36
Views
6
CrossRef citations to date
0
Altmetric
Review

Chip-based molecular diagnostics using metal nanoparticles

, PhD (student Doctoral Fellow) , , , PhD (student, Doctoral Fellow) , , PhD (Post-doctoral Fellow) , , PhD (Head of Jenaer Biochip Initiative, Friedrich-Schiller-University Jena) & , PhD (Head of Nano Biophotonics Department)
Pages 813-828 | Published online: 27 Jun 2008

Bibliography

  • Stears RL, Martinsky T, Schena M. Trends in microarray analysis. Nat Med 2003;9:140-5
  • Spielbauer B, Stahl F. Impact of microarray technology in nutrition and food research. Mol Nutr Food Res 2005;49:908-17
  • Sotiriou C, Piccart MJ. Taking gene-expression profiling to the clinic: when will molecular signatures become relevant to patient care? Nat Rev Cancer 2007;7:545-53
  • Rosi NL, Mirkin CA. Nanostructures in biodiagnostics. Chem Rev 2005;105:1547-62
  • Möller R, Fritzsche W. Metal nanoparticle-based detection for DNA analysis. Curr Pharm Biotechnol 2007;8:274-85
  • Jain KK. Applications of nanobiotechnology in clinical diagnostics. Clin Chem 2007;53:2002-9
  • Zsigmondy R, Thiessen PA. Das kolloidale Gold [The colloidal gold]. Leipzig: Verlagsges, Leipzig; 1925
  • Turkevich J. Colloidal gold. Part I. Historical and preparative aspects, morphology and structure. Gold Bull 1985;18:86-91
  • Brust M, Fink J, Bethell D, et al. Synthesis and reactions of functionalized gold nanoparticles. J Chem Soc Chem Commun 1995;(16):1655-6
  • Abid JP. Laser induced synthesis and non linear optical properties of metal nanoparticles. Lausanne: Ecole Polytechnique Federale de Lausanne; 2003
  • Lee PC, Meisel D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 1982;86:3391-5
  • Evanoff DD Jr, Chumanov G. Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem 2005;6:1221-31
  • Mott D, Galkowski J, Wang L, et al. Synthesis of size-controlled and shaped copper nanoparticles. Langmuir 2007;23:5740-5
  • Turkevich J, Kim G. Palladium: preparation and catalytic properties of uniform size. Science (Washington, DC) 1970;169:873-9
  • Turkevich J, Miner RS, Babenkova L. Further studies on the synthesis of finely divided platinum. J Phys Chem 1986;90:4765-7
  • Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 1973;241:20-2
  • Hayat MH. Colloidal gold: principles, methods, and applications. San Diego: Academic press; 1989
  • Turkevich J, Stevenson PL, Hiller J. Nucleation and growth process in the synthesis of colloidal gold. Discuss Faraday Soc 1951;11:55-75
  • Beattie JK. Monodisperse colloids of transition metal and lanthanide compounds. Pure Appl Chem 1989;61:937-41
  • Steinbrück A, Csaki A, Festag G, et al. Preparation and optical characterization of core-shell bimetal nanoparticles. Plasmonics 2006;1:79-85
  • Link S, Wang ZL, El-Sayed MA. Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition. J Phys Chem B 1999;103:3529-33
  • Lee I, Han SW, Kim K. Production of Au-Ag alloy nanoparticles by laser ablation of bulk alloys. Chem Commun (Camb) 2001;(18):1782-3
  • Hartland GV, Guillaudeu S, Hodak JH. Chapter 9: laser induced alloying in metal nanoparticles – controlling spectral properties with light. In: Liebermann M, editor, Molecules as components in electronic devices. Washington, DC: American Chemical Society Publication; 2003;123(10)
  • Hodak, Henglein G, Hartland. Laser-induced inter-diffusion in AuAg core-shell nanoparticles. J Phys Chem B 2000;104:11708-18
  • Abid JP, Girault HH, Brevet PF. Selective structure changes of core–shell gold–silver nanoparticles by laser irradiation: homogeneisation vs. silver removal. Chem Commun 2001;(11)829-30
  • Moskovits M, Srnova-Sloufova I, Vlckova B. Bimetallic Ag-Au nanoparticles: extracting meaningful optical constants from the surface-plasmon extinction spectrum. J Chem Phys 2002;116:10435-46
  • Liz-Marzán LM, Giersig M, Mulvaney P. Synthesis of nanosized gold-silica core-shell particles. Langmuir 1996;12:4329-35
  • Niemeyer CM. Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed Engl 2001;40:4128-58
  • Nuzzo RG, Zegarski BR, Dubois LH. Fundamental studies of the chemisorption of organosulfur compounds on gold111. Implications for molecular self-assembly on gold surfaces. J Am Chem Soc 1987;109:733-40
  • Nuzzo RG, Allara DL. Adsoption of bifunctional organic disulfides on gold surfaces. J Am Chem Soc 1983;105:4481-3
  • Taton TA. Preparation of gold nanoparticle-DNA conjugates. Curr Protocol Nucl Acids Chem 2002;12(2):1-12
  • Reardon JE, Frey PA. Synthesis of undecagold cluster molecules as biochemical labeling reagents. 1. Monoacyl and mono[N-(succinimidooxy)succinyl] undecagold clusters. Biochemistry 1984;23:3849-56
  • Ozsoz M, Erdem A, Kerman K, et al. Electrochemical genosensor based on colloidal gold nanoparticles for the detection of Factor V Leiden mutation using disposable pencil graphite electrodes. Anal Chem 2003;75:2181-7
  • Xiao S, Liu F, Rosen AE, et al. Selfassembly of metallic nanoparticle arrays by DNA scaffolding. J Nanopart Res 2002;4:313-7
  • Leff DV, Brandt L, Heath JR. Synthesis and characterization of hydrophobic, organically-soluble gold nanocrystals functionalized with primary amines. Langmuir 1996;12:4723-30
  • Hutter E, Fendler JH, Roy D. Surface plasmon resonance studies of gold and silver nanoparticles linked to gold and silver substrates by 2-aminoethanethiol and 1,6-hexanedithiol. J Phys Chem B 2001;105:11159-68
  • Faulk WP, Taylor GM. An immunocolloid method for the electron microscope. Immunochemistry 1971;8:1081
  • Horisberger M, Rosset J, Bauer H. Colloidal gold granules as markers for cell surface receptors in the scanning electron microscope. Experientia 1975;31:1147
  • Burt JL, Gutierrez-Wing C, Miki-Yoshida M, et al. Noble-metal nanoparticles directly conjugated to globular proteins. Langmuir 2004; 20:11778-83
  • Diamandis EP, Christopoulos TK. The biotin-(strept)avidin system: principles and applications in biotechnology. Clin Chem 1991;37:625-36
  • Hiriyanna K, Varkey J, Beer M, et al. Electron microscopic visualization of sites of nascent DNA synthesis by streptavidin-gold binding to biotinylated nucleotides incorporated in vivo. J Cell Biol 1988;107:33-44
  • He L, Musick MD, Nicewarner SR, et al. Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J Am Chem Soc 2000;122:9071-7
  • Yamamoto M, Kashiwagi Y, Nakamoto M. Size-controlled synthesis of monodispersed silver nanoparticles capped by long-chain alkyl carboxylates from silver carboxylate and tertiary amine. Langmuir 2006;22:8581-6
  • Aslam M, Gopakumar G, Shoba TL, et al. Formation of Cu and Cu2O nanoparticles by variation of the surface ligand: preparation, structure, and insulating-to-metallic transition. J Colloid Interface Sci 2002;255:79-90
  • Meziani M, Lin Y, Sun Y-P. Conjugation of nanomaterials with proteins. In: Kumar CSSR, editor, Biofunctionalization of nanomaterials. Weinheim: WILEY-VCH; 2005. p. 183-234
  • Cao YW, Jin R, Mirkin CA. DNA-modified core-shell Ag/Au nanoparticles. J Am Chem Soc 2001;123:7961-2
  • Lyon JL, Fleming DA, Stone MB, et al. Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Lett 2004;4:719-23
  • Aslam M, Fu L, Li S, et al. Silica encapsulation and magnetic properties of FePt nanoparticles. J Colloid Interface Sci 2005;290:444-9
  • Festag G, Klenz U, Henkel T, et al. Biofunctionalization of metallic nanoparticles and microarrays for biomolecular detection. In: Kumar CSSR, editor, Biofunctionalization of nanomaterials. Weinheim: WILEY-VCH; 2005. p. 150-82
  • Drake TJ, Zhao XJ, Tan W. Bioconjugated silica nanoparticles for bioanalytical applications. In: Niemeyer CM, Mirkin CA, editors, Nanobiotechnology. Weinheim: Wiley-VCH; 2004. p. 444-57
  • Southern E, Mir K, Shchepinov M. Molecular interactions on microarrays. Nat Genet 1999;21:5-9
  • Lipshutz RJ, Fodor SP, Gingeras TR, et al. High density synthetic oligonucleotide arrays. Nat Genet 1999;21:20-4
  • O'Donnell MJ, Tang K, Köster H, et al. High density, covalent attachment of DNA to silicon wafers for analysis by MALDI-TOF mass spectrometry. Anal Chem 1997;69:2438-43
  • Bieber I, Reichert J, Klenz U, et al. Antibody arrays on micropatterned surfaces and in three-dimensional gel structures for detection of Salmonella isolates. Biotest Bull 2002;6:235-342
  • Larsson A, Du CX, Liedberg B. UV-patterned poly(ethylene glycol) matrix for mcroarray applications. Biomacromolecules 2007;8:3511-8
  • Xia Y, Whitesides GM. Soft lithography. Angew Chem Int Ed Engl 1998;37:550-75
  • Reichert J. Herstellung und Charakterisierung lateral mikrostrukturierter molekularer Monofilme auf Silicium- und Glas-Chipoberflächen für die Anwendung in Bio-Chips. [Fabrication and characterization of lateral microstrucutred molecular monolayers on silicon- and glass surfaces for biochip applications] Jena: Friedrich Schiller Universität Jena; 2003
  • Zammatteo N, Jeanmart L, Hamels S, et al. Comparison between different strategies of covalent attachment of DNA to glass surfaces to build DNA microarrays. Anal Biochem 2000;280:143-50
  • Festag G, Steinbrück A, Wolff A, et al. Optimization of gold nanoparticle-based DNA detection for microarrays. J Fluorescence 2005;15:161-70
  • Vijayendran RA, Leckband DE. A quantitative assessment of heterogeneity for surface-immobilized proteins. Anal Chem 2001;73:471-80
  • Houseman BT, Mrksich M. Towards quantitative assays with peptide chips: a surface engineering approach. Trends Biotechnol 2002;20:279-81
  • MacBeath G, Schreiber SL. Printing proteins as microarrays for high-throughput function determination. Science 2000;289:1760-3
  • Houseman BT, Huh JH, Kron SJ, et al. Peptide chips for the quantitative evaluation of protein kinase activity. Nat Biotechnol 2002;20:270-4
  • Faraday M. Experimental relations of gold (and other metals) to light. Philos Trans R Soc Lond 1857;147:145-81
  • Mie G. Beiträge zur Optik trüber Medien speziell kolloidaler Metallösungen. [Contributions to optics of hazy media of special colloidal metal solutions]. Annalen der Physik 1908;25:377-445
  • Yguerabide J, Yguerabide EE. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. II. Experimental characterization. Anal Biochem 1998;262:157-76
  • Kreibig U, Vollmer M. Optical properties of metal clusters. Berlin: Springer; 1995
  • Yguerabide J, Yguerabide EE. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. I. Theory. Anal Biochem 1998;262:137-56
  • Kelly KL, Coronado E, Zhao LL, et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 2003;107:668-77
  • Quinten M. Local fields close to the surface of nanoparticles and aggregates of nanoparticles. Appl Phys B 2001;73:245-55
  • Elghanian R, Storhoff JJ, Mucic RC, et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 1997;277:1078-81
  • Storhoff JJ, Elghanian R, Mucic RC, et al. One oot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 1998;120:1959-64
  • Csaki A, Möller R, Straube W, et al. DNA monolayer on gold substrates characterized by nanoparticle labeling and scanning force microscopy. Nucleic Acids Res 2001;29:e81
  • Reichert J, Csaki A, Köhler JM, et al. Chip-based optical detection of DNA hybridization by means of Nanobead Labeling. Anal Chem 2000;72:6025-9
  • Köhler JM, Csaki A, Reichert J, et al. Selective labeling of oligonucleotide monolayers by metallic nanobeads for fast optical readout of DNA-chips. Sens Actuators 2001;76:166-72
  • Hacker GW, Grimelius L, Danscher G, et al. Silver acetate autometallography: an alternative enhancement technique for immunogold-silver staining (IGSS) and silver amplification of gold, silver, mercury and zinc in tissues. J Histotechnol 1988;11:213-21
  • Taton TA, Mirkin CA, Letsinger RL. Scanometric DNA array detection with nanoparticle probes. Science 2000;289:1757-60
  • Csaki A, Kaplanek P, Möller R, et al. The optical detection of individual DNA-conjugated gold nanoparticle labels after metal enhancement. Nanotechnology 2003;14:1262-8
  • Zhang G-J, Möller R, Kretschmer R, et al. Microstructured arrays with pre-synthesized capture probes for DNA detection based on metal nanoparticles and silver enhancement. J Fluorescence 2004;14:369-75
  • Alexandre I, Hamels S, Dufour S, et al. Colorimetric silver detection of DNA microarrays. Anal Biochem 2001;295:1-8
  • Li J, Xu C, Zhang Z, et al. A DNA-detection platform with integrated photodiodes on a silicon chip. Sens Actuators B 2005;106:378-82
  • Fritzsche W, Taton TA. Metal nanoparticles as labels for heterogeneous, chip-based DNA detection. Nanotechnology 2003;14:R63-73
  • Stimpson DI, Hoijer JV, Hsieh WT, et al. Real-time detection of DNA hybridization and melting on oligonucleotide arrays by using optical wave guides. Proc Natl Acad Sci USA 1995;92:6379-83
  • Taton TA, Lu G, Mirkin CA. Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes. J Am Chem Soc 2001;123:5164-5
  • Storhoff JJ, Lucas AD, Garimella V, et al. Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nat Biotechnol 2004;22:883-7
  • Nam JM, Park SJ, Mirkin CA. Bio-barcodes based on oligonucleotide-modified nanoparticles. J Am Chem Soc 2002;124:3820-1
  • Nam JM, Thaxton CS, Mirkin CA. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 2003;301:1884-6
  • Oldenburg SJ, Genick CC, Clark KA, et al. Base pair mismatch recognition using plasmon resonant particle labels. Anal Biochem 2002;309:109-16
  • Yguerabide J, Yguerabide EE. Resonance light scattering particles as ultrasensitive labels for detection of analytes in a wide range of applications. J Cell Biochem Suppl 2001;(Suppl 37):71-81
  • Wang Z, Lee J, Cossins AR, et al. Microarray-based detection of protein binding and functionality by gold nanoparticle probes. Anal Chem 2005;77:5770-4
  • Burstein E, Lundquist S, Mill DL. Surface enhanced Raman scattering. In: Chang RK, Furtak TE, editors, Metal colloids. New York: Plenum; 1982. p. 67-87
  • Kerker M, Wang D-S, Chew H, et al. Surface enhanced Raman scattering. In: Chang RK, Furtak TE, editors, Metal colloids. New York: Plenum; 1982. p. 109-28
  • Creighton JA. Surface enhanced Raman scattering. In: Chang RK, Furtak TE, editors, Metal colloids. New York: Plenum; 1982. p. 315-38
  • Freeman RG, Grabar KC, Allison KJ, et al. Self-assembled metal colloid monolayers: an approach to SERS substrates. Science 1995;267:1629-32
  • Nie S, Emory SR. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997;275:1102-6
  • Cao YW, Jin R, Mirkin CA. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 2002;297:1536-40
  • Musick MDK, Keefe CD, Melinda H, Natan MJ. Stepwise construction of conductive Au colloid multilayers from solution. Chem Mat 1997;9:1499-501
  • Vo-Dinh T, Yan F, Wabuyele MB. Surface-enhanced Raman scattering for medical diagnostics and biological imaging. J Raman Spectrosc 2005;36:640-7
  • Xu S, Ji X, Xu W, et al. Immunoassay using probe-labelling immunogold nanoparticles with silver staining enhancement via surface-enhanced Raman scattering. Analyst 2004;129:63-8
  • Cao YC, Jin R, Nam JM, et al. Raman dye-labeled nanoparticle probes for proteins. J Am Chem Soc 2003;125:14676-7
  • Karlsson R. SPR for molecular interaction analysis: a review of emerging application areas. J Mol Recognit 2004;17:151-61
  • Peterlinz KA, Georgiadis RM. In situ kinetics of self-assembly by surface plasmon resonance spectroscopy. Langmuir 1996;12:4731-40
  • Georgiadis RM, Peterlinz KA, Peterson AW. Quantitative measurements and modelling of kinetics in nucleic acid monolayer films using SPR spectroscopy. J Am Chem Soc 2000;122:3166-73
  • Lyon LA, Musick MD, Natan MJ. Colloidal Au-enhanced surface plasmon resonance immunosensing. Anal Chem 1998;70:5177-83
  • Stuart DA, Haes AJ, Yonzon CR, et al. Biological applications of localised surface plasmonic phenomenae. IEE Proc Nanobiotechnol 2005;152:13-32
  • Haes AJ, Chang L, Klein WL, et al. Detection of a biomarker for Alzheimer's disease from synthetic and clinical samples using a nanoscale optical biosensor. J Am Chem Soc 2005;127:2264-71
  • Haes AJ, Van Duyne RP. A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 2002;124:10596-604
  • Boyer D, Tamarat P, Maali A, et al. Photothermal imaging of nanometer-sized metal particles among scatterers. Science 2002;297:1160-3
  • Koebel M, Zimmt MB. Photothermal readout of surface-arrayed proteins: attomole detection levels with gold nanoparticle visualization. J Phys Chem B 2005;109:16736-43
  • Marcon L, Melnyk O, Stievenard D. Current based antibodies detection from human serum enhanced by secondary antibodies labelled with gold nanoparticles immobilized in a nanogap. Biosens Bioelectron 2008;23(7):1185-8
  • Möller R, Csaki A, Köhler JM, et al. Electrical classification of the concentration of bioconjugated metal colloids after surface adsorption and silver enhancement. Langmuir 2001;17:5426-30
  • Park SJ, Taton TA, Mirkin CA. Array-based electrical detection of DNA with nanoparticle probes. Science 2002;295:1503-6
  • Urban M, Möller R, Fritzsche W. A paralleled readout system for an electrical DNA-hybridization assay based on a microstructured electrode array. Rev Sci Instrum 2003;74:1077-81
  • Festag G, Steinbrück A, Csaki A, et al. Single particle studies of the autocatalytic metal deposition onto surface-bound gold nanoparticles reveal a linear growth. Nanotechnology 2007;18:015502 (10pp)
  • Diessel E, Grothe K, Siebert HM, et al. Online resistance monitoring during autometallographic enhancement of colloidal Au labels for DNA analysis. Biosens Bioelectron 2004;19:1229-35
  • Tsai C-Y, Chang T-L, Uppala R, et al. Electrical detection of protein using gold nanoparticles and nanogap electrodes. Jpn J Appl Phys Part 1 2005;44:5711-6
  • Li J, Xue M, Wang H, et al. Amplifying the electrical hybridization signals of DNA array by multilayer assembly of Au nanoparticle probes. Analyst 2003;917-23
  • Moreno-Hagelsieb LL, Pampin PE, Bourgeois R, et al. Sensitive DNA electrical detection based on interdigitated Al/Al2O3 microelectrodes. Sens Actuators B 2004;98:269-74
  • Hainfeld JF, Eisen RN, Tubbs RR, et al. Enzymatic metallography: a simple new staining method. In: Voekl E, Piston D, Gauvin R, editors, Proceedings of microscopy and microanalysis 2002. New York: Cambridge University Press; 2002. p. 916CD
  • Furuya FR, Joshi VN, Hainfeld JF, et al. Enzymatic metallography as a correlative in light and electron microscopy. In: Anderson IM, Price R, Hall E, editors, Proceedings of microscopy and microanalysis. New York: Cambridge University Press; 2004:1210CD
  • Willner I, Baron R, Willner B. Growing metal nanoparticles by enzymes. Adv Mater 2006;18:1109-20
  • Möller R, Powell RD, Hainfeld JF, et al. Enzymatic control of metal deposition as key step for a low-background electrical detection for DNA chips. Nano Lett 2005;5:1475-82
  • Dequaire M, Degrand C, Limoges B. An electrochemical metalloimmunoassay based on a colloidal gold label. Anal Chem 2000;72:5521-8
  • Castañeda MT, Merkoçi A, Pumera M, et al. Electrochemical genosensors for biomedical applications based on gold nanoparticles. Biosens Bioelectron 2007;22:1961-7
  • Authier L, Grossiord C, Brossier P. Gold nanoparticle-based quantitative electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes. Anal Chem 2001;73:4450-6
  • Wang J, Xu D, Kawde AN, et al. Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. Anal Chem 2001;73:5576-81
  • Cai H, Wang Y, He P, et al. Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label. Anal Chim Acta 2002;469:165-72
  • Wang J, Xu D, Polsky R. Magnetically-induced solid-state electrochemical detection of DNA hybridization. J Am Chem Soc 2002;124:4208-9
  • Wang J, Liu G, Merkoci A. Electrochemical coding technology for simultaneous detection of multiple DNA targets. J Am Chem Soc 2003;125:3214-5
  • Fanjul-Bolado P, Hernandez-Santos D, Gonzalez-Garcia MB, et al. Alkaline phosphatase-catalyzed silver deposition for electrochemical detection. Anal Chem 2007;79:5272-7
  • Okahata Y, Kitamura Y, Hagiwara N, et al. Quantitative detection of binding of PCNA protein to DNA strands on a 27 MHz quartz-crystal microbalance. Nucleic Acids Symp Ser 2000;(44):243-4
  • Zhou XC, O'Shea SJ, Li SFY. Amplified microgravimetric gene sensor using Au nanoparticle modified oligonucleotides. Chem Commun 2000;(11):953-4
  • Patolsky F, Ranjit KT, Lichtenstein A, et al. Dendritic amplification of DNA analysis by oligonucleotide-functionalized Au-nanoparticles. Chem Commun 2000;(12):1025-6
  • Weizmann Y, Patolsky F, Willner I. Amplified detection of DNA and analysis of single-base mismatches by the catalyzed deposition of gold on Au-nanoparticles. Analyst 2001;126:1502-4
  • Su M, Li S, Dravid VP. Microcantilever resonance-based DNA detection with nanoparticle probes. Appl Phys Lett 2003;82:3562-4
  • Hansen KM, Ji HF, Wu G, et al. Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches. Anal Chem 2001;73:1567-71
  • Fritz J, Baller MK, Lang HP, et al. Translating biomolecular recognition into nanomechanics. Science 2000;288:316-8
  • Li H, Huang J, Lv J, et al. Nanoparticle PCR: nanogold-Assisted PCR with Enhanced Specificity. Angew Chem Int Ed Engl 2005;117:5230-3
  • Li M, Lin YC, Wu CC, et al. Enhancing the efficiency of a PCR using gold nanoparticles. Nucleic Acids Res 2005;33:e184
  • Nam JM, Stoeva SI, Mirkin CA. Bio-bar-code-based DNA detection with PCR-like sensitivity. J Am Chem Soc 2004;126:5932-3
  • Thaxton CS, Hill HD, Georganopoulou DG, et al. A bio-bar-code assay based upon dithiothreitol-induced oligonucleotide release. Anal Chem 2005;77:8174-8
  • Georganopoulou DG, Chang L, Nam J-M, et al. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease. Proc Natl Acad Sci USA 2005;102:2273-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.