929
Views
82
CrossRef citations to date
0
Altmetric
Reviews

Understanding the challenges of protein flexibility in drug design

(Postdoctoral Research Associate) , & (Professor)

Bibliography

  • Villoutreix BO, Lagorce D, Labbé CM, et al. One hundred thousand mouse clicks down the road: Selected online resources supporting drug discovery collected over a decade. Drug Discov Today 2013;18:1081-9
  • Dhanik A, Kavraki LE. Protein-ligand interactions: Computational docking. In:; eLS. John Wiley & Sons, Ltd, New Jersey, USA; 2012
  • Sousa SF, Ribeiro AJ, Coimbra JT, et al. Protein-ligand docking in the new millennium - A retrospective of 10 years in the field. Curr Med Chem 2013;20:2296-314
  • Yuriev E, Holien J, Ramsland PA. Improvements, trends, and new ideas in molecular docking: 2012-2013 in review. J Mol Recognit 2015;28(10):581-604
  • Guedes IA, de Magalhães CS, Dardenne LE. Receptor-ligand molecular docking. Biophys Rev 2014;6:75-87
  • Grinter SZ, Zou X. Challenges, applications, and recent advances of protein-ligand docking in structure-based drug design. Molecules 2014;19:10150-76
  • Weill N, Therrien E, Campagna-Slater V, Moitessier N. Methods for docking small molecules to macromolecules: A user’s perspective. 1. the theory. Curr Pharm Des 2014;20:3338-59
  • Campagna-Slater V, Therrien E, Weill N, Moitessier N. Methods for docking small molecules to macromolecules: A user’s perspective. 2. applications. Curr Pharm Des 2014;20:3360-72
  • Lill MA. Efficient incorporation of protein flexibility and dynamics into molecular docking simulations. Biochemistry 2011;50:6157-69
  • Bello M, Martínez-Archundia M, Correa-Basurto J. Automated docking for novel drug discovery. Exp Op Drug Disc 2013;8:821-34
  • Audie J, Swanson J. Recent work in the development and application of protein-peptide docking. Future Med Chem 2012;4:1619-44
  • Dhanik A, McMurray JS, Kavraki LE. DINC: A new AutoDock-based protocol for docking large ligands. BMC Struct Biol 2013;13:S11
  • Li H, Lu L, Chen R, et al. PaFlexPepDock: Parallel ab-initio docking of peptides onto their receptors with full flexibility based on Rosetta. PLoS One 2014;9:e94769
  • Rentzsch R, Renard BY. Docking small peptides remains a great challenge: An assessment using AutoDock Vina. Brief Bioinform 2015. [Epub ahead of print]
  • Lee H, Heo L, Lee MS, Seok C. GalaxyPepDock: A protein-peptide docking tool based on interaction similarity and energy optimization. Nucl Acids Res 2015;43:W431-5
  • Najmanovich R, Kuttner J, Sobolev V, Edelman M. Side-chain flexibility in proteins upon ligand binding. Proteins 2000;39:261-8
  • Wei BQ, Weaver LH, Ferrari AM, et al. Testing a flexible-receptor docking algorithm in a model binding site. J Mol Biol 2004;337:1161-82
  • Sandak B, Wolfson HJ, Nussinov R. Flexible docking allowing induced fit in proteins: Insights from an open to closed conformational isomers. Proteins 1998;32:159-74
  • Seeliger D, de Groot BL. Conformational transitions upon ligand binding: Holo-structure prediction from apo conformations. PLoS Comput Biol 2010;6:e1000634
  • Leis S, Zacharias M. Efficient inclusion of receptor flexibility in grid-based protein-ligand docking. J Comput Chem 2011;32:3433-9
  • Wabik J, Kurcinski M, Kolinski A. Coarse-grained modeling of peptide docking associated with large conformation transitions of the binding protein: troponin I fragment-troponin C system. Molecules 2015;20:10763-80
  • Kokh DB, Wade RC, Wenzel W. Receptor flexibility in small-molecule docking calculations. Wiley Interdiscip Rev Comput Mol Sci 2011;1:298-314
  • Lexa KW, Carlson HA. Protein flexibility in docking and surface mapping. Q Rev Biophys 2012;45:301-43
  • Yuriev E, Ramsland PA. Latest developments in molecular docking: 2010-2011 in review. J Mol Recognit 2013;26:215-39
  • Buonfiglio R, Recanatini M, Masetti M. Protein flexibility in drug discovery: From theory to computation. ChemMedChem 2015;10:1141-8
  • Koshland Jr DE. Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci USA 1958;44:98-104
  • Tsai CJ, Ma B, Kumar S, et al. Protein folding: binding of conformationally fluctuating building block via population selection. Crit Rev Biochem Mol Biol 2001;36:399-433
  • Changeux JP, Edelstein S. Conformational selection or induced fit? 50 years of debate resolved. F1000 Biol Reports 2011;3:19
  • Kar G, Keskin O, Gursoy A, Nussinov R. Allostery and population shift in drug discovery. Curr Opin Pharmacol 2010;10:715-22
  • Jiang F, Kim SH. Soft docking: Matching of molecular surface cubes. J Mol Biol 1991;219:79-102
  • Ferrari AM, Wei BQ, Costantino L, Shoichet BK. Soft docking and multiple receptor conformations in virtual screening. J Med Chem 2004;47:5076-84
  • Mizutani MY, Takamatsu Y, Ichinose T, et al. Effective handling of induced-fit motion in flexible docking. Proteins 2006;63:878-91
  • B-Rao C, Subramanian J, Sharma SD. Managing protein flexibility in docking and its applications. Drug Discov Today 2009;14:394-400
  • Beier C, Zacharias M. Tackling the challenges posed by target flexibility in drug design. Exp Opin Drug Discov 2010;5:347-59
  • Feixas F, Lindert S, Sinko W, McCammon JA. Exploring the role of receptor flexibility in structure-based drug discovery. Biophys Chem 2014;186:31-45
  • Sherman W, Day T, Jacobson MP, et al. Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem 2006;49:534-53
  • Venkatraman V, Ritchie DW. Flexible protein docking refinement using pose-dependent normal mode analysis. Proteins 2012;80:2262-74
  • Desmet J, Wilson IA, Joniau M, et al. Computation of the binding of fully flexible peptides to proteins with flexible side chains. FASEB J 1997;11:164-72
  • Schaffer L, Verkhivker GM. Predicting structural effects in HIV-1 protease mutant complexes with flexible ligand docking and protein side-chain optimization. Proteins 1998;33:295-310
  • Leach AR. Ligand docking to proteins with discrete side-chain flexibility. J Mol Biol 1994;235:345-56
  • Ding F, Yin S, Dokholyan NV. Rapid flexible docking using a stochastic rotamer library of ligands. J Chem Inf Model 2010;50:1623-32
  • Shin WH, Seok C. GalaxyDock: Protein-ligand docking with flexible protein side-chains. J Chem Inf Model 2012;52:3225-32
  • Schumann M, Armen RS. Systematic and efficient side chain optimization for molecular docking using a cheapest-path procedure. J Comput Chem 2013;34:1258-69
  • Abagyan R, Totrov M, Kuznetsov D. ICM–A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation. J Comput Chem 1994;15:488-506
  • Schnecke V, Kuhn LA. Virtual screening with solvation and ligand-induced complementarity. Perspect Drug Discov Des 2000;20:171-90
  • Jones G, Willett P, Glen RC. Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J Mol Biol 1995;245:43-53
  • Smieško M. DOLINA – Docking based on a local induced-fit algorithm: Application toward small-molecule binding to nuclear receptors. J Chem Inf Model 2013;53:1415-23
  • Schnecke V, Swanson CA, Getzoff ED, et al. Screening a peptidyl database for potential ligands to proteins with side-chain flexibility. Proteins 1998;33:74-87
  • Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 2009;30:2785-91
  • Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010;31:455-61
  • Abreu RM, Froufe HJ, Queiroz MJ, Ferreira IC. Selective flexibility of side-chain residues improves VEGFR-2 docking score using AutoDock Vina. Chem Biol Drug Des 2012;79:530-4
  • Morris GM, Green LG, Radić Z, et al. Automated docking with protein flexibility in the design of femtomolar “click chemistry” inhibitors of acetylcholinesterase. J Chem Inf Model 2013;53:898-906
  • Correa-Basurto J, Ramos-Morales FR, Matus MH, et al. Docking and DFT studies to explore the Topoisomerase II ATP pocket employing 3-substituted 2,6-piperazindiones for drug design. Mol Simul 2012;38:1072-84
  • Davis IW, Baker D. RosettaLigand docking with full ligand and receptor flexibility. J Mol Biol 2009;385:381-92
  • Flick J, Tristram F, Wenzel W. Modeling loop backbone flexibility in receptor-ligand docking simulations. J Comput Chem 2012;33:2504-15
  • Pang YP, Kozikowski AP. Prediction of the binding site of 1-benzyl-4-[(5,6-dimethoxy-1-indanon-2-yl)methyl]piperidine in acetylcholinesterase by docking studies with the SYSDOC program. J Comput Aided Mol Des 1994;8:683-93
  • Knegtel RM, Kuntz ID, Oshiro CM. Molecular docking to ensembles of protein structures. J Mol Biol 1997;266:424-40
  • Barril X, Fradera X. Incorporating protein flexibility into docking and structure-based drug design. Expert Opin Drug Discov 2006;1:335-49
  • Corbeil CR, Therrien E, Moitessier N. Modeling reality for optimal docking of small molecules to biological targets. Curr Computer-Aided Drug Des 2009;5:241-63
  • Dietzen M, Zotenko E, Hildebrandt A, Lengauer T. On the applicability of elastic network normal modes in small-molecule docking. J Chem Inf Model 2012;52:844-56
  • Martinez-Ramos F, Fonseca-Sabater Y, Soriano-Ursúa MA, et al. o-Alkylselenenylated benzoic acid accesses several sites in serum albumin according to fluorescence studies, Raman spectroscopy and theoretical simulations. Protein Pept Lett 2013;20:705-14
  • Österberg F, Morris GM, Sanner MF, et al. Automated docking to multiple target structures: Incorporation of protein mobility and structural water heterogeneity in AutoDock. Proteins 2002;46:34-40
  • Carlson HA, Masukawa KM, Rubins K, et al. Developing a dynamic pharmacophore model for HIV-1 integrase. J Med Chem 2000;43:2100-14
  • Joseph-McCarthy D, Thomas IV BE, Belmarsh M, et al. Pharmacophore-based molecular docking to account for ligand flexibility. Proteins 2003;51:172-88
  • Barril X, Morley SD. Unveiling the full potential of flexible receptor docking using multiple crystallographic structures. J Med Chem 2005;48:4432-43
  • Craig IR, Essex JW, Spiegel K. Ensemble docking into multiple crystallographically derived protein structures: An evaluation based on the statistical analysis of enrichments. J Chem Inf Model 2010;50:511-24
  • Brooijmans N, Humblet C. Chemical space sampling by different scoring functions and crystal structures. J Comput Aided Mol Des 2010;24:433-47
  • Huang SY, Zou X. Efficient molecular docking of NMR structures: Application to HIV-1 protease. Protein Sci 2007;16:43-51
  • Damm KL, Carlson HA. Exploring experimental sources of multiple protein conformations in structure-based drug design. J Am Chem Soc 2007;129:8225-35
  • Novoa EM, de Pouplana LR, Barril X, Orozco M. Ensemble docking from homology models. J Chem Theory Comput 2010;6:2547-57
  • Carlson HA, McCammon JA. Accommodating protein flexibility in computational drug design. Mol Pharmacol 2000;57:213-18
  • Nichols SE, Baron R, Ivetac A, McCammon JA. Predictive power of molecular dynamics receptor structures in virtual screening. J Chem Inf Model 2011;51:1439-46
  • Rueda M, Bottegoni G, Abagyan R. Consistent improvement of cross docking results using binding site ensembles generated with Elastic Network Normal Modes. J Chem Inf Model 2009;49:716-25
  • Rueda M, Totrov M, Abagyan R. ALiBERO: Evolving a team of complementary pocket conformations rather than a single leader. J Chem Inf Model 2012;52:2705-14
  • Sperandio O, Mouawad L, Pinto E, et al. How to choose relevant multiple receptor conformations for virtual screening: A test case of Cdk2 and normal mode analysis. Eur Biophys J 2010;39:1365-72
  • Cavasotto CN, Kovacs JA, Abagyan RA. Representing receptor flexibility in ligand docking through relevant normal modes. J Am Chem Soc 2005;127:9632-40
  • Kovacs JA, Cavasotto CN, Abagyan RA. Conformational sampling of protein flexibility in generalized coordinates: Application to ligand docking. J Comput Theor Nanosci 2005;2:354-61
  • Park SJ, Kufareva I, Abagyan R. Improved docking, screening and selectivity prediction for small molecule nuclear receptor modulators using conformational ensembles. J Comput Aided Mol Des 2010;24:459-71
  • Li Y, Kim DJ, Ma W, et al. Discovery of novel checkpoint kinase 1 inhibitors by virtual screening based on multiple crystal structures. J Chem Inf Model 2011;51:2904-14
  • Sinko W, Lindert S, McCammon JA. Accounting for receptor flexibility and enhanced sampling methods in computer-aided drug design. Chem Biol Drug Des 2013;81:41-9
  • Rueda M, Bottegoni G, Abagyan R. Recipes for the selection of experimental protein conformations for virtual screening. J Chem Inf Model 2010;50:186-93
  • Korb O, Olsson TS, Bowden SJ, et al. Potential and limitations of ensemble docking. J Chem Inf Model 2012;52:1262-74
  • Bolstad ES, Anderson AC. In pursuit of virtual lead optimization: Pruning ensembles of receptor structures for increased efficiency and accuracy during docking. Proteins 2009;75:62-74
  • Bottegoni G, Rocchia W, Rueda M, et al. Systematic exploitation of multiple receptor conformations for virtual ligand screening. PLoS One 2011;6:e18845
  • Korb O, McCabe P, Cole J. The ensemble performance index: An improved measure for assessing ensemble pose prediction performance. J Chem Inf Model 2011;51:2915-19
  • Lin JH, Perryman AL, Schames JR, McCammon JA. Computational drug design accommodating receptor flexibility: The relaxed complex scheme. J Am Chem Soc 2002;124:5632-3
  • Amaro RE, Baron R, McCammon JA. An improved relaxed complex scheme for receptor flexibility in computer-aided drug design. J Comput Aided Mol Des 2008;22:693-705
  • Machado KS, Winck AT, Ruiz DD, de Souza ON. Mining flexible-receptor docking experiments to select promising protein receptor snapshots. BMC Genomics 2010;11:S6
  • Rocchia W, Masetti M, Cavalli A. Enhanced sampling methods in drug design. In: Luque J, Barril X, editors. Physico-chemical and computational approaches to drug discovery. The Royal Society of Chemistry, London W1J 0BA, UK; 2012; p. 273-301
  • Chaudhuri R, Carrillo O, Laughton CA, Orozco M. Application of drug-perturbed essential dynamics/molecular dynamics (ED/MD) to virtual screening and rational drug design. J Chem Theory Comput 2012;8:2204-14
  • Nowosielski M, Hoffmann M, Kuron A, et al. The MM2QM tool for combining docking, molecular dynamics, molecular mechanics, and quantum mechanics. J Comput Chem 2013;34:750-6
  • Armen RS, Chen J, Brooks III CL. An evaluation of explicit receptor flexibility in molecular docking using molecular dynamics and torsion angle molecular dynamics. J Chem Theory Comput 2009;5:2909-23
  • Xu M, Lill MA. Significant enhancement of docking sensitivity using implicit ligand sampling. J Chem Inf Model 2011;51:693-706
  • Xu M, Lill MA. Utilizing experimental data for reducing ensemble size in flexible-protein docking. J Chem Inf Model 2012;52:187-98
  • Cavasotto CN, Abagyan RA. Protein flexibility in ligand docking and virtual screening to protein kinases. J Mol Biol 2004;337:209-25
  • Yoon S, Welsh WJ. Identification of a minimal subset of receptor conformations for improved multiple conformation docking and two-step scoring. J Chem Inf Comput Sci 2004;44:88-96
  • McRobb FM, Capuano B, Crosby IT, et al. Homology modeling and docking evaluation of aminergic G protein-coupled receptors. J Chem Inf Model 2010;50:626-37
  • Vilar S, Ferino G, Phatak SS, et al. Docking-based virtual screening for ligands of G protein-coupled receptors: Not only crystal structures but also in silico models. J Mol Graph Model 2011;29:614-23
  • Das R, Baker D. Macromolecular modeling with Rosetta. Annu Rev Biochem 2008;77:363-82
  • Meiler J, Baker D. ROSETTALIGAND: Protein-small molecule docking with full side-chain flexibility. Proteins 2006;65:538-48
  • Lemmon G, Meiler J. Rosetta Ligand docking with flexible XML protocols. In: Baron R, editor. Computational Drug Discovery and Design. Volume 819 Methods in Molecular Biology Springer, New York, NY 10013-1578, USA; 2012; p. 143-55
  • Apostolakis J, Plückthun A, Caflisch A. Docking small ligands in flexible binding sites. J Comput Chem 1998;19:21-37
  • Borrelli KW, Cossins B, Guallar V. Exploring hierarchical refinement techniques for induced fit docking with protein and ligand flexibility. J Comput Chem 2010;31:1224-35
  • Tsfadia Y, Friedman R, Kadmon J, et al. Molecular dynamics simulations of palmitate entry into the hydrophobic pocket of the fatty acid binding protein. FEBS Lett 2007;581:1243-7
  • Sokkar P, Sathis V, Ramachandran M. Computational modeling on the recognition of the HRE motif by HIF-1: Molecular docking and molecular dynamics studies. J Mol Model 2012;18:1691-700
  • Schaffer L, Verkhivker GM. Predicting structural effects in HIV-1 protease mutant complexes with flexible ligand docking and protein side-chain optimization. Proteins 1998;33:295-310
  • Haspel N, Ricklin D, Geisbrecht BV, et al. Electrostatic contributions drive the interaction between Staphylococcus aureus protein Efb-C and its complement target C3d. Protein Sci 2008;17:1894-906
  • Haspel N, Geisbrecht BV, Lambris JD, Kavraki LE. Multi-scale characterization of the energy landscape of proteins with application to the C3d/Efb-C complex. Proteins 2009;78:1004-14
  • da Silva ML, Gonçalves AD, Batista PR, et al. Design, docking studies and molecular dynamics of new potential selective inhibitors of Plasmodium falciparum serine hydroxymethyltransferase. Mol Simul 2010;36:5-14
  • Yang Z, Nie Y, Yang G, et al. Synergistic effects in the designs of neuraminidase ligands: Analysis from docking and molecular dynamics studies. J Theor Biol 2010;267:363-74
  • Wang X, Yang W, Xu X, et al. Studies of benzothiadiazine derivatives as hepatitis C virus NS5B polymerase inhibitors using 3D-QSAR, molecular docking and molecular dynamics. Curr Med Chem 2010;17:2788-803
  • Di Nola A, Roccatano D, Berendsen HJ. Molecular dynamics simulation of the docking of substrates to proteins. Proteins 1994;19:174-82
  • Mangoni M, Roccatano D, Di Nola A. Docking of flexible ligands to flexible receptors in solution by molecular dynamics simulation. Proteins 1999;35:153-62
  • Luty BA, Wasserman ZR, Stouten PF, et al. A molecular mechanics/ grid method for evaluation of ligand-receptor interactions. J Comput Chem 1995;16:454-64
  • Huang Z, Wong CF, Wheeler RA. Flexible protein-flexible ligand docking with disrupted velocity simulated annealing. Proteins 2008;71:440-54
  • Antes I. DynaDock: A new molecular dynamics-based algorithm for protein-peptide docking including receptor flexibility. Proteins 2010;78:1084-104
  • Whalen KL, Chang KM, Spies MA. Hybrid steered molecular dynamics-docking: An efficient solution to the problem of ranking inhibitor affinities against a flexible drug target. Mol Inform 2011;30:459-71
  • Teodoro ML, Kavraki LE. Conformational flexibility models for the receptor in structure based drug design. Curr Pharm Des 2003;9:1635-48
  • Zacharias M, Sklenar H. Harmonic modes as variables to approximately account for receptor flexibility in ligand-receptor docking simulations: Application to DNA minor groove ligand complex. J Comput Chem 1999;20:287-300
  • Kolossváry I, Guida WC. Low-mode conformational search elucidated: Application to C39H80 and flexible docking of 9-deazaguanine inhibitors into PNP. J Comput Chem 1999;20:1671-84
  • Keserü GM, Kolossváry I. Fully flexible low-mode docking: Application to induced fit in HIV integrase. J Am Chem Soc 2001;123:12708-9
  • Teodoro ML, Phillips Jr GN, Kavraki LE. Understanding protein flexibility through dimensionality reduction. J Comput Biol 2003;10:617-34
  • Zacharias M. Rapid protein-ligand docking using soft modes from molecular dynamics simulations to account for protein deformability: Binding of FK506 to FKBP. Proteins 2004;54:759-67
  • May A, Zacharias M. Protein-ligand docking accounting for receptor side chain and global flexibility in normal modes: Evaluation on kinase inhibitor cross docking. J Med Chem 2008;51:3499-506
  • Huang SY, Zou X. Ensemble docking of multiple protein structures: Considering protein structural variations in molecular docking. Proteins 2007;66:399-421
  • Bottegoni G, Kufareva I, Totrov M, Abagyan R. Four-dimensional docking: A fast and accurate account of discrete receptor flexibility in ligand docking. J Med Chem 2009;52:397-406
  • Claußen H, Buning C, Rarey M, Lengauer T. FlexE: efficient molecular docking considering protein structure variations. J Mol Biol 2001;308:377-95
  • Corbeil CR, Englebienne P, Moitessier N. Docking ligands into flexible and solvated macromolecules. 1. Development and validation of FITTED 1.0. J Chem Inf Model 2007;47:435-49
  • Kim J, Park JG, Chong Y. FlexE ensemble docking approach to virtual screening for CDK2 inhibitors. Mol Simulation 2007;33:667-76
  • Corbeil CR, Moitessier N. Docking ligands into flexible and solvated macromolecules. 3. Impact of input ligand conformation, protein flexibility, and water molecules on the accuracy of docking programs. J Chem Inf Model 2009;49:997-1009
  • Takaya D, Yamashita A, Kamijo K, et al. A new method for induced fit docking (GENIUS) and its application to virtual screening of novel HCV NS3-4A protease inhibitors. Bioorg Med Chem 2011;19:6892-905
  • Nabuurs SB, Wagener M, de Vlieg J. A flexible approach to induced fit docking. J Med Chem 2007;50:6507-18
  • Bosshard HR. Molecular recognition by induced fit: How fit is the concept? News Physiol Sci 2001;16:171-3
  • Zhou HX. From induced fit to conformational selection: A continuum of binding mechanism controlled by the timescale of conformational transitions. Biophys J 2010;98:L15-17
  • Csermely P, Palotai R, Nussinov R. Induced fit, conformational selection and independent dynamic segments: An extended view of binding events. Trends Biochem Sci 2010;35:539-46
  • Kuzu G, Keskin O, Gursoy A, Nussinov R. Expanding the conformational selection paradigm in protein-ligand docking. In: Baron R, editor. Computational drug discovery and design. Volume 819 Methods in Molecular Biology Springer, New York, NY 10013-1578, USA; 2012; p. 59-74
  • Grünberg R, Leckner J, Nilges M. Complementarity of structure ensembles in protein-protein binding. Structure 2004;12:2125-36
  • Wlodarski T, Zagrovic B. Conformational selection and induced fit mechanism underlie specificity in noncovalent interactions with ubiquitin. Proc Natl Acad Sci USA 2009;106:19346-51
  • Shehu A, Kavraki LE, Clementi C. Multiscale characterization of protein conformational ensembles. Proteins 2009;76:837-51
  • Cortés J, Le D, Iehl R, Siméon T. Simulating ligand-induced conformational changes in proteins using a mechanical disassembly method. Phys Chem Chem Phys 2010;12:8268-76
  • Shehu A, Kavraki LE. Modeling structures and motions of loops in protein molecules. Entropy 2012;14:252-90
  • Gipson B, Hsu D, Kavraki LE, Latombe JC. Computational models of protein kinematics and dynamics: Beyond simulation. Annu Rev Anal Chem 2012;5:273-91
  • Gipson B, Moll M, Kavraki LE. SIMS: A hybrid method for rapid conformational analysis. PLoS One 2013;8:e68826
  • Grant BJ, Lukman S, Hocker HJ, et al. Novel allosteric sites on Ras for lead generation. PLoS One 2011;6:e25711
  • Bowman GR, Geissler PL. Equilibrium fluctuations of a single folded protein reveal a multitude of potential cryptic allosteric sites. Proc Natl Acad Sci USA 2012;109:11681-6
  • Raveh B, London N, Zimmerman L, Schueler-Furman O. Rosetta FlexPepDock ab-initio: Simultaneous folding, docking and refinement of peptides onto their receptors. PLoS One 2011;6:e18934
  • Blaszczyk M, Jamroz M, Kmiecik S, Kolinski A. CABS-fold: Server for the de novo and consensus-based prediction of protein structure. Nucleic Acids Res 2013;41:W406-11
  • Chaskar P, Zoete V, Röhrig UF. Toward on-the-fly quantum mechanical/molecular mechanical (QM/MM) docking: development and benchmark of a scoring function. J Chem Inf Model 2014;54:3137-52
  • Schomburg KT, Rarey M. Benchmark data sets for structure-based computational target prediction. J Chem Inf Model 2014;54:2261-74
  • Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera–A visualization system for exploratory research and analysis. J Comput Chem 2004;25:1605-12

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.