1,064
Views
49
CrossRef citations to date
0
Altmetric
Reviews

Identification of drug candidates and repurposing opportunities through compound–target interaction networks

, MSc (HIIT/FIMM-EMBL PhD student) , , PhD (Professor at Aalto University) & , PhD (EMBL-FIMM Group Leader) (Professor) (EMBL-FIMM Group Leader) (Professor)

Bibliography

  • Scannell JW, Blanckley A, Boldon H, Warrington B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov 2012;11(3):191-200
  • Mestres J, Gregori-Puigjané E. Conciliating binding efficiency and polypharmacology. Trends Pharmacol Sci 2004;30(9):470-4
  • Yıldırım MA, Goh KI, Cusick ME, et al. Drug-target network. Nat Biotechnol 2007;25(10):1119-26
  • Peters JU. Polypharmacology–foe or friend? J Med Chem 2013;56(22):8955-71
  • Pujol A, Mosca R, Farrés J, Aloy P. Unveiling the role of network and systems biology in drug discovery. Trends Pharmacol Sci 2010;31(3):115-23
  • Chandra N, Padiadpu J. Network approaches to drug discovery. Expert Opin Drug Discov 2013;8(1):7-20
  • Billur Engin H, Gursoy A, Nussinov R, Keskin O. Network-based strategies can help mono-and poly-pharmacology drug discovery: a systems biology view. Curr Pharm Des 2014;20(8):1201-7
  • Nantasenamat C, Prachayasittikul V. Maximizing computational tools for successful drug discovery. Expert Opin Drug Discov 2015;10(4):321-9
  • Sun X, Vilar S, Tatonetti NP. High-throughput methods for combinatorial drug discovery. Sci Translat Med 2013;5(205):205rv1
  • Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 2008;4(11):682-90
  • Tang J, Aittokallio T. Network pharmacology strategies toward multi-target anticancer therapies: from computational models to experimental design principles. Curr Pharm Des 2014;20(1):23-36
  • Schadt EE, Friend SH, Shaywitz DA. A network view of disease and compound screening. Nat Rev Drug Discov 2009;8(4):286-95
  • Boran AD, Iyengar R. Systems approaches to polypharmacology and drug discovery. Curr Opin Drug Discov Devel 2010;13(3):297
  • Arrell DK, Terzic A. Network systems biology for drug discovery. Clin Pharmacol Ther 2010;88(1):120-5
  • Sampaio EP, Sarno EN, Galilly R, et al. Thalidomide selectively inhibits tumor necrosis factor alpha production by stimulated human monocytes. J Exper Med 1991;173(3):699-703
  • Li J, Zheng S, Chen B, et al. A survey of current trends in computational drug repositioning. Brief Bioinform 2015. [Epub ahead of print]
  • Pemovska T, Johnson E, Kontro M, et al. Axitinib effectively inhibits BCR-ABL1 (T315I) with a distinct binding conformation. Nature 2015;519(7541):102-5
  • Tropsha A. Best practices for QSAR model development, validation, and exploitation. Mol Inform 2010;29(6-7):476-88
  • Costello JC, Heiser LM, Georgii E, et al. A community effort to assess and improve drug sensitivity prediction algorithms. Nat Biotechnol 2014;32(12):1202-12
  • Ding H, Takigawa I, Mamitsuka H, Zhu S. Similarity-based machine learning methods for predicting drug–target interactions: a brief review. Brief Bioinform 2014;15(5):734-47
  • Riddick G, Song H, Ahn S, et al. Predicting in vitro drug sensitivity using random forests. Bioinformatics 2011;27(2):220-4
  • Gonen M, Kaski S. Kernelized Bayesian matrix factorization. Patt Analy Machine Intell 2014;36(10):2047-60
  • Yamanishi Y. Chemogenomic approaches to infer drug–target interaction networks. Methods Mol Biol 2013;939:97-113
  • Mousavian Z, Masoudi-Nejad A. Drug-target interaction prediction via chemogenomic space: learning-based methods. Expert Opin Drug Metabol Toxicol 2014;10(9):1273-87
  • Davis MI, Hunt JP, Herrgard S, et al. Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol 2011;29(11):1046-51
  • Metz JT, Johnson EF, Soni NB, et al. Navigating the kinome. Nat Chem Biol 2011;7(4):200-2
  • Taipale M, Krykbaeva I, Whitesell L, et al. Chaperones as thermodynamic sensors of drug-target interactions reveal kinase inhibitor specificities in living cells. Nat Biotechnol 2013;31(7):630-7
  • Savitski MM, Reinhard FB, Franken H, et al. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science 2014;346(6205):1255784
  • Schirle M, Bantscheff M, Kuster B. Mass spectrometry-based proteomics in preclinical drug discovery. Chem Biol 2012;19(1):72-84
  • Reymond JL, Awale M. Exploring chemical space for drug discovery using the chemical universe database. ACS Chem Neurosci 2012;3(9):649-57
  • Tang J, Szwajda A, Shakyawar S. Making sense of large-scale kinase inhibitor bioactivity data sets: A comparative and integrative analysis. J Chem Inf Model 2014;54(3):735-43
  • Chambers J, Davies M, Gaulton A, et al. UniChem: a unified chemical structure cross-referencing and identifier tracking system. J Cheminform 2013;5(1):3
  • van Laarhoven T, Nabuurs SB, Marchiori E. Gaussian interaction profile kernels for predicting drug–target interaction. Bioinformatics 2011;27(21):3036-43
  • van Laarhoven T, Marchiori E. Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile. PLoS ONE 2013;8(6):e66952
  • Cheng F, Liu C, Jiang J, et al. Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput Biol 2012;8(5):e1002503
  • Cheng F, Zhou Y, Li W, et al. Prediction of chemical-protein interactions network with weighted network-based inference method. PLoS ONE 2012;7(7):e41064
  • Wang Y, Zeng J. Predicting drug-target interactions using restricted Boltzmann machines. Bioinformatics 2013;29(13):i126-34
  • Keiser MJ, Roth BL, Armbruster BN, et al. Relating protein pharmacology by ligand chemistry. Nat Biotechnol 2007;25(2):197-206
  • Keiser MJ, Setola V, Irwin JJ, et al. Predicting new molecular targets for known drugs. Nature 2009;462(7270):175-81
  • Yamanishi Y, Araki M, Gutteridge A, et al. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 2008;24(13):i232-40
  • Bleakley K, Yamanishi Y. Supervised prediction of drug-target interactions using bipartite local models. Bioinformatics 2009;25(18):2397-403
  • Yamanishi Y, Kotera M, Kanehisa M, Goto S. Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics 2010;26(12):i246-54
  • Alaimo S, Pulvirenti A, Giugno R, Ferro A. Drug-target interaction prediction through domain-tuned network-based inference. Bioinformatics 2013;29(16):2004-8
  • Chen X, Liu MX, Yan GY. Drug-target interaction prediction by random walk on the heterogeneous network. Mol BioSys 2012;8(7):1970-8
  • Wang W, Yang S, Zhang X, Li J. Drug repositioning by integrating target information through a heterogeneous network model. Bioinformatics 2014;30(20):2923-30
  • Hamosh A, Scott AF, Amberger JS, et al. Online mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 2005;33(1):514-17
  • Campillos M, Kuhn M, Gavin AC, et al. Drug target identification using side-effect similarity. Science 2008;321(5886):263-6
  • Lamb J, Crawford ED, Peck D, et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 2006;313(5795):1929-35
  • Iorio F, Bosotti R, Scacheri E, et al. Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc Nat Acad Sci 2010;107(33):14621-6
  • Ravindranath AC, Perualila-Tan N, Kasim A, et al. Connecting gene expression data from connectivity map and in silico target predictions for small molecule mechanism-of-action analysis. Mol BioSys 2015;11(1):86-96
  • Zhao S, Li S. Network-based relating pharmacological and genomic spaces for drug target identification. PloS One 2010;5(7):e11764
  • Laenen G, Thorrez L, Börnigen D, Moreau Y. Finding the targets of a drug by integration of gene expression data with a protein interaction network. Mol BioSys 2013;9(7):1676-85
  • Perlman L, Gottlieb A, Atias N, et al. Combining drug and gene similarity measures for drug-target elucidation. J Comput Biol 2011;18(2):133-45
  • Magger O, Waldman YY, Ruppin E, Sharan R. Enhancing the prioritization of disease-causing genes through tissue specific protein interaction networks. PLoS Comput Biol 2012;8(9):e1002690
  • Liu W, Wang J, Wang T, Xie H. Construction and analyses of human large-scale tissue specific networks. PLoS ONE 2014;9(12):e115074
  • Greene CS, Krishnan A, Wong AK, et al. Understanding multicellular function and disease with human tissue-specific networks. Nat Gen 2015;47(6):569-75
  • Woo JH, Shimoni Y, Yang WS, et al. Elucidating compound mechanism of action by network perturbation analysis. Cell 2015;162(2):441-51
  • Sanseau P, Agarwal P, Barnes MR, et al. Use of genome-wide association studies for drug repositioning. Nat Biotechnol 2012;30(4):317-20
  • Plenge RM, Scolnick EM, Altshuler D. Validating therapeutic targets through human genetics. Nat Rev Drug Discov 2013;12(8):581-94
  • Nelson MR, Tipney H, Painter JL, et al. The support of human genetic evidence for approved drug indications. Nat Gen 2015;47(8):856-60
  • Wang H, Gu Q, Wei J, et al. Mining drug-disease relationships as a complement to medical genetics-based drug repositioning: Where a recommendation system meets genome-wide association studies. Clin Pharmacol Ther 2015;97(5):451-4
  • Taşan M, Musso G, Hao T, et al. Selecting causal genes from genome-wide association studies via functionally coherent subnetworks. Nat Methods 2015;12(2):154-9
  • Xie L, Ge X, Tan H, et al. Towards structural systems pharmacology to study complex diseases and personalized medicine. PLoS Comput Biol 2014;10(5):e1003554
  • Denny JC, Bastarache L, Ritchie MD, et al. Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data. Nat Biotechnol 2013;31(12):1102-11
  • Rastegar-Mojarad M, Ye Z, Kolesar JM, et al. Opportunities for drug repositioning from phenome-wide association studies. Nat Biotechnol 2015;33(4):342-5
  • Wang ZY, Zhang HY. Rational drug repositioning by medical genetics. Nat Biotechnol 2013;31(12):1080-2
  • Lim ET, Würtz P, Havulinna AS, et al. Distribution and medical impact of loss-of-function variants in the Finnish founder population. PLoS Genet 2014;10(7):e1004494
  • Barrangou R, Birmingham A, Wiemann S, et al. Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference. Nucl Acids Res 2015;43(7):3407-19
  • Shi J, Wang E, Milazzo JP, et al. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat Biotechnol 2015;33(6):661-7
  • Chen S, Feng J, Ma L, et al. RNA interference technology for anti-VEGF treatment. Expert Opin Drug Del 2014;11(9):1471-80
  • Liang P, Xu Y, Zhang X, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 2015;6(153):363-72
  • Harper AR, Topol EJ. Pharmacogenomics in clinical practice and drug development. Nat Biotechnol 2012;30(11):1117-24
  • Wheeler HE, Maitland ML, Dolan ME, et al. Cancer pharmacogenomics: strategies and challenges. Nat Rev Genet 2013;14(1):23-34
  • Berlow N, Haider S, Wan Q, et al. An integrated approach to anti-cancer drug sensitivity prediction. Comput Biol Bioinform 2014;11(6):995-1008
  • Ammad-ud-din M, Georgii E, Gonen M, et al. Integrative and personalized QSAR analysis in cancer by kernelized bayesian matrix factorization. J Chem Inf Model 2014;54(8):2347-59
  • National center for biotechnology information. PubChem compound database; CID=126941. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/126941 [Last accessed 3 September 2015]
  • Kibble M, Saarinen N, Tang J, et al. Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products. Nat Product Reports 2015;32(8):1249-66
  • Pahikkala T, Airola A, Pietilä S, et al. Toward more realistic drug-target interaction predictions. Brief Bioinform 2015;16(2):325-37
  • Edwards AM, Arrowsmith CH, Bountra C, et al. Preclinical target validation using patient-derived cells. Nat Rev Drug Discov 2015;14(3):149-50
  • Bento AP, Gaulton A, Hersey A, et al. The ChEMBL bioactivity database: an update. Nucl Acids Res 2014;42(D1):D1083-90
  • Law V, Knox C, Djoumbou Y, et al. DrugBank 4.0: shedding new light on drug metabolism. Nucl Acids Res 2014;42(D1):D1091-7
  • Liu T, Lin Y, Wen X, et al. BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucl Acids Res 2007;35(1):D198-201
  • Kuhn M, Szklarczyk D, Pletscher-Frankild S, et al. STITCH 4: integration of protein-chemical interactions with user data. Nucl Acids Res 2014;42(D1):D401-7
  • Kanehisa M, Goto S, Sato Y, et al. Data, information, knowledge and principle: back to metabolism in KEGG. Nucl Acids Res 2014;42(D1):D199-205
  • Kim S, Thiessen PA, Bolton EE, Bryant SH. PUG-SOAP and PUG-REST: web services for programmatic access to chemical information in PubChem. Nucl Acids Res 2015;43(W1):W605-11
  • Chang A, Schomburg I, Placzek S, et al. BRENDA in 2015: exciting developments in its 25th year of existence. Nucl Acids Res 2015;43(D1):D439-46
  • Griffith M, Griffith OL, Coffman AC, et al. DGIdb: mining the druggable genome. Nat Methods 2013;10(12):1209-10
  • Qin C, Zhang C, Zhu F, et al. Therapeutic target database update 2014: a resource for targeted therapeutics. Nucl Acids Res 2014;42(D1):D1118-23
  • Günther S, Kuhn M, Dunkel M, et al. Supertarget and matador: resources for exploring drug-target relationships. Nucl Acids Res 2008;36(1):D919-22
  • Roth BL, Lopez E, Patel S, Kroeze WK. The multiplicity of serotonin receptors: uselessly diverse molecules or an embarrassment of riches? Neuroscientist 2000;6(4):252-62
  • Irwin JJ, Sterling T, Mysinger MM, et al. ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 2012;52(7):1757-68

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.