses are prolonged using hydrophobized ligands. Biosensors and bioelectronics 2004;20:1157-64
  • Adam G, Delbrück M. Reduction of dimensionality in biological diffusion processes in Structural Chemistry and Molecular Biology. In: Rich A, Davidson N, editor. Structural chemistry and molecular biology. W H Freeman & Co; San Francisco: 1968. p. 198-215
  • Eigen M. Diffusion control in biochemical reactions in Quantum Statistical Mechanics in the Natural Sciences. Mintz SL, Widmayer SN, editor. Plenum Press; New York: 1994. p. 37-61
  • McCloskey MA, Poo MM. Rates of membrane-associated reactions: reduction of dimensionality revisited. J Cell Biol 1986;102:88-96
  • Abdiche YN, Myszka DG. Probing the mechanism of drug/lipid membrane interactions using Biacore. Anal Biochem 2004;328:233-43
  • Fotakis D, Christodouleas P, Zoumpoulakis E, et al. Comparative biophysical studies of sartan class drug molecules losartan and candesartan (CV-11974) with membrane bilayers. J Phys Chem B 2011;115:6180-92
  • Vauquelin G, Van Liefde I. Radioligand dissociation measurements, potential interference of rebinding and allosteric mechanisms and physiological relevance of different model systems. Expert Opin Drug Discov 2012;7:583-95
  • Goldstein B, Dembo M. Approximating the effects of diffusion on reversible reactions at the cell surface: ligand-receptor kinetics. Biophys J 1995;68:1222-30
  • Coombs D, Goldstein B. Effects of geometry of the immunological synapse on the delivery of effector molecules. Biophys J 2004;87:2215-20
  • Fierens FLP, Vanderheyden PML, De Backer J-P, et al. Binding of the antagonist [3H]candesartan to angiotensin II AT1 receptor- transfected Chinese hamster ovary cells. Eur J Pharmacol 1999;367:413-22
  • Ojima M, Inada Y, Shibouta Y, et al. Candesartan (CV-11974) dissociates slowly from the angiotensin ATl receptor. Eur J Pharmacol 1997;319:137-46
  • Morsing P, Adler G, Brandt-Eliasson U, et al. Mechanistic differences of various AT1-receptor blockers in isolated vessels of different origin. Hypertension 1999;33:1406-13
  • Delacrétaz E, Nussberger J, Biollaz J, et al. Characterization of the angiotensin II receptor antagonist TCV-116 in healthy volunteers. Hypertension 1995;25:14-21
  • Sadée W, Perry DC, Rosenbaum JS. [3H]-diprenorphine receptor binding in vivo and in vitro. Eur J Pharmacol 1982;81:431-40
  • Gifford AN, Gatley J, Volkow ND. Evaluation of the importance of rebinding to receptors in slowing the approach to equilibrium of high-affinity PET and SPECT radiotracers. Synapse 1998;28:167-75
  • Spivak CE, Oz M, Beglan CL, et al. Diffusion delays and unstirred layer effects at monolayer cultures of Chinese hamster ovary cells: radioligand binding, confocal microscopy, and mathematical simulations. Cell Biochem Biophys 2006;45:43-58
  • Szczuka A, Packeu A, Wennerberg M, et al. Molecular mechanism of the persistent bronchodilatory effect of the partial beta2-adrenoceptor agonist salmeterol. Br J Pharmacol 2009;158:183-94
  • Derendorf H, Lesko LJ, Chaikin P, et al. Pharmacokinetic/pharmacodynamic modeling in drug research and development. J Clin Pharmacol 2000;40:1399-418
  • Holford NHG, Sheiner LB. Kinetics of pharmacological response. Pharmacol Ther 1982;16:143-66
  • Abdel-Rahman SM, Kaufmann RE. The integration of pharmacokinetics and pharmacodynamics: understanding dose-response. Annu Rev Pharmacol Toxicol 2004;44:111-36
  • Neubig R, Spedding M, Kenakin T, et al. International union of pharmacology committee on receptor nomenclature and drug classification. XXXVIII. Update on terms and symbols in quantitative pharmacology. Pharmacol Rev 2003;55:597-606
  • Verheijen I, Tourlousse D, Vanderheyden PML, et al. Effect of saponin and filipin on antagonist binding to AT1 receptors in intact cells. Biochem Pharmacol 2004;67:1601-6
  • Vauquelin G, Hall D. Charlton P. “Partial” competition of heterobivalent ligand binding may be mistaken for allosteric interactions: A comparison of different target interaction models. Brit J Pharmacol 2015;172:2300-15
  • Box G, Draper N. Evolutionary operation: A statistical model for process improvement. John Wiley and Sons, New York; 1969
  • Velikov PG. Nucleation. Cryst Growth Des 2010;10:5007-19
  • Vauquelin G, Morsing P, Fierens FLP, et al. A two-state receptor model for the interaction between angiotensin II AT1 receptors and their non-peptide antagonists. Biochem Pharmacol 2001;61:277-84
  • Kenakin T. Cellular assays as portals to seven-transmembrane receptor-based drug discovery. Nat Rev Drug Discov 2009;8:617-26
  • Swinney DC, Anthony J. How were new medicines discovered? Nat Rev Drug Discov 2011;10:507-19
  • Swinney DC. Phenotypic vs target-based drug discovery for first-in-class medicines. Clin Pharmacol Ther 2013;93:299-301
  • Kolomeisky AB. Physics of protein-DNA interactions: mechanisms of facilitated target search. Phys Chem Chem Phys 2010;13:2088-95
  • Stockton JM, Birdsall NJ, Burgen AS, et al. Modification of the binding properties of muscarinic receptors by gallamine. Mol Pharmacol 1983;23:551-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.