108
Views
22
CrossRef citations to date
0
Altmetric
Review

Radiolabeled lipid nanoparticles for diagnostic imaging

, PhD
Pages 853-873 | Published online: 27 Jun 2008

Bibliography

  • Liu Y, Miyoshi H, Nakamura M. Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int J Cancer 2007;120(12):2527-37
  • Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB J 2005;19(3):311-30
  • Sullivan DC, Ferrari M. Nanotechnology and tumor imaging: seizing an opportunity. Mol Imaging 2004;3(4):364-9
  • Thrall JH. Nanotechnology and medicine. Radiology 2004;230(2):315-8
  • Torchilin VP. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J 2007;9(2):E128-47
  • Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 2002;54(5):631-51
  • Mulder WJ, Strijkers GJ, van Tilborg GA, et al. Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed 2006;19(1):142-64
  • Bangham AD. Surrogate cells or Trojan horses. The discovery of liposomes. Bioessays 1995;17(12):1081-8
  • Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 1965;13:238-52
  • Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005;4(2):145-60
  • Andresen TL, Jensen SS, Jorgensen K. Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor specific drug release. Prog Lipid Res 2005;44(1):68-97
  • Gregoriadis G, Wills EJ, Swain CP, et al. Drug-carrier potential of liposomes in cancer chemotherapy. Lancet 1974;1313-6
  • Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science 2004;303(5665):1818-22
  • Lopez-Berestein G, Kasi L, Rosenblum MG, et al. Clinical pharmacology of 99mTc-labeled liposomes in patients with cancer. Cancer Res 1984;44(1):375-8
  • Perez-Soler R, Lopez-Berestein G, Kasi LP, et al. Distribution of technetium-99m-labeled multilamellar liposomes in patients with Hodgkin's disease. J Nucl Med 1985;26(7):743-9
  • Caride VJ. Liposomes as carriers of imaging agents. Crit Rev Ther Drug Carrier Syst 1985;1(2):121-53
  • Seltzer SE. The role of liposomes in diagnostic imaging. Radiology 1989;171(1):19-21
  • Boerman OC, Laverman P, Oyen WJ, et al. Radiolabeled liposomes for scintigraphic imaging. Prog Lipid Res 2000;39(5):461-75
  • Crommelin DJ, van Rensen AJ, Wauben MH, et al. Liposomes in autoimmune diseases: selected applications in immunotherapy and inflammation detection. J Control Release 1999;62(1-2):245-51
  • Dagar S, Rubinstein I, Onyuksel H. Liposomes in ultrasound and gamma scintigraphic imaging. Methods Enzymol 2003;373:198-214
  • Goins B, Phillips WT. Radiolabelled liposomes for imaging and biodistribution studies. In: Torchilin V, Weissig V, editors, Liposomes: a practical approach. 2nd edition. Oxford, UK: Oxford University Press; 2003. p. 319-36
  • Goins BA, Phillips WT. The use of scintigraphic imaging as a tool in the development of liposome formulations. Prog Lipid Res 2001;40(1-2):95-123
  • Goins BA, Phillips WT. Methods for tracking radiolabeled liposomes after injection in the body. In: Gregoriadis G, editor, Liposome technology. 3rd edition. New York: Informa Healthcare; 2007. p. 191-210
  • Laverman P, Boerman OC, Oyen WJ, et al. Liposomes for scintigraphic detection of infection and inflammation. Adv Drug Deliv Rev 1999;37(1-3):225-35
  • Laverman P, Boerman OC, Storm G. Radiolabeling of liposomes for scintigraphic imaging. Methods Enzymol 2003;373:234-48
  • Laverman P, Phillips WT, Bao A, et al. Radiolabeling of liposomes for scintigraphic imaging. In: Gregoriadis G, editor, Liposome technology. 3rd edition. New York: Informa Healthcare; 2007. p. 169-85
  • Phillips WT. Delivery of gamma-imaging agents by liposomes. Adv Drug Deliv Rev 1999;37(1-3):13-32
  • Torchilin VP. Liposomes as delivery agents for medical imaging. Mol Med Today 1996;2(6):242-9
  • Phillips WT, Goins B. Targeted delivery of imaging agents by liposomes. In: Torchilin VP, editor, Handbook of targeted delivery of imaging agents. Boca Raton, FL: CRC Press; 1995. p. 149-73
  • Caride VJ. Technical and biological considerations on the use of radiolabeled liposomes for diagnostic imaging. Int J Rad Appl Instrum B 1990;17(1):35-9
  • Carlsson J, Forssell-Aronsson E, Glimelius B, et al. Therapy with radiopharmaceuticals. Acta Oncol 2002;41(7-8):623-8
  • Marik J, Tartis MS, Zhang H, et al. Long-circulating liposomes radiolabeled with [18F]fluorodipalmitin ([18F]FDP). Nucl Med Biol 2007;34(2):165-71
  • Oku N, Tokudome Y, Tsukada H, et al. In vivo trafficking of long-circulating liposomes in tumour-bearing mice determined by positron emission tomography. Biopharm Drug Dispos 1996;17(5):435-41
  • Kowalsky R, Falen SW. Radiopharmaceuticals in nuclear pharmacy and nuclear medicine. Washington, DC: American Pharmacists Association; 2004
  • Allen TM, Cheng WW, Hare JI, et al. Pharmacokinetics and pharmacodynamics of lipidic nano-particles in cancer. Anticancer Agents Med Chem 2006;6(6):513-23
  • Boerman OC, Oyen WJ, Corstens FH, et al. Liposomes for scintigraphic imaging: optimization of in vivo behavior. Q J Nucl Med 1998;42(4):271-9
  • Kamps JA, Scherphof GL. Biodistribution and uptake of liposomes in vivo. Methods Enzymol 2004;387:257-66
  • Senior JH. Fate and behavior of liposomes in vivo: a review of controlling factors. Crit Rev Ther Drug Carrier Syst 1987;3(2):123-93
  • Szebeni J, Baranyi L, Savay S, et al. The interaction of liposomes with the complement system: in vitro and in vivo assays. Methods Enzymol 2003;373:136-54
  • Yan X, Scherphof GL, Kamps JA. Liposome opsonization. J Liposome Res 2005;15(1-2):109-39
  • Maeda H, Sawa T, Konno T. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release 2001;74(1-3):47-61
  • Minko T, Pakunlu RI, Wang Y, et al. New generation of liposomal drugs for cancer. Anticancer Agents Med Chem 2006;6(6):537-52
  • Oussoren C, Storm G. Liposomes to target the lymphatics by subcutaneous administration. Adv Drug Deliv Rev 2001;50(1-2):143-56
  • Phillips WT, Andrews T, Liu H, et al. Evaluation of [(99m)Tc] liposomes as lymphoscintigraphic agents: comparison with [(99m)Tc] sulfur colloid and [(99m)Tc] human serum albumin. Nucl Med Biol 2001;28(4):435-44
  • Reddy ST, Swartz MA, Hubbell JA. Targeting dendritic cells with biomaterials: developing the next generation of vaccines. Trends Immunol 2006;27(12):573-9
  • Allen TM, Hansen C, Rutledge J. Liposomes with prolonged circulation times: factors affecting uptake by reticuloendothelial and other tissues. Biochim Biophys Acta 1989;981(1):27-35
  • Allen TM, Hansen C. Pharmacokinetics of stealth versus conventional liposomes: effect of dose. Biochim Biophys Acta 1991;1068(2):133-41
  • Boerman OC, Oyen WJ, van Bloois L, et al. Optimization of technetium-99m-labeled PEG liposomes to image focal infection: effects of particle size and circulation time. J Nucl Med 1997;38(3):489-93
  • Schiffelers RM, Bakker-Woudenberg IA, Storm G. Localization of sterically stabilized liposomes in experimental rat Klebsiella pneumoniae pneumonia: dependence on circulation kinetics and presence of poly(ethylene)glycol coating. Biochim Biophys Acta 2000;1468(1-2):253-61
  • Papahadjopoulos D, Nir S, Oki S. Permeability properties of phospholipid membranes: effect of cholesterol and temperature. Biochim Biophys Acta 1972;266(3):561-83
  • Clerc SG, Thompson TE. Permeability of dimyristoyl phosphatidylcholine/dipalmitoyl phosphatidylcholine bilayer membranes with coexisting gel and liquid-crystalline phases. Biophys J 1995;68(6):2333-41
  • Ickenstein LM, Arfvidsson MC, Needham D, et al. Disc formation in cholesterol-free liposomes during phase transition. Biochim Biophys Acta 2003;1614(2):135-8
  • Lee AG. Analysis of the defect structure of gel-phase lipid. Biochemistry 1977;16(5):835-41
  • Dos Santos N, Cox KA, McKenzie CA, et al. pH gradient loading of anthracyclines into cholesterol-free liposomes: enhancing drug loading rates through use of ethanol. Biochim Biophys Acta 2004;1661(1):47-60
  • Jensen GM, Bunch TH. Conventional liposome performance and evaluation: lessons from the development of Vescan. J Liposome Res 2007;17(3-4):121-37
  • Allen TM, Hansen C, Martin F, et al. Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta 1991;1066(1):29-36
  • Moghimi SM, Szebeni J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 2003;42(6):463-78
  • Papahadjopoulos D, Allen TM, Gabizon A, et al. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci USA 1991;88(24):11460-4
  • Torchilin VP, Trubetskoy VS, Whiteman KR, et al. New synthetic amphiphilic polymers for steric protection of liposomes in vivo. J Pharm Sci 1995;84(9):1049-53
  • Moein Moghimi S, Hamad I, Bunger R, et al. Activation of the human complement system by cholesterol-rich and PEGylated liposomes-modulation of cholesterol-rich liposome-mediated complement activation by elevated serum LDL and HDL levels. J Liposome Res 2006;16(3):167-74
  • Szebeni J. The interaction of liposomes with the complement system. Crit Rev Ther Drug Carrier Syst 1998;15(1):57-88
  • Szebeni J. Complement activation-related pseudoallergy caused by liposomes, micellar carriers of intravenous drugs, and radiocontrast agents. Crit Rev Ther Drug Carrier Syst 2001;18(6):567-606
  • Szebeni J, Baranyi L, Savay S, et al. Role of complement activation in hypersensitivity reactions to doxil and hynic PEG liposomes: experimental and clinical studies. J Liposome Res 2002;12(1-2):165-72
  • Moghimi SM, Hamad I, Andresen TL, et al. Methylation of the phosphate oxygen moiety of phospholipid-methoxy(polyethylene glycol) conjugate prevents PEGylated liposome-mediated complement activation and anaphylatoxin production. FASEB J 2006;20(14):2591-3
  • Romberg B, Metselaar JM, Baranyi L, et al. Poly(amino acid)s: promising enzymatically degradable stealth coatings for liposomes. Int J Pharm 2007;331(2):186-9
  • Laverman P, Brouwers AH, Dams ET, et al. Preclinical and clinical evidence for disappearance of long-circulating characteristics of polyethylene glycol liposomes at low lipid dose. J Pharmacol Exp Ther 2000;293(3):996-1001
  • Dams ET, Laverman P, Oyen WJ, et al. Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J Pharmacol Exp Ther 2000;292(3):1071-9
  • Ishida T, Atobe K, Wang X, et al. Accelerated blood clearance of PEGylated liposomes upon repeated injections: effect of doxorubicin-encapsulation and high-dose first injection. J Control Release 2006;115(3):251-8
  • Ishida T, Harada M, Wang XY, et al. Accelerated blood clearance of PEGylated liposomes following preceding liposome injection: effects of lipid dose and PEG surface-density and chain length of the first-dose liposomes. J Control Release 2005;105(3):305-17
  • Ishida T, Ichihara M, Wang X, et al. Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. J Control Release 2006;112(1):15-25
  • Sroda K, Rydlewski J, Langner M, et al. Repeated injections of PEG-PE liposomes generate anti-PEG antibodies. Cell Mol Biol Lett 2005;10(1):37-47
  • Laverman P, van Bloois L, Boerman OC, et al. Lyophilization of Tc-99m-HYNIC labeled PEG-liposomes. J Liposome Res 2000;10:117-29
  • Hafeli U, Tiefenauer LX, Schbiger PA, et al. A lipophilic complex with 186Re/188Re incorporated in liposomes suitable for radiotherapy. Int J Rad Appl Instrum B 1991;18(5):449-54
  • Oku N, Namba Y, Takeda A, et al. Tumor imaging with technetium-99m-DTPA encapsulated in RES-avoiding liposomes. Nucl Med Biol 1993;20(4):407-12
  • Barratt GM, Tuzel NS, Ryman BE. The labeling of liposomal membranes with radioactive technetium. In: Gregoriadis G, editor, Liposome technology. Boca Raton, FL: CRC Press; 1984. p. 94
  • Morgan JR, Williams LA, Howard CB. Technetium-labelled liposome imaging for deep-seated infection. Br J Radiol 1985;58(685):35-9
  • Osborne MP, Payne JH, Richardson VJ, et al. The preoperative detection of axillary lymph node metastases in breast cancer by isotope imaging. Br J Surg 1983;70(3):141-4
  • O'Sullivan MM, Powell N, French AP, et al. Inflammatory joint disease: a comparison of liposome scanning, bone scanning, and radiography. Ann Rheum Dis 1988;47(6):485-91
  • Richardson VJ, Ryman BE, Jewkes RF, et al. Tissue distribution and tumour localization of 99m-technetium-labelled liposomes in cancer patients. Br J Cancer 1979;40(1):35-43
  • Williams BD, O'Sullivan MM, Saggu GS, et al. Synovial accumulation of technetium labelled liposomes in rheumatoid arthritis. Ann Rheum Dis 1987;46(4):314-8
  • Patel HM, Boodle KM, Vaughan-Jones R. Assessment of the potential uses of liposomes for lymphoscintigraphy and lymphatic drug delivery. Failure of 99m-technetium marker to represent intact liposomes in lymph nodes. Biochim Biophys Acta 1984;801(1):76-86
  • Ahkong QF, Tilcock C. Attachment of 99mTc to lipid vesicles containing the lipophilic chelate dipalmitoylphosphatidylethanolamine-DTTA. Int J Rad Appl Instrum B 1992;19(8):831-40
  • Holmberg E, Maruyama K, Litzinger DC, et al. Highly efficient immunoliposomes prepared with a method which is compatible with various lipid compositions. Biochem Biophys Res Commun 1989;165(3):1272-8
  • Klibanov AL, Maruyama K, Torchilin VP, et al. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 1990;268(1):235-7
  • Hnatowich DJ, Friedman B, Clancy B, et al. Labeling of preformed liposomes with Ga-67 and Tc-99m by chelation. J Nucl Med 1981;22(9):810-4
  • Brouwers AH, De Jong DJ, Dams ET, et al. Tc-99m-PEG-Liposomes for the evaluation of colitis in Crohn's disease. J Drug Target 2000;8(4):225-33
  • Laverman P, Dams ET, Oyen WJ, et al. A novel method to label liposomes with 99mTc by the hydrazino nicotinyl derivative. J Nucl Med 1999;40(1):192-7
  • Erdogan S, Roby A, Torchilin VP. Enhanced tumor visualization by gamma-scintigraphy with 111In-labeled polychelating-polymer-containing immunoliposomes. Mol Pharm 2006;3(5):525-30
  • Bao A, Goins B, Klipper R, et al. A novel liposome radiolabeling method using 99mTc-“SNS/S” complexes: in vitro and in vivo evaluation. J Pharm Sci 2003;92(9):1893-904
  • Gabizon A, Huberty J, Straubinger RM, et al. An improved method for in vivo tracing and imaging of liposomes using a gallium-67-desferoxamine complex. J Liposome Res 1988;1:123-35
  • Harrington KJ, Mohammadtaghi S, Uster PS, et al. Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clin Cancer Res 2001;7(2):243-54
  • Phillips WT, Rudolph AS, Goins B, et al. A simple method for producing a technetium-99m-labeled liposome which is stable in vivo. Int J Rad Appl Instrum B 1992;19(5):539-47
  • Proffitt RT, Williams LE, Presant CA, et al. Tumor-imaging potential of liposomes loaded with In-111-NTA: biodistribution in mice. J Nucl Med 1983;24(1):45-51
  • Mougin-Degraef M, Jestin E, Bruel D, et al. High-activity radio-iodine labeling of conventional and stealth liposomes. J Liposome Res 2006;16(1):91-102
  • Dams ET, Oyen WJ, Boerman OC, et al. 99mTc-PEG liposomes for the scintigraphic detection of infection and inflammation: clinical evaluation. J Nucl Med 2000;41(4):622-30
  • Gabizon A, Chisin R, Amselem S, et al. Pharmacokinetic and imaging studies in patients receiving a formulation of liposome-associated adriamycin. Br J Cancer 1991;64(6):1125-32
  • Bao A, Goins B, Klipper R, et al. 186Re-liposome labeling using 186Re-SNS/S complexes: in vitro stability, imaging, and biodistribution in rats. J Nucl Med 2003;44(12):1992-9
  • Presant CA, Turner AF, Proffitt RT. Potenial for improvement in clinical decision making: Tumor imaging with in-111 labeled liposomes results of a phase II-III study. J Liposome Res 1994;4:985-1008
  • Bao A, Goins B, Klipper R, et al. Direct 99mTc labeling of pegylated liposomal doxorubicin (Doxil) for pharmacokinetic and non-invasive imaging studies. J Pharmacol Exp Ther 2004;308(2):419-25
  • Cullis PR, Hope MJ, Bally MB, et al. Influence of pH gradients on the transbilayer transport of drugs, lipids, peptides and metal ions into large unilamellar vesicles. Biochim Biophys Acta 1997;1331(2):187-211
  • Drummond DC, Meyer O, Hong K, et al. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev 1999;51(4):691-743
  • Haran G, Cohen R, Bar LK, et al. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim Biophys Acta 1993;1151(2):201-15
  • Maurer-Spurej E, Wong KF, Maurer N, et al. Factors influencing uptake and retention of amino-containing drugs in large unilamellar vesicles exhibiting transmembrane pH gradients. Biochim Biophys Acta 1999;1416(1-2):1-10
  • Mayer LD, Bally MB, Cullis PR. Uptake of adriamycin into large unilamellar vesicles in response to a pH gradient. Biochim Biophys Acta 1986;857(1):123-6
  • Fritze A, Hens F, Kimpfler A, et al. Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient. Biochim Biophys Acta 2006;1758(10):1633-40
  • Ramsay E, Alnajim J, Anantha M, et al. A novel liposomal irinotecan formulation with significant anti-tumour activity: Use of the divalent cation ionophore A23187 and copper-containing liposomes to improve drug retention. Eur J Pharm Biopharm 2008;68(3):607-17
  • Graham LS, Muehllehner G. Anger Scintillation Camera. In: Sandler MP, editor, Diagnostic nuclear medicine. Baltimore: Williams & Wilkins; 1996. p. 81-92
  • Acton PD, Kung HF. Small animal imaging with high resolution single photon emission tomography. Nucl Med Biol 2003;30(8):889-95
  • Galt JR, Faber T. Principles of single photon emission computed tomography (SPECT) imaging. In: Christian PE, Bernier DR, Langan JK, editors, Nuclear medicine and PET: technology and techniques. 5th edition. St. Louis, MO: Mosby; 2004. p. 242-84
  • Keidar Z, Israel O, Krausz Y. SPECT/CT in tumor imaging: technical aspects and clinical applications. Semin Nucl Med 2003;33(3):205-18
  • O'Connor MK, Kemp BJ. Single-photon emission computed tomography/computed tomography: basic instrumentation and innovations. Semin Nucl Med 2006;36(4):258-66
  • Zaidi H. Recent developments and future trends in nuclear medicine instrumentation. Z Med Phys 2006;16(1):5-17
  • Murray JL, Kleinerman ES, Cunningham JE, et al. Phase I trial of liposomal muramyl tripeptide phosphatidylethanolamine in cancer patients. J Clin Oncol 1989;7(12):1915-25
  • Presant CA, Proffitt RT, Turner AF, et al. Successful imaging of human cancer with indium-111 labeled phospholipid vesicles. Cancer 1988;62:905-11
  • Turner AF, Presant CA, Proffitt RT, et al. In-111-labeled liposomes: dosimetry and tumor depiction. Radiology 1988;166(3):761-5
  • Kubo A, Nakamura K, Sammiya T, et al. Indium-111-labelled liposomes: dosimetry and tumour detection in patients with cancer. Eur J Nucl Med 1993;20(2):107-13
  • Presant CA, Blayney D, Proffitt RT, et al. Preliminary report: imaging of Kaposi sarcoma and lymphoma in AIDS with indium-111-labelled liposomes. Lancet 1990;335(8701):1307-9
  • Presant CA, Scolaro M, Kennedy P, et al. Liposomal daunorubicin treatment of HIV-associated Kaposi's sarcoma. Lancet 1993;341(8855):1242-3
  • Khalifa A, Dodds D, Rampling R, et al. Liposomal distribution in malignant glioma: possibilities for therapy. Nucl Med Commun 1997;18(1):17-23
  • Saari M, Vidgren MT, Koskinen MO, et al. Pulmonary distribution and clearance of two beclomethasone liposome formulations in healthy volunteers. Int J Pharm 1999;181(1):1-9
  • Saari SM, Vidgren MT, Herrala J, et al. Possibilities of formoterol to enhance the peripheral lung deposition of the inhaled liposome corticosteroids. Respir Med 2002;96(12):999-1005
  • Saari SM, Vidgren MT, Koskinen MO, et al. Regional lung deposition and clearance of 99mTc-labeled beclomethasone-DLPC liposomes in mild and severe asthma. Chest 1998;113(6):1573-9
  • Morton DL, Chan AD. The concept of sentinel node localization: how it started. Semin Nucl Med 2000;30(1):4-10
  • Newman EA, Newman LA. Lymphatic mapping techniques and sentinel lymph node biopsy in breast cancer. Surg Clin North Am 2007;87(2):353-64, viii
  • Pump B, Hirnle P. Preoperative lymph-node staining with liposomes containing patent blue violet. A clinical case report. J Pharm Pharmacol 1996;48(7):699-701
  • Osborne MP. Lymph node scanning for breast cancer. Trans Med Soc Lond 1978;95:43-5
  • Phillips WT, Klipper R, Goins B. Novel method of greatly enhanced delivery of liposomes to lymph nodes. J Pharmacol Exp Ther 2000;295(1):309-13
  • Phillips WT, Klipper R, Goins B. Use of (99m)Tc-labeled liposomes encapsulating blue dye for identification of the sentinel lymph node. J Nucl Med 2001;42(3):446-51
  • Matteucci ML, Anyarambhatla G, Rosner G, et al. Hyperthermia increases accumulation of technetium-99m-labeled liposomes in feline sarcomas. Clin Cancer Res 2000;6(9):3748-55
  • Kleiter MM, Yu D, Mohammadian LA, et al. A tracer dose of technetium-99m-labeled liposomes can estimate the effect of hyperthermia on intratumoral doxil extravasation. Clin Cancer Res 2006;12(22):6800-7
  • Tashjian JA, Dewhirst MW, Needham D, et al. Rationale for and measurement of liposomal drug delivery with hyperthermia using non-invasive imaging techniques. Int J Hyperthermia 2008;24(1):79-90
  • Koning GA, Krijger GC. Targeted multifunctional lipid-based nanocarriers for image-guided drug delivery. Anticancer Agents Med Chem 2007;7(4):425-40
  • Park JW, Benz CC, Martin FJ. Future directions of liposome- and immunoliposome-based cancer therapeutics. Semin Oncol 2004;31(6 Suppl 13):196-205
  • Sapra P, Allen TM. Ligand-targeted liposomal anticancer drugs. Prog Lipid Res 2003;42(5):439-62
  • Sofou S, Sgouros G. Antibody-targeted liposomes in cancer therapy and imaging. Expert Opin Drug Deliv 2008;5(2):189-204
  • Torchilin VP. Multifunctional nanocarriers. Adv Drug Deliv Rev 2006;58(14):1532-55
  • Gabizon A, Horowitz AT, Goren D, et al. In vivo fate of folate-targeted polyethylene-glycol liposomes in tumor-bearing mice. Clin Cancer Res 2003;9(17):6551-9
  • Hilgenbrink AR, Low PS. Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J Pharm Sci 2005;94(10):2135-46
  • Ke CY, Mathias CJ, Green MA. The folate receptor as a molecular target for tumor-selective radionuclide delivery. Nucl Med Biol 2003;30(8):811-7
  • Xiang G, Wu J, Lu Y, et al. Synthesis and evaluation of a novel ligand for folate-mediated targeting liposomes. Int J Pharm 2008;356(1-2):29-36
  • Mamot C, Drummond DC, Noble CO, et al. Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res 2005;65(24):11631-8
  • Pan X, Lee RJ. Construction of anti-EGFR immunoliposomes via folate-folate binding protein affinity. Int J Pharm 2007;336(2):276-83
  • Pan X, Wu G, Yang W, et al. Synthesis of cetuximab-immunoliposomes via a cholesterol-based membrane anchor for targeting of EGFR. Bioconjug Chem 2007;18(1):101-8
  • Park JW, Kirpotin DB, Hong K, et al. Tumor targeting using anti-her2 immunoliposomes. J Control Release 2001;74(1-3):95-113
  • Kondo M, Asai T, Katanasaka Y, et al. Anti-neovascular therapy by liposomal drug targeted to membrane type-1 matrix metalloproteinase. Int J Cancer 2004;108(2):301-6
  • Pirollo KF, Dagata J, Wang P, et al. A tumor-targeted nanodelivery system to improve early MRI detection of cancer. Mol Imaging 2006;5(1):41-52
  • Dagar S, Krishnadas A, Rubinstein I, et al. VIP grafted sterically stabilized liposomes for targeted imaging of breast cancer: in vivo studies. J Control Release 2003;91(1-2):123-33
  • Elbayoumi TA, Torchilin VP. Enhanced accumulation of long-circulating liposomes modified with the nucleosome-specific monoclonal antibody 2C5 in various tumours in mice: gamma-imaging studies. Eur J Nucl Med Mol Imaging 2006;33(10):1196-205
  • Koning GA, Schiffelers RM, Wauben MH, et al. Targeting of angiogenic endothelial cells at sites of inflammation by dexamethasone phosphate-containing RGD peptide liposomes inhibits experimental arthritis. Arthritis Rheum 2006;54(4):1198-208
  • Dufresne I, Desormeaux A, Bestman-Smith J, et al. Targeting lymph nodes with liposomes bearing anti-HLA-DR Fab' fragments. Biochim Biophys Acta 1999;1421(2):284-94
  • Laverman P, Boerman OC, Oyen WJG, et al. In vivo applications of PEG liposomes: unexpected observations. Crit Rev Ther Drug Carrier Syst 2001;18(6):551-66
  • Dijkmans PA, Visser CA, Kamp O. Adverse reactions to ultrasound contrast agents: is the risk worth the benefit? Eur J Echocardiogr 2005;6(5):363-6
  • Ersoy H, Rybicki FJ. Biochemical safety profiles of gadolinium-based extracellular contrast agents and nephrogenic systemic fibrosis. J Magn Reson Imaging 2007;26(5):1190-7
  • Gueant-Rodriguez RM, Romano A, Barbaud A, et al. Hypersensitivity reactions to iodinated contrast media. Curr Pharm Des 2006;12(26):3359-72
  • Fletcher JW, Djulbegovic B, Soares HP, et al. Recommendations on the Use of 18F-FDG PET in Oncology. J Nucl Med 2008
  • Auler MA, Bagg S, Gordon L. The role of nuclear medicine in imaging infection. Semin Roentgenol 2007;42(2):117-21
  • Duet M, Pouchot J, Liote F, et al. Role for positron emission tomography in skeletal diseases. Joint Bone Spine 2007;74(1):14-23
  • Love C, Tronco GG, Palestro CJ. Imaging of infection and inflammation with 99mTc-Fanolesomab. Q J Nucl Med Mol Imaging 2006;50(2):113-20
  • Signore A, Chianelli M, D'Alessandria C, et al. Receptor targeting agents for imaging inflammation/infection: where are we now? Q J Nucl Med Mol Imaging 2006;50(3):236-42
  • Walker RC, Jones-Jackson LB, Martin W, et al. New imaging tools for the diagnosis of infection. Future Microbiol 2007;2(5):527-54
  • Britton KE, Wareham DW, Das SS, et al. Imaging bacterial infection with (99m)Tc-ciprofloxacin (Infecton). J Clin Pathol 2002;55(11):817-23
  • Brouwer CP, Welling MM. Various routes of administration of (99m)Tc-labeled synthetic lactoferrin antimicrobial peptide hLF 1-11 enables monitoring and effective killing of multidrug-resistant Staphylococcus aureus infections in mice. Peptides 2008
  • Lupetti A, Welling MM, Mazzi U, et al. Technetium-99m labelled fluconazole and antimicrobial peptides for imaging of Candida albicans and Aspergillus fumigatus infections. Eur J Nucl Med Mol Imaging 2002;29(5):674-9
  • Malamitsi J, Giamarellou H, Kanellakopoulou K, et al. Infecton: a 99mTc-ciprofloxacin radiopharmaceutical for the detection of bone nfection. Clin Microbiol Infect 2003;9:101-9
  • Sarda-Mantel L, Saleh-Mghir A, Welling MM, et al. Evaluation of 99mTc-UBI 29-41 scintigraphy for specific detection of experimental Staphylococcus aureus prosthetic joint infections. Eur J Nucl Med Mol Imaging 2007;34(8):1302-9
  • Tsopelas C, Penglis S, Ruszkiewicz A, et al. 99mTc-alafosfalin: an antibiotic peptide infection imaging agent. Nucl Med Biol 2003;30(2):169-75
  • Feldman AS, McDougal WS, Harisinghani MG. The potential of nanoparticle-enhanced imaging. Urol Oncol 2008;26(1):65-73
  • Gao X, Cui Y, Levenson RM, et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004;22(8):969-76
  • Saksena MA, Saokar A, Harisinghani MG. Lymphotropic nanoparticle enhanced MR imaging (LNMRI) technique for lymph node imaging. Eur J Radiol 2006;58(3):367-74
  • Schipper ML, Cheng Z, Lee SW, et al. microPET-based biodistribution of quantum dots in living mice. J Nucl Med 2007;48(9):1511-8
  • Wallace AM, Hoh CK, Darrah DD, et al. Sentinel lymph node mapping of breast cancer via intradermal administration of Lymphoseek. Nucl Med Biol 2007;34(7):849-53
  • Gabizon AA. Stealth liposomes and tumor targeting: one step further in the quest for the magic bullet. Clin Cancer Res 2001;7(2):223-5
  • Chan VS. Nanomedicine: an unresolved regulatory issue. Regul Toxicol Pharmacol 2006;46(3):218-24
  • Murthy SK. Nanoparticles in modern medicine: state of the art and future challenges. Int J Nanomed 2007;2(2):129-41

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.