62
Views
18
CrossRef citations to date
0
Altmetric
Reviews

Exogenous near-infrared fluorophores and their applications in cancer diagnosis: biological and clinical perspectives

, &
Pages 241-251 | Published online: 30 Mar 2011

Bibliography

  • Mankoff DA, Peterson LM, Tewson TJ, [18F]fluoroestradiol radiation dosimetry in human PET studies. J Nucl Med 2001;42(4):679-84
  • Oude Munnink TH, Nagengast WB, Brouwers AH, Molecular imaging of breast cancer. Breast 2009;18(Suppl 3):S66-73
  • Perik PJ, Lub-De Hooge MN, Gietema JA, Indium-111-labeled trastuzumab scintigraphy in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J Clin Oncol 2006;24(15):2276-82
  • Weissleder R, Ntziachristos V. Shedding light onto live molecular targets. Nat Med 2003;9(1):123-8
  • Leblond F, Davis SC, Valdes PA, Pogue BW. Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications. J Photochem Photobiol B 2010;98(1):77-94
  • Panchuk-Voloshina N, Haugland RP, Bishop-Stewart J, Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J Histochem Cytochem 1999;47(9):1179-88
  • Berlier JE, Rothe A, Buller G, Quantitative comparison of long-wavelength Alexa Fluor dyes to Cy dyes: fluorescence of the dyes and their bioconjugates. J Histochem Cytochem 2003;51(12):1699-712
  • Ogawa M, Regino CA, Choyke PL, Kobayashi H. In vivo target-specific activatable near-infrared optical labeling of humanized monoclonal antibodies. Mol Cancer Ther 2009;8(1):232-9
  • Ke S, Wen X, Gurfinkel M, Near-infrared optical imaging of epidermal growth factor receptor in breast cancer xenografts. Cancer Res 2003;63(22):7870-5
  • Achilefu S, Dorshow RB, Bugaj JE, Rajagopalan R. Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging. Invest Radiol 2000;35(8):479-85
  • Soukos NS, Hamblin MR, Keel S, Epidermal growth factor receptor-targeted immunophotodiagnosis and photoimmunotherapy of oral precancer in vivo. Cancer Res 2001;61(11):4490-6
  • Hines MA, Guyot-Sionnest P. Synthesis and characterization of strongly luminescing ZnS-Capped CdSe nanocrystals. J Phys Chem-Us 1996;100(2):468-71
  • Dabbousi BO, RodriguezViejo J, Mikulec FV, (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 1997;101(46):9463-75
  • Micic OI, Sprague JR, Curtis CJ, Synthesis and Characterization of Inp, Gap, and Gainp2 Quantum Dots. J Phys Chem-Us 1995;99(19):7754-9
  • Gao XH, Cui YY, Levenson RM, In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004;22(8):969-76
  • Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996;271(5251):933-7
  • Kim S, Bawendi MG. Oligomeric Ligands for luminescent and stable nanocrystal quantum dots. J Am Chem Soc 2003;125(48):14652-3
  • Kim S, Lim YT, Soltesz EG, Near-infrared fluorescent type 2 quantum dots for sentinel lymph node mapping. Nat Biotechnol 2004;22(1):93-7
  • Hama Y, Koyama Y, Urano Y, Simultaneous two-color spectral fluorescence lymphangiography with near infrared quantum dots to map two lymphatic flows from the breast and the upper extremity. Breast Cancer Res Treat 2007;103(1):23-8
  • Zhang H, Sachdev D, Wang C, Detection and downregulation of type 1 IGF receptor expression by antibody-conjugated quantum dots in breast cancer cells. Breast Cancer Res Treat 2009;114(2):277-85
  • Kobayashi H, Hama Y, Koyama Y, Simultaneous multicolor imaging of five different lymphatic basins using quantum dots. Nano Lett 2007;7(6):1711-16
  • He X, Chen J, Wang K, Preparation of luminescent Cy5 doped core-shell SFNPs and its application as a near-infrared fluorescent marker. Talanta 2007;72(4):1519-26
  • Wang L, Yang C, Tan W. Dual-luminophore-doped silica nanoparticles for multiplexed signaling. Nano Lett 2005;5(1):37-43
  • Jiang S, Gnanasammandhan MK, Zhang Y. Optical imaging-guided cancer therapy with fluorescent nanoparticles. J R Soc Interface 2010;7(42):3-18
  • Newman EA, Newman LA. Lymphatic mapping techniques and sentinel lymph node biopsy in breast cancer. Surg Clin N Am 2007;87(2):353-64
  • Knapp DW, Adams LG, Degrand AM, Sentinel lymph node mapping of invasive urinary bladder cancer in animal models using invisible light. Eur Urol 2007;52(6):1700-8
  • Soltesz EG, Kim S, Kim SW, Sentinel lymph node mapping of the gastrointestinal tract by using invisible light. Ann Surg Oncol 2006;13(3):386-96
  • Soltesz EG, Kim S, Laurence RG, Intraoperative sentinel lymph node mapping of the lung using near-infrared fluorescent quantum dots. Ann Thorac Surg 2005;79(1):269-77
  • Parungo CP, Ohnishi S, Kim SW, Intraoperative identification of esophageal sentinel lymph nodes with near-infrared fluorescence imaging. J Thorac Cardiov Sur 2005;129(4):844-50
  • Grayburn PA. Current and future contrast agents. Echocardiography 2002;19(3):259-65
  • Stanga PE, Lim JI, Hamilton P. Indocyanine green angiography in chorioretinal diseases: indications and interpretation: an evidence-based update. Ophthalmology 2003;110(1):15-21, quiz 22-13
  • Demers ML, Ellis LM, Roh MS. Surgical management of hepatoma. Cancer Treat Res 1994;69:277-90
  • Kitai T, Inomoto T, Miwa M, Shikayama T. Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer. Breast Cancer 2005;12(3):211-15
  • Tagaya N, Yamazaki R, Nakagawa A, Intraoperative identification of sentinel lymph nodes by near-infrared fluorescence imaging in patients with breast cancer. Am J Surg 2008;195(6):850-3
  • Fujiwara M, Mizukami T, Suzuki A, Fukamizu H. Sentinel lymph node detection in skin cancer patients using real-time fluorescence navigation with indocyanine green: preliminary experience. J Plast Reconstr Aesthet Surg 2009;62(10):e373-378
  • Sevick-Muraca EM, Sharma R, Rasmussen JC, Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: feasibility study. Radiology 2008;246(3):734-41
  • Aikou T, Kitagawa Y, Kitajima M, Sentinel lymph node mapping with GI cancer. Cancer Metast Rev 2006;25(2):269-77
  • Hama Y, Koyama Y, Urano Y, Two-color lymphatic mapping using Ig-conjugated near infrared optical probes. J Invest Dermatol 2007;127(10):2351-6
  • Kobayashi H, Koyama Y, Barrett T, Multimodal nanoprobes for radionuclide and five-color near-infrared optical lymphatic imaging. ACS Nano 2007;1(4):258-64
  • Mukherjee P, Tinder TL, Basu GD, Therapeutic efficacy of MUC1-specific cytotoxic T lymphocytes and CD137 co-stimulation in a spontaneous breast cancer model. Breast Dis 2004;20:53-63
  • Schulke N, Varlamova OA, Donovan GP, The homodimer of prostate-specific membrane antigen is a functional target for cancer therapy. Proc Natl Acad Sci USA 2003;100(22):12590-5
  • Weitman SD, Lark RH, Coney LR, Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 1992;52(12):3396-401
  • Gatter KC, Brown G, Trowbridge IS, Transferrin receptors in human tissues: their distribution and possible clinical relevance. J Clin Pathol 1983;36(5):539-45
  • Ma L, Yu P, Veerendra B, In vitro and in vivo evaluation of Alexa Fluor 680-bombesin[7-14]NH2 peptide conjugate, a high-affinity fluorescent probe with high selectivity for the gastrin-releasing peptide receptor. Mol Imaging 2007;6(3):171-80
  • Miki K, Oride K, Inoue S, Ring-opening metathesis polymerization-based synthesis of polymeric nanoparticles for enhanced tumor imaging in vivo: synergistic effect of folate-receptor targeting and PEGylation. Biomaterials 2010;31(5):934-42
  • Humblet V, Lapidus R, Williams LR, High-affinity near-infrared fluorescent small-molecule contrast agents for in vivo imaging of prostate-specific membrane antigen. Mol Imaging 2005;4(4):448-62
  • Lee SB, Hassan M, Fisher R, Affibody molecules for in vivo characterization of HER2-positive tumors by near-infrared imaging. Clin Cancer Res 2008;14(12):3840-9
  • Sampath L, Kwon S, Ke S, Dual-labeled trastuzumab-based imaging agent for the detection of human epidermal growth factor receptor 2 overexpression in breast cancer. J Nucl Med 2007;48(9):1501-10
  • Koyama Y, Barrett T, Hama Y, In vivo molecular imaging to diagnose and subtype tumors through receptor-targeted optically labeled monoclonal antibodies. Neoplasia 2007;9(12):1021-9
  • Barrett T, Koyama Y, Hama Y, In vivo diagnosis of epidermal growth factor receptor expression using molecular imaging with a cocktail of optically labeled monoclonal antibodies. Clin Cancer Res 2007;13(22 Pt 1):6639-48
  • Weissleder R, Tung CH, Mahmood U, Bogdanov A Jr. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 1999;17(4):375-8
  • Mahmood U, Weissleder R. Near-infrared optical imaging of proteases in cancer. Mol Cancer Ther 2003;2(5):489-96
  • Bremer C, Bredow S, Mahmood U, Optical imaging of matrix metalloproteinase-2 activity in tumors: feasibility study in a mouse model. Radiology 2001;221(2):523-9
  • Jiang T, Olson ES, Nguyen QT, Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc Natl Acad Sci USA 2004;101(51):17867-72
  • Aguilera TA, Olson ES, Timmers MM, Systemic in vivo distribution of activatable cell penetrating peptides is superior to that of cell penetrating peptides. Integr Biol (Camb) 2009;1(5-6):371-81
  • Olson ES, Jiang T, Aguilera TA, Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases. Proc Natl Acad Sci USA 2010;107(9):4311-16
  • Olson ES, Aguilera TA, Jiang T, In vivo characterization of activatable cell penetrating peptides for targeting protease activity in cancer. Integr Biol (Camb) 2009;1(5-6):382-93
  • Alencar H, Funovics MA, Figueiredo J, Colonic adenocarcinomas: near-infrared microcatheter imaging of smart probes for early detection–study in mice. Radiology 2007;244(1):232-8
  • Sheth RA, Upadhyay R, Stangenberg L, Improved detection of ovarian cancer metastases by intraoperative quantitative fluorescence protease imaging in a pre-clinical model. Gynecol Oncol 2009;112(3):616-22
  • Figueiredo JL, Alencar H, Weissleder R, Mahmood U. Near infrared thoracoscopy of tumoral protease activity for improved detection of peripheral lung cancer. Int J Cancer 2006;118(11):2672-7
  • Parks WC, Wilson CL, Lopez-Boado YS. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 2004;4(8):617-29
  • Ogawa M, Kosaka N, Longmire MR, Fluorophore-quencher based activatable targeted optical probes for detecting in vivo cancer metastases. Mol Pharm 2009;6(2):386-95
  • Ogawa M, Kosaka N, Choyke PL, Kobayashi H. In vivo molecular imaging of cancer with a quenching near-infrared fluorescent probe using conjugates of monoclonal antibodies and indocyanine green. Cancer Res 2009;69(4):1268-72
  • Ogawa M, Kosaka N, Choyke PL, Kobayashi H. Tumor-specific detection of an optically targeted antibody combined with a quencher-conjugated neutravidin ‘quencher-chaser’: a dual ‘quench and chase’ strategy to improve target to nontarget ratios for molecular imaging of cancer. Bioconjug Chem 2009;20(1):147-54
  • Cai W, Shin DW, Chen K, Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 2006;6(4):669-76
  • Diagaradjane P, Orenstein-Cardona JM, Colon-Casasnovas NE, Imaging epidermal growth factor receptor expression in vivo: pharmacokinetic and biodistribution characterization of a bioconjugated quantum dot nanoprobe. Clin Cancer Res 2008;14(3):731-41
  • Akerman ME, Chan WCW, Laakkonen P, Nanocrystal targeting in vivo. Proc Natl Acad Sci USA 2002;99(20):12617-21
  • Laakkonen P, Akerman ME, Biliran H, Antitumor activity of a homing peptide that targets tumor lymphatics and tumor cells. Proc Natl Acad Sci USA 2004;101(25):9381-6
  • Yong KT, Hu R, Roy I, Tumor targeting and imaging in live animals with functionalized semiconductor quantum rods. ACS Appl Mater Interfaces 2009;1(3):710-19
  • Tada H, Higuchi H, Wanatabe TM, Ohuchi N. In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res 2007;67(3):1138-44
  • Yang L, Mao H, Wang YA, Single chain epidermal growth factor receptor antibody conjugated nanoparticles for in vivo tumor targeting and imaging. Small 2009;5(2):235-43
  • Li SD, Huang L. Pharmacokinetics and Biodistribution of Nanoparticles. Mol Pharm 2008;5(4):496-504
  • Haglund MM, Berger MS, Hochman DW. Enhanced optical imaging of human gliomas and tumor margins. Neurosurgery 1996;38(2):308-17
  • Gotoh K, Yamada T, Ishikawa O, A novel image-guided surgery of hepatocellular carcinoma by indocyanine green fluorescence imaging navigation. J Surg Oncol 2009;100(1):75-9
  • Nguyen QT, Olson ES, Aguilera TA, Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival. Proc Natl Acad Sci USA 2010;107(9):4317-22
  • Choi HS, Liu W, Misra P, Renal clearance of quantum dots. Nat Biotechnol 2007;25(10):1165-70
  • Derfus AM, Chan WCW, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 2004;4(1):11-8
  • Chen LD, Liu J, Yu XF, The biocompatibility of quantum dot probes used for the targeted imaging of hepatocellular carcinoma metastasis. Biomaterials 2008;29(31):4170-6
  • Ballou B, Ernst LA, Andreko S, Sentinel lymph node imaging using quantum dots in mouse tumor models. Bioconjug Chem 2007;18(2):389-96
  • Mangolini L, Jurbergs D, Rogojina E, Kortshagen U. Plasma synthesis and liquid-phase surface passivation of brightly luminescent Si nanocrystals. J Lumin 2006;121(2):327-34
  • Mangolini L, Thimsen E, Kortshagen U. High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett 2005;5(4):655-9
  • Cheng KY, Anthony R, Kortshagen UR, Holmes RJ. Hybrid silicon nanocrystal-organic light-emitting devices for infrared electroluminescence. Nano Lett 2010;10(4):1154-7
  • O'Farrell N, Houlton A, Horrocks BR. Silicon nanoparticles: applications in cell biology and medicine. Int J Nanomedicine 2006;1(4):451-72
  • Alford R, Simpson HM, Duberman J, Toxicity of organic fluorophores used in molecular imaging: literature review. Mol Imaging 2009;8(6):341-54
  • Hope-Ross M, Yannuzzi LA, Gragoudas ES, Adverse reactions due to indocyanine green. Ophthalmology 1994;101(3):529-33
  • Marshall MV, Draney D, Sevick-Muraca EM, Olive DM. Single-dose intravenous toxicity study of IRDye 800CW in Sprague-Dawley rats. Mol Imaging Biol 2010;12(6):583-94
  • Zhang H, Zeng X, Li Q, Fluorescent tumour imaging of type 1 IGF receptor in vivo: comparison of antibody-conjugated quantum dots and small-molecule fluorophore. Br J Cancer 2009;101(1):71-9
  • Jackson H, Muhammad O, Daneshvar H, Quantum dots are phagocytized by macrophages and colocalize with experimental gliomas. Neurosurgery 2007;60(3):524-9, discussion 529-30

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.