171
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Recent progress in oligonucleotide therapeutics: antisense to aptamers

, PhD
Pages 997-1009 | Published online: 21 Aug 2008

Bibliography

  • Aagaard L, Rossi JJ. RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev 2007;59(2-3):75-86
  • Grimm D, Kay MA. Therapeutic application of RNAi: is mRNA targeting finally ready for prime time? J Clin Invest 2007;117(12):3633-41
  • Stein CA, Cohen JS. Oligodeoxynucleotides as inhibitors of gene expression: a review. Cancer Res 1988;48(10):2659-68
  • Crooke ST. Therapeutic applications of oligonucleotides. Ann Rev Pharmacol Toxicol 1992;32:329-76
  • Crooke ST. An overview of progress in antisense therapeutics. Antisense Nucleic Acid Drug Dev 1998;8:115-22
  • Crooke ST. Progress in antisense technology. Ann Rev Med 2004;55:61-95
  • Crooke ST. Molecular mechanisms of antisense drugs: human RNase H. Antisense Nucleic Acid Drug Dev 1999;9:377-9
  • Kalota A, Shetzline SE, Gewirtz AM. Progress in the development of nucleic acid therapeutics for cancer. Cancer Biol Ther 2004;3(1):4-12
  • Hogrefe RI. An antisense oligonucleotide primer. Antisense Nucleic Acid Drug Dev 1999;9(4):351-7. (Table 1, clinical trials, updated 2007)
  • Braasch DA, Corey DR. Novel antisense and peptide nucleic acid strategies for controlling gene expression. Biochemistry 2002;41(14):4503-10
  • Haasnoot J, Westerhout EM, Berkhout B. RNA interference against viruses: strike and counterstrike. Nat Biotechnol 2007;25(12):1435-43
  • Marwick C. First ‘antisense’ drug will treat CMV retinitis. JAMA 1998;280(10):871
  • Azad RF, Brown-Driver V, Buckheit RW Jr, Anderson KP. Antiviral activity of a phosphorothioate oligonucleotide complementary to human cytomegalovirus RNA when used in combination with antiviral nucleoside analogs. Antiviral Res 1995;28(2):101-11
  • Klasa RJ, Gillum AM, Klem RE, Frankel SR. Oblimersen Bcl-2 antisense: facilitating apoptosis in anticancer treatment. Antisense Nucleic Acid Drug Dev 2002;12(3):193-213
  • Wetzler M, Donohue KA, Odenike OM, et al. Feasibility of administering oblimersen (G3139; Genasense) with imatinib mesilate in patients with imatinib resistant chronic myeloid leukemia – Cancer and leukemia group B study 10107. Leuk Lymphoma 2008;49(7):1274-8
  • Rudin CM, Salgia R, Wang X, et al. Randomized phase II study of carboplatin and etoposide with or without the bcl-2 antisense oligonucleotide oblimersen for extensive-stage small-cell lung cancer: CALGB 30103. J Clin Oncol 2008;26(6):870-6
  • Gekeler V, Gimmnich P, Hofmann H-P, et al. G3139 and other CpG-containing immunostimulatory phosphorothioate oligodeoxynucleotides are potent suppressors of the growth of human tumor xenografts in nude mice. Oligonucleotides 2006;16(1):83-93
  • Kim R, Emi M, Matsuura K, Tanabe K. Antisense and nonantisense effects of antisense Bcl-2 on multiple roles of Bcl-2 as a chemosensitizer in cancer therapy. Cancer Gene Ther 2007;14(1):1-11
  • Gjertsen BT, Bredholt T, Anensen N, Vintermyr OK. Bcl-2 antisense in the treatment of human malignancies: a delusion in targeted therapy. Curr Pharm Biotechnol 2007;8(6):373-81
  • Paz-Ares L, Douillard JY, Koralewski P, et al. Phase III study of gemcitabine and cisplatin with or without aprinocarsen, a protein kinase C-alpha antisense oligonucleotide, in patients with advanced-stage non-small-cell lung cancer. J Clin Oncol 2006;24(9):1428-34
  • Grossman SA, Alavi JB, Supko JG, et al. Efficacy and toxicity of the antisense oligonucleotide aprinocarsen directed against protein kinase C-alpha delivered as a 21-day continuous intravenous infusion in patients with recurrent high-grade astrocytomas. Neuro Oncol 2005;7(1):32-40
  • Yacyshyn B, Chey WY, Wedel MK, et al. A randomized, double-masked, placebo-controlled study of alicaforsen, an antisense inhibitor of intercellular adhesion molecule 1, for the treatment of subjects with active Crohn's disease. Clin Gastroenterol Hepatol 2007;5(2):215-20
  • Baumgart DC, Sandborn WJ. Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet 2007;369(9573):1641-57
  • Davis AJ, Gelmon KA, Siu LL, et al. Phase I and pharmacologic study of the human DNA methyltransferase antisense oligodeoxynucleotide MG98 given as a 21-day continuous infusion every 4 weeks. Invest New Drugs 2003;21(1):85-97
  • Winquist E, Knox J, Ayoub JP, et al. Phase II trial of DNA methyltransferase 1 inhibition with the antisense oligonucleotide MG98 in patients with metastatic renal carcinoma: a National Cancer Institute of Canada Clinical Trials Group investigational new drug study. Invest New Drugs 2006;24(2):159-67
  • Klisovic RB, Stock W, Cataland S, et al. A phase I biological study of MG98, an oligodeoxynucleotide antisense to DNA methyltransferase 1, in patients with high-risk myelodysplasia and acute myeloid leukemia. Clin Cancer Res 2008;14(8):2444-9
  • Stein CA. The experimental use of antisense oligonucleotides: a guide for the perplexed. J Clin Invest 2001;108(5):641-4
  • Scherer LJ, Rossi JJ. Approaches for the sequence-specific knockdown of mRNA. Nat Biotechnol 2003;21(12):1457-65
  • Patil SD, Rhodes DG, Burgess DJ. DNA-based therapeutics and DNA delivery systems: a comprehensive review. AAPS J 2005;7(1):E61-77
  • Stadler WM, Desai AA, Quinn DI, et al. A phase I/II study of GTI-2040 and capecitabine in patients with renal cell carcinoma. Cancer Chemother Pharmacol 2008;61(4):689-94
  • Brown DA, Kang S-H, Gryaznov SM, et al. Effect of phosphorothioate modification of oligodeoxynucleotides on specific protein binding. J Biol Chem 1994;269:26801-5
  • Crooke ST, Graham MJ, Zuckerman JE, et al. Pharmacokinetic properties of several novel oligonucleotide analogs in mice. J Pharmacol Exp Ther 1996;277:923-37
  • Kurreck J. Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem 2003;270(8):1628-44
  • Prakash TP, Bhat B. 2′-Modified oligonucleotides for antisense therapeutics. Curr Top Med Chem 2007;7(7):641-9
  • Grünweller A, Wyszko E, Bieber B, et al. Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2′-O-methyl RNA, phosphorothioates and small interfering RNA. Nucleic Acids Res 2003;31(12):3185-93
  • Karkare S, Bhatnagar D. Promising nucleic acid analogs and mimics: characteristic features and applications of PNA, LNA, and morpholino. Appl Microbiol Biotechnol 2006;71(5):575-86
  • Summerton JE. Morpholino, siRNA, and S-DNA compared: impact of structure and mechanism of action on off-target effects and sequence specificity. Curr Top Med Chem 2007;7(7):651-60
  • Henry S, Stecker K, Brooks D, et al. Chemically modified oligonucleotides exhibit decreased immune stimulation in mice. J Pharmacol Exp Ther 2000;292(2):468-79
  • Geary RS, Watanabe TA, Truong L, et al. Pharmacokinetic properties of 2′-O-(2-methoxyethyl)-modified oligonucleotide analogs in rats. Pharmacol Exp Ther 2001;296(3):890-7
  • Crooke ST, Graham MJ, Zuckerman JE, et al. Pharmacokinetic properties of several novel oligonucleotide analogs in mice. J Pharmacol Exp Ther 1996;277(2):923-37
  • Rifai A, Brysch W, Fadden K, et al. Clearance kinetics, biodistribution, and organ saturability of phosphorothioate oligodeoxynucleotides in mice. Am J Pathol 1996;149(2):717-25
  • Agrawal S, Jiang Z, Zhao Q, et al. Mixed-backbone oligonucleotides as second generation antisense oligonucleotides: in vitro and in vivo studies. Proc Natl Acad Sci USA 1997;94(6):2620-5
  • Grünweller A, Wyszko E, Bieber B, et al. Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2′-O-methyl RNA, phosphorothioates and small interfering RNA. Nucleic Acids Res 2003;31(12):3185-93
  • Akdim F, Stroes ES, Kastelein JJ. Antisense apolipoprotein B therapy: where do we stand? Curr Opin Lipidol 2007;18(4):397-400
  • Olofsson SO, Wiklund O, Borén J. Apolipoproteins A-I and B: biosynthesis, role in the development of atherosclerosis and targets for intervention against cardiovascular disease. Vasc Health Risk Manag 2007;3(4):491-502
  • Dedoussis GV. Apolipoprotein polymorphisms and familial hypercholesterolemia. Pharmacogenomics 2007;8(9):1179-89
  • Kastelein JJ, Wedel MK, Baker BF, et al. Potent reduction of apolipoprotein B and low-density lipoprotein cholesterol by short-term administration of an antisense inhibitor of apolipoprotein B. Circulation 2006;114(16):1729-35
  • Ito MK. ISIS 301012 gene therapy for hypercholesterolemia: sense, antisense, or nonsense? Ann Pharmacother 2007;41(10):1669-78
  • Yu RZ, Kim TW, Hong A, et al. Cross-species pharmacokinetic comparison from mouse to man of a second-generation antisense oligonucleotide, ISIS 301012, targeting human apolipoprotein B-100. Drug Metab Dispos 2007;35(3):460-8
  • Miyake H, Hara I, Fujisawa M, Gleave ME. The potential of clusterin inhibiting antisense oligodeoxynucleotide therapy for prostate cancer. Expert Opin Investig Drugs 2006;15(5):507-17
  • Chi KN, Siu LL, Hirte H, et al. A Phase I study of OGX-011, a 2′-methoxyethyl phosphorothioate antisense to clusterin, in combination with docetaxel in patients with advanced cancer. Clin Cancer Res 2008;14(3):833-9
  • Rondinone CM, Trevillyan JM, Clampit J, et al. Protein tyrosine phosphatase 1B reduction regulates adiposity and expression of genes involved in lipogenesis. Diabetes 2002;51(8):2405-11
  • Myers KJ, Witchell DR, Graham MJ, et al. Antisense oligonucleotide blockade of alpha 4 integrin prevents and reverses clinical symptoms in murine experimental autoimmune encephalomyelitis. J Neuroimmunol 2005;160(1-2):12-24
  • Popescu FD. Antisense- and RNA interference-based therapeutic strategies in allergy. J Cell Mol Med 2005;9(4):840-53
  • Schlingensiepen R, Goldbrunner M, Szyrach MN, et al. Intracerebral and intrathecal infusion of the TGF-beta 2-specific antisense phosphorothioate oligonucleotide AP 12009 in rabbits and primates: toxicology and safety. Oligonucleotides 2005;15(2):94-104
  • Schlingensiepen KH, Fischer-Blass B, Schmaus S, Ludwig S. Antisense therapeutics for tumor treatment: the TGF-beta2 inhibitor AP 12009 in clinical development against malignant tumors. Recent Results Cancer Res 2008;177:137-50
  • Lee Y, Vassilakos A, Feng N, et al. GTI-2040, an antisense agent targeting the small subunit component (R2) of human ribonucleotide reductase, shows potent antitumor activity against a variety of tumors. Cancer Res 2003;63(11):2802-11
  • Kurreck J, Wyszko E, Gillen C, Erdmann VA. Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Res 2002;30(9):1911-8
  • Elmén J, Thonberg H, Ljungberg K, et al. Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res 2005;33(1):439-47
  • Swayze EE, Siwkowski AM, Wancewicz EV, et al. Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals. Nucleic Acids Res 2007;35(2):687-700
  • Elmén J, Lindow M, Silahtaroglu A, et al. Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to upregulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res 2008;36(4):1153-62
  • Ray A, Nordén B. Peptide nucleic acid (PNA): its medical and biotechnical applications and promise for the future. FASEB J 2000;14(9):1041-60
  • Gambari R. Peptide-nucleic acids (PNAs): a tool for the development of gene expression modifiers. Curr Pharm Des 2001;7(17):1839-62
  • Amantana A, Iversen PL. Pharmacokinetics and biodistribution of phosphorodiamidate morpholino antisense oligomers. Curr Opin Pharmacol 2005;5(5):550-5
  • Pellestor F, Paulasova P, Macek M, Hamamah S. The peptide nucleic acids: a new way for chromosomal investigation on isolated cells? Hum Reprod 2004;19(9):1946-51
  • Robinson R. RNAi Therapeutics: How Likely, How Soon? PLoS Biol 2004;2(1):e28. Doi:10.1371/journal.pbio.0020028
  • Chiu Y-L, Rana TM. siRNA function in RNAi: a chemical modification analysis. RNA 2003;9:1034-48
  • Czauderna F, Fechtner M, Dames S, et al. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res 2003;31(11):2705-16
  • Morrissey DV, Lockridge JA, Shaw L, et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 2005;23:1002-7
  • Leaman DW. 2-5A antisense treatment of respiratory syncytial virus. Curr Opin Pharmacol 2005;5(5):502-7
  • Bitko V, Musiyenko A, Shulyayeva O, Barik S. Inhibition of respiratory viruses by nasally administered siRNA. Nat Med 2005;11(1):50-5
  • Sofou S, Sgouros G. Antibody-targeted liposomes in cancer therapy and imaging. Expert Opin Drug Deliv 2008;5(2):189-204
  • Hussain S, Plückthun A, Allen TM, Zangemeister-Wittke U. Chemosensitization of carcinoma cells using epithelial cell adhesion molecule-targeted liposomal antisense against bcl-2/bcl-xL. Mol Cancer Ther 2006;5(12):3170-80
  • Allen C, Dos Santos N, Gallagher R, et al. Controlling the physical behavior and biological performance of liposome formulations through use of surface grafted poly(ethylene glycol). Biosci Rep 2002;22(2):225-50
  • Molineux G. Pegylation: engineering improved pharmaceuticals for enhanced therapy. Cancer Treat Rev 2002;28(Suppl A):13-6
  • Pastorino F, Brignole C, Marimpietri D, et al. Targeted liposomal c-myc antisense oligodeoxynucleotides induce apoptosis and inhibit tumor growth and metastases in human melanoma models. Clin Cancer Res 2003;9(12):4595-605
  • Pastorino F, Mumbengegwi DR, Ribatti D, et al. Increase of therapeutic effects by treating melanoma with targeted combinations of c-myc antisense and doxorubicin. J Control Release 2008;126(1):85-94
  • Pagnan G, Stuart DD, Pastorino F, et al. Delivery of c-myb antisense oligodeoxynucleotides to human neuroblastoma cells via disialoganglioside GD(2)-targeted immunoliposomes: antitumor effects. J Natl Cancer Inst 2000;92(3):253-61
  • Spänkuch B, Steinhauser I, Wartlick H, et al. Downregulation of Plk1 expression by receptor-mediated uptake of antisense oligonucleotide-loaded nanoparticles. Neoplasia 2008;10(3):223-34
  • Alam MR, Dixit V, Kang H, et al. Intracellular delivery of an anionic antisense oligonucleotide via receptor-mediated endocytosis. Nucleic Acids Res 2008;36(8):2764-76
  • Bijsterbosch MK, Manoharan M, Rump ET, et al. In vivo fate of phosphorothioate antisense oligodeoxynucleotides: predominant uptake by scavenger receptors on endothelial liver cells. Nucleic Acids Res 1997;25(16):3290-6
  • Ziady AG, Davis PB, Konstan MW. Non-viral gene transfer therapy for cystic fibrosis. Expert Opin Biol Ther 2003;3(3):449-58
  • Walther W, Stein U. Viral vectors for gene transfer: a review of their use in the treatment of human diseases. Drugs 2000;60(2):249-71
  • Kamiya H, Tsuchiya H, Yamazaki J, Harashima H. Intracellular trafficking and transgene expression of viral and non-viral gene vectors. Adv Drug Deliv Rev 2001;52:153-64
  • Mah C, Byrne BJ, Flotte TR. Virus-based gene delivery systems. Clin Pharmacokinet 2002;41:901-11
  • St George JA. Gene therapy progress and prospects: adenoviral vectors. Gene Ther 2003;10(14):1135-41
  • Torchilin VP. Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 2007;24(1):1-16
  • Chemin I, Moradpour D, Wieland S, et al. Liver directed gene transfer: a linear polyethlenimine derivative mediates highly efficient DNA delivery to primary hepatocytes in vitro and in vivo. J Viral Hepat 1998;5:369-75
  • Bandyopadhyay P, Ma X, Linehan-Stieers C, et al. Nucleotide exchange in genomic DNA of rat hepatocytes using RNA/DNA oligonucleotides. Targeted delivery of liposomes and polyethyleneimine to the asialoglycoprotein receptor. J Biol Chem 1999;274:10163-72
  • Robaczewska M, Guerret S, Remy JS, et al. Inhibition of hepadnaviral replication by polyethylenimine based intravenous delivery of antisense phosphodiester oligodeoxynucleotides to the liver. Gene Ther 2001;8:874-81
  • Dheur S, Dias N, van Aerschot A, et al. Polyethylenimine but not cationic lipid improves antisense activity of 3′-capped phosphodiester oligonucleotides. Antisense Nucleic Acid Drug Dev 1999;9:515-25
  • Dheur S, Saison-Behmoaras TE. Polyethyleneimine-mediated transfection to improve antisense activity of 3′-capped phosphodiester oligonucleotides. Methods Enzymol 2000;313:56-73
  • Jen KY, Gewirtz AM. Suppression of gene expression by targeted disruption of messenger RNA: available options and current strategies. Stem Cells 2000;18(5):307-19
  • Chollet P, Favrot MC, Hurbin A, Coll JL. Side effects of a systemic injection of linear polyethylenimine-DNA complexes. J Gene Med 2002;4:84-91
  • Abes R, Arzumanov AA, Moulton HM, et al. Cell-penetrating-peptide-based delivery of oligonucleotides: an overview. Biochem Soc Trans 2007;35(Pt 4):775-9
  • Tréhin R, Merkle HP. Chances and pitfalls of cell penetrating peptides for cellular drug delivery. Eur J Pharm Biopharm 2004;58(2):209-23
  • Gait MJ. Peptide-mediated cellular delivery of antisense oligonucleotides and their analogs. Cell Mol Life Sci 2003;60(5):844-53
  • Foged C, Nielsen HM. Cell-penetrating peptides for drug delivery across membrane barriers. Expert Opin Drug Deliv 2008;5(1):105-17
  • Moulton HM, Fletcher S, Neuman BW, et al. Cell-penetrating peptide-morpholino conjugates alter premRNA splicing of DMD (Duchenne muscular dystrophy) and inhibit murine coronavirus replication in vivo. Biochem Soc Trans 2007;35(Pt 4):826-8
  • Turner JJ, Arzumanov AA, Gait MJ. Synthesis, cellular uptake and HIV-1 Tat-dependent transactivation inhibition activity of oligonucleotide analogs disulfide-conjugated to cell-penetrating peptides. Nucleic Acids Res 2005;33(1):27-42
  • Lebleu B, Moulton HM, Abes R, et al. Cell penetrating peptide conjugates of steric block oligonucleotides. Adv Drug Deliv Rev 2008;60(4-5):517-29
  • Weiner GJ. The immunobiology and clinical potential of immunostimulatory CpG oligodeoxynucleotides. J Leukoc Biol 2000;68(4):455-63
  • Pendergrast PS, Marsh HN, Grate D, et al. Nucleic acid aptamers for target validation and therapeutic applications. J Biomol Tech 2005;16(3):224-34
  • Nimjee SM, Rusconi CP, Sullenger BA. Aptamers: an emerging class of therapeutics. Ann Rev Med 2005;56:555-83
  • Brody EN, Gold L. Aptamers as therapeutic and diagnostic agents. J Biotechnol 2000;74(1):5-13
  • Healy JM, Lewis SD, Kurz M, et al. Pharmacokinetics and biodistribution of novel aptamer compositions. Pharm Res 2004;21(12):2234-46
  • Apte RS. Pegaptanib sodium for the treatment of age-related macular degeneration. Expert Opin Pharmacother 2008;9(3):499-508
  • McCauley TG, Kurz JC, Merlino PG, et al. Pharmacologic and pharmacokinetic assessment of anti-TGFbeta2 aptamers in rabbit plasma and aqueous humor. Pharm Res 2006;23(2):303-11
  • Bhindi R, Fahmy RG, Lowe HC, et al. Brothers in arms: DNA enzymes, short interfering RNA, and the emerging wave of small-molecule nucleic acid-based gene-silencing strategies. Am J Pathol 2007;171(4):1079-88
  • Uematsu S, Akira S. Toll-Like receptors (TLRs) and their ligands. Handb Exp Pharmacol 2008;183:1-20
  • Borden EC, Sen GC, Uze G, et al. Interferons at age 50: past, current and future impact on biomedicine. Nat Rev Drug Discov 2007;6(12):975-90
  • Parkinson T. The future of toll-like receptor therapeutics. Curr Opin Mol Ther 2008;10(1):21-31
  • Krieg AM, Yi AK, Matson S, et al. CpG motifs in bacterial DNA trigger direct B cell activation. Nature 1995;374(6522):546-9
  • Klinman DM. CpG DNA as a vaccine adjuvant. Expert Rev Vaccines 2003;2(2):305-15
  • Krieg AM. Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discov 2006;5(6):471-84
  • Krieg AM. Toll-like receptor 9 (TLR9) agonists in the treatment of cancer. Oncogene 2008;27(2):161-167
  • Dorn A, Kippenberger S. Clinical application of CpG-, non-CpG-, and antisense oligodeoxynucleotides as immunomodulators. Curr Opin Mol Ther 2008;10(1):10-20
  • Leonard JP, Link BK, Emmanouilides C, et al. Phase I trial of toll-like receptor 9 agonist PF-3512676 with and following rituximab in patients with recurrent indolent and aggressive non Hodgkin's lymphoma. Clin Cancer Res 2007;13(20):6168-74
  • Ishii KJ, Uematsu S, Akira S. ‘Toll’ gates for future immunotherapy. Curr Pharm Des 2006;12(32):4135-42
  • Meylan E, Tschopp J. Toll-like receptors and RNA helicases: two parallel ways to trigger antiviral responses. Mol Cell 2006;22(5):561-9
  • Trumpfheller C, Caskey M, Nchinda G, et al. The microbial mimic poly IC induces durable and protective CD4+ T cell immunity together with a dendritic cell targeted vaccine. Proc Natl Acad Sci USA 2008;105(7):2574-9
  • Sledz CA, Holko M, de Veer MJ, et al. Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 2003;5(9):834-9
  • Marques JT, Devosse T, Wang D, et al. A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells. Nat Biotechnol 2006;24(5):559-65

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.