68
Views
19
CrossRef citations to date
0
Altmetric
Reviews

p53: a molecular marker for the detection of cancer

, BSc PhD & , BSc PhD
Pages 1013-1024 | Published online: 15 Sep 2008

Bibliography

  • Linzer DI, Levine AJ. Characterization of a 54K Dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 1979;17(1):43-52
  • Lane DP, Crawford LV. T antigen is bound to a host protein in SV40-transformed cells. Nature 1979;278(5701):261-3
  • DeLeo AB, Jay G, Appella E, et al. Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci USA 1979;76(5):2420-4
  • Lane DP. Cell immortalization and transformation by the p53 gene. Nature 1984;312(5995):596-7
  • Hinds P, Finlay C, Levine AJ. Mutation is required to activate the p53 gene for cooperation with the ras oncogene and transformation. J Virol 1989;63(2):739-46
  • Finlay CA, Hinds PW, Levine AJ. The p53 proto-oncogene can act as a suppressor of transformation. Cell 1989;57(7):1083-93
  • Eliyahu D, Michalovitz D, Eliyahu S, et al. Wild-type p53 can inhibit oncogene-mediated focus formation. Proc Natl Acad Sci USA 1989;86(22):8763-7
  • Nigro JM, Baker SJ, Preisinger AC, et al. Mutations in the p53 gene occur in diverse human tumour types. Nature 1989;342(6250):705-8
  • Baker SJ, Fearon ER, Nigro JM, et al. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 1989;244(4901):217-21
  • Wallace-Brodeur RR, Lowe SW. Clinical implications of p53 mutations. Cell Mol Life Sci 1999;55(1):64-75
  • Dickman S. ‘Gene of the year’ p53: when will it show clinical promise? Ann Oncol 1993;49:706-7
  • Sun M. A million dollars for the magic bullet. Science 1981;214(4527):1326-7
  • Lane DP, Robbins AK. An immunochemical investigation of SV40 T antigens. 1. Production properties and specificity of rabbit antibody to purified simian virus 40 large-T antigen. Virology 1978;87(1):182-93
  • Parada LF, Land H, Weinberg RA, et al. Cooperation between gene encoding p53 tumour antigen and ras in cellular transformation. Nature 1984;312(5995):649-51
  • Jenkins JR, Rudge K, Currie GA. Cellular immortalization by a cDNA clone encoding the transformation-associated phosphoprotein p53. Nature 1984;312(5995):651-4
  • Finlay CA, Hinds PW, Tan TH, et al. Activating mutations for transformation by p53 produce a gene product that forms an hsc70–p53 complex with an altered half-life. Mol Cell Biol 1988;8(2):531-9
  • Kern SE, Kinzler KW, Bruskin A, et al. Identification of p53 as a sequence-specific DNA-binding protein. Science 1991;252(5013):1708-11
  • Unger T, Nau MM, Segal S, Minna JD. p53: a transdominant regulator of transcription whose function is ablated by mutations occurring in human cancer. EMBO J 1992;114:1383-90
  • Weintraub H, Hauschka S, Tapscott SJ. The MCK enhancer contains a p53 responsive element. Proc Natl Acad Sci USA 1991;88(11):4570-1
  • Vousden KH. Outcomes of p53 activation – spoilt for choice. J Cell Sci 2006;119(Pt 24):5015-20
  • Harris SL, Levine AJ. The p53 pathway: positive and negative feedback loops. Oncogene 2005;24(17):2899-908
  • Bode AM, Dong Z. Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 2004;4(10):793-805
  • Olsson A, Manzl C, Strasser A, Villunger A. How important are post-translational modifications in p53 for selectivity in target-gene transcription and tumour suppression? Cell Death Differ 2007;14(9):1561-75
  • Cawley S, Bekiranov S, Ng HH, et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 2004;116(4):499-509
  • Wei CL, Wu Q, Vega VB, et al. A global map of p53 transcription-factor binding sites in the human genome. Cell 2006;124(1):207-19
  • Hu W, Feng Z, Teresky AK, Levine AJ. p53 regulates maternal reproduction through LIF. Nature 2007;450(7170):721-4
  • Das S, Boswell SA, Aaronson SA, Lee SW. P53 promoter selection: choosing between life and death. Cell Cycle 2008;7(2):154-7
  • Vousden KH. p53: death star. Cell 2000;1035:691-4
  • el-Deiry WS, Tokino T, Velculescu VE, et al. WAF1, a potential mediator of p53 tumor suppression. Cell 1993;75(4):817-25
  • Waldman T, Kinzler KW, Vogelstein B. p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res 1995;55(22):5187-90
  • LaBaer J, Garrett MD, Stevenson LF, et al. New functional activities for the p21 family of CDK inhibitors. Genes Dev 1997;11(7):847-62
  • Diehl JA, Cheng M, Roussel MF, Sherr CJ. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 1998;12(22):3499-511
  • el-Deiry WS, Harper JW, O'Connor PM, et al. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 1994;54(5):1169-74
  • Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999;13(12):1501-12
  • Shivji MK, Grey SJ, Strausfeld UP, et al. Cip1 inhibits DNA replication but not PCNA-dependent nucleotide excision-repair. Curr Biol 1994;4(12):1062-8
  • Waga S, Hannon GJ, Beach D, Stillman B. The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 1994;369(6481):574-8
  • Chan TA, Hermeking H, Lengauer C, et al. 14-3-3Sigma is required to prevent mitotic catastrophe after DNA damage. Nature 1999;401(6753):616-20
  • Hermeking H, Lengauer C, Polyak K, et al. 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell 1997;1(1):3-11
  • Hermeking H, Benzinger A. 14-3-3 proteins in cell cycle regulation. Semin Cancer Biol 2006;16(3):183-92
  • Banin S, Moyal L, Shieh S, et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 1998;281(5383):1674-7
  • Canman CE, Lim DS, Cimprich KA, et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 1998;281(5383):1677-9
  • Chehab NH, Malikzay A, Stavridi ES, Halazonetis TD. Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc Natl Acad Sci USA 1999;96(24):13777-82
  • Siliciano JD, Canman CE, Taya Y, et al. DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev 1997;11(24):3471-81
  • Chao C, Herr D, Chun J, Xu Y. Ser18 and 23 phosphorylation is required for p53-dependent apoptosis and tumor suppression. EMBO J 2006;25(11):2615-22
  • Chao C, Saito S, Anderson CW, et al. Phosphorylation of murine p53 at ser-18 regulates the p53 responses to DNA damage. Proc Natl Acad Sci USA 2000;97(22):11936-41
  • Braig M, Schmitt CA. Oncogene-induced senescence: putting the brakes on tumor development. Cancer Res 2006;66(6):2881-4
  • Wahl GM, Carr AM. The evolution of diverse biological responses to DNA damage: insights from yeast and p53. Nat Cell Biol 2001;3(12):E277-86
  • Yonish-Rouach E, Resnitzky D, Lotem J, et al. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 1991;352(6333):345-7
  • Christophorou MA, Martin-Zanca D, Soucek L, et al. Temporal dissection of p53 function in vitro and in vivo. Nat Genet 2005;37(7):718-26
  • Chipuk JE, Green DR. Dissecting p53-dependent apoptosis. Cell Death Differ 2006;13(6):994-1002
  • Miyashita T, Krajewski S, Krajewska M, et al. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 1994;9(6):1799-805
  • Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995;80(2):293-9
  • Donehower LA, Harvey M, Slagle BL, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992;356(6366):215-21
  • Sah VP, Attardi LD, Mulligan GJ, et al. A subset of p53-deficient embryos exhibit exencephaly. Nat Genet 1995;10(2):175-80
  • Choi J, Donehower LA. p53 in embryonic development: maintaining a fine balance. Cell Mol Life Sci 1999;55(1):38-47
  • Jones SN, Roe AE, Donehower LA, Bradley A. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 1995;378(6553):206-8
  • Migliorini D, Denchi EL, Danovi D, et al. Mdm4 (Mdmx) regulates p53-induced growth arrest and neuronal cell death during early embryonic mouse development. Mol Cell Biol 2002;22(15):5527-38
  • Montes de Oca Luna R, Wagner DS, Lozano G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 1995;378(6553):203-6
  • Wu X, Bayle JH, Olson D, Levine AJ. The p53-mdm-2 autoregulatory feedback loop. Genes Dev 1993;7(7A):1126-32
  • Midgley CA, Lane DP. p53 protein stability in tumour cells is not determined by mutation but is dependent on Mdm2 binding. Oncogene 1997;15(10):1179-89
  • Iwakuma T, Lozano G. MDM2, an introduction. Mol Cancer Res 2003;1(14):993-1000
  • Fang S, Jensen JP, Ludwig RL, et al. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem 2000;275(12):8945-51
  • Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature 1997;387(6630):296-9
  • Honda R, Tanaka H, Yasuda H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 1997;420(1):25-7
  • Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature 1997;387(6630):299-303
  • Li M, Brooks CL, Wu-Baer F, et al. Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science 2003;302(5652):1972-5
  • Stommel JM, Marchenko ND, Jimenez GS, et al. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J 1999;18(6):1660-72
  • Shieh SY, Ikeda M, Taya Y, Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 1997;91(3):325-34
  • Horn HF, Vousden KH. Coping with stress: multiple ways to activate p53. Oncogene 2007;26(9):1306-16
  • Lahav G, Rosenfeld N, Sigal A, et al. Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat Genet 2004;36(2):147-50
  • Munro AJ, Lain S, Lane DP. P53 abnormalities and outcomes in colorectal cancer: a systematic review. Br J Cancer 2005;92(3):434-44
  • Lane DP. Exploiting the p53 pathway for the diagnosis and therapy of human cancer. Cold Spring Harb Symp Quant Biol 2005;70:489-97
  • Lu ML, Wikman F, Orntoft TF, et al. Impact of alterations affecting the p53 pathway in bladder cancer on clinical outcome, assessed by conventional and array-based methods. Clin Cancer Res 2002;8(1):171-9
  • Haitel A, Wiener HG, Baethge U, et al. mdm2 expression as a prognostic indicator in clear cell renal cell carcinoma: comparison with p53 overexpression and clinicopathological parameters. Clin Cancer Res 2000;6(5):1840-4
  • Ikeguchi M, Ueda T, Fukuda K, et al. Expression of the murine double minute gene 2 oncoprotein in esophageal squamous cell carcinoma as a novel marker for lack of response to chemoradiotreatment. Am J Clin Oncol 2002;25(5):454-9
  • Osman I, Drobnjak M, Fazzari M, et al. Inactivation of the p53 pathway in prostate cancer: impact on tumor progression. Clin Cancer Res 1999;5(8):2082-8
  • Sherr CJ. Divorcing ARF and p53: an unsettled case. Nat Rev Cancer 2006;69:663-73
  • Muller P, Hrstka R, Coomber D, et al. Chaperone-dependent stabilization and degradation of p53 mutants. Oncogene 2008;27:3371-83
  • Ebina M, Steinberg SM, Mulshine JL, Linnoila RI. Relationship of p53 overexpression and up-regulation of proliferating cell nuclear antigen with the clinical course of non-small cell lung cancer. Cancer Res 1994;54(9):2496-503
  • Hall PA, McKee PH, Menage HD, et al. High levels of p53 protein in UV-irradiated normal human skin. Oncogene 1993;8(1):203-7
  • Ling G, Persson A, Berne B, et al. Persistent p53 mutations in single cells from normal human skin. Am J Pathol 2001;159(4):1247-53
  • Flaman JM, Frebourg T, Moreau V, et al. A simple p53 functional assay for screening cell lines, blood, and tumors. Proc Natl Acad Sci USA 1995;92(9):3963-7
  • Ishioka C, Frebourg T, Yan YX, et al. Screening patients for heterozygous p53 mutations using a functional assay in yeast. Nat Genet 1993;5(2):124-9
  • Li FP, Fraumeni JF, Jr. Soft-tissue sarcomas, breast cancer, and other neoplasms. A familial syndrome? Ann Intern Med 1969;71(4):747-52
  • Simpson JL, Carson SA, Cisneros P. Preimplantation genetic diagnosis (PGD) for heritable neoplasia. J Natl Cancer Inst Monogr 2005;34:87-90
  • Vahteristo P, Tamminen A, Karvinen P, et al. p53, CHK2, and CHK1 genes in Finnish families with Li-Fraumeni syndrome: further evidence of CHK2 in inherited cancer predisposition. Cancer Res 2001;61(15):5718-22
  • Ribeiro RC, Sandrini F, Figueiredo B, et al. An inherited p53 mutation that contributes in a tissue-specific manner to pediatric adrenal cortical carcinoma. Proc Natl Acad Sci USA 2001;98(16):9330-5
  • Varley JM, McGown G, Thorncroft M, et al. Are there low-penetrance TP53 alleles? Evidence from childhood adrenocortical tumors. Am J Hum Genet 1999;65(4):995-1006
  • Lehman TA, Haffty BG, Carbone CJ, et al. Elevated frequency and functional activity of a specific germ-line p53 intron mutation in familial breast cancer. Cancer Res 2000;60(4):1062-9
  • Ouhtit A, Ueda M, Nakazawa H, et al. Quantitative detection of ultraviolet-specific p53 mutations in normal skin from Japanese patients. Cancer Epidemiol Biomarkers Prev 1997;6(6):433-8
  • Jenkins GJ, Doak SH, Griffiths AP, et al. Early p53 mutations in nondysplastic Barrett's tissue detected by the restriction site mutation (RSM) methodology. Br J Cancer 2003;88(8):1271-6
  • Liu WH, Kaur M, Makrigiorgos GM. Detection of hotspot mutations and polymorphisms using an enhanced PCR-RFLP approach. Hum Mutat 2003;21(5):535-41
  • Shi J, Liu Q, Sommer SS. Detection of ultrarare somatic mutation in the human TP53 gene by bidirectional pyrophosphorolysis-activated polymerization allele-specific amplification. Hum Mutat 2007;28(2):131-6
  • Duddy PM, Hanby AM, Barnes DM, Camplejohn RS. Improving the detection of p53 mutations in breast cancer by use of the FASAY, a functional assay. J Mol Diagn 2000;2(3):139-44
  • Camplejohn RS, Rutherford J. p53 functional assays: detecting p53 mutations in both the germline and in sporadic tumours. Cell Prolif 2001;34(1):1-14
  • Olivier M, Eeles R, Hollstein M, et al. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat 2002;19(6):607-14
  • Morgan C, Jenkins GJ, Ashton T, et al. Detection of p53 mutations in precancerous gastric tissue. Br J Cancer 2003;89(7):1314-9
  • Ahrendt SA, Halachmi S, Chow JT, et al. Rapid p53 sequence analysis in primary lung cancer using an oligonucleotide probe array. Proc Natl Acad Sci USA 1999;96(13):7382-7
  • Allen AC, Chiafari FA. Additional data for oligonucleotide arrays of the p53 gene in DNA from formalin-fixed, paraffin-embedded tissue. Clin Chem 2004;50(12):2461-2; author reply 2
  • Cooper M, Li SQ, Bhardwaj T, et al. Evaluation of oligonucleotide arrays for sequencing of the p53 gene in DNA from formalin-fixed, paraffin-embedded breast cancer specimens. Clin Chem 2004;50(3):500-8
  • Poeta ML, Manola J, Goldwasser MA, et al. TP53 mutations and survival in squamous-cell carcinoma of the head and neck. N Engl J Med 2007;357(25):2552-61
  • Fouquet C, Antoine M, Tisserand P, et al. Rapid and sensitive p53 alteration analysis in biopsies from lung cancer patients using a functional assay and a universal oligonucleotide array: a prospective study. Clin Cancer Res 2004;10(10):3479-89
  • Kringen P, Bergamaschi A, Due EU, et al. Evaluation of arrayed primer extension for TP53 mutation detection in breast and ovarian carcinomas. Biotechniques 2005;39(5):755-61
  • Le Calvez F, Ahman A, Tonisson N, et al. Arrayed primer extension resequencing of mutations in the TP53 tumor suppressor gene: comparison with denaturing HPLC and direct sequencing. Clin Chem 2005;51(7):1284-7
  • Smardova J, Ksicova K, Binkova H, et al. Analysis of tumor suppressor p53 status in head and neck squamous cell carcinoma. Oncol Rep 2004;11(4):923-9
  • Smardova J, Vagunda V, Jandakova E, et al. p53 status in breast carcinomas revealed by FASAY correlates well with p53 protein accumulation determined by immunohistochemistry. Neoplasma 1999;46(6):384-9
  • Jonason AS, Kunala S, Price GJ, et al. Frequent clones of p53-mutated keratinocytes in normal human skin. Proc Natl Acad Sci USA 1996;93(24):14025-9
  • Olivier M, Langerod A, Carrieri P, et al. The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clin Cancer Res 2006;12(4):1157-67
  • Petitjean A, Mathe E, Kato S, et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 2007;28(6):622-9
  • Lang GA, Iwakuma T, Suh YA, et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 2004;119(6):861-72
  • Olive KP, Tuveson DA, Ruhe ZC, et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 2004;119(6):847-60
  • IARC TP53 Mutation Database. Available from: http://www-p53.iarc.fr/
  • Chiorazzi N, Rai KR, Ferrarini M. Chronic lymphocytic leukemia. N Engl J Med 2005;352(8):804-15
  • Kay NE, O'Brien SM, Pettitt AR, Stilgenbauer S. The role of prognostic factors in assessing ‘high-risk’ subgroups of patients with chronic lymphocytic leukemia. Leukemia 2007;21(9):1885-91
  • Catovsky D, Richards S, Matutes E, et al. Assessment of fludarabine plus cyclophosphamide for patients with chronic lymphocytic leukaemia (the LRF CLL4 trial): a randomised controlled trial. Lancet 2007;370(9583):230-9
  • Pettitt AR, Matutes E, Oscier D. Alemtuzumab in combination with high-dose methylprednisolone is a logical, feasible and highly active therapeutic regimen in chronic lymphocytic leukaemia patients with p53 defects. Leukemia 2006;20(8):1441-5
  • van Houten VM, Leemans CR, Kummer JA, et al. Molecular diagnosis of surgical margins and local recurrence in head and neck cancer patients: a prospective study. Clin Cancer Res 2004;10(11):3614-20
  • Wiedswang G, Borgen E, Karesen R, et al. Detection of isolated tumor cells in bone marrow is an independent prognostic factor in breast cancer. J Clin Oncol 2003;21(18):3469-78
  • Offner S, Schmaus W, Witter K, et al. p53 gene mutations are not required for early dissemination of cancer cells. Proc Natl Acad Sci USA 1999;96(12):6942-6
  • Huang X, Pateromichelakis S, Hills A, et al. p53 mutations in deep tissues are more strongly associated with recurrence than mutation-positive mucosal margins. Clin Cancer Res 2007;13(20):6099-106
  • Yan L, McFaul C, Howes N, et al. Molecular analysis to detect pancreatic ductal adenocarcinoma in high-risk groups. Gastroenterology 2005;128(7):2124-30
  • Nenutil R, Smardova J, Pavlova S, et al. Discriminating functional and non-functional p53 in human tumours by p53 and MDM2 immunohistochemistry. J Pathol 2005;207(3):251-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.