91
Views
2
CrossRef citations to date
0
Altmetric
Reviews

What makes a prognostic biomarker in CNS diseases: strategies for targeted biomarker discovery? Part 2: chronic progressive and relapsing disease

, MD & , MD PhD
Pages 393-410 | Published online: 15 Jun 2011

Bibliography

  • Kuhle J, Petzold A. What makes a prognostic biomarker in CNS diseases: strategies for targeted biomarker discovery? Part 1: acute and monophasic disease. Expert Opin Med Diagn 2011;5(4):xx
  • Martin R, Bielekova B, Hohlfeld R, Utz U. Biomarkers in multiple sclerosis. Dis Markers 2006;22:183-5
  • Brainin M, Barnes M, Baron JC, Guidance for the preparation of neurological management guidelines by EFNS scientific task forces–revised recommendations 2004. Eur J Neurol 2004;11:577-81
  • Pugliatti M, Rosati G, Carton H, The epidemiology of multiple sclerosis in Europe. Eur J Neurol 2006;13:700-22
  • Rovaris M, Confavreux C, Furlan R, Secondary progressive multiple sclerosis: current knowledge and future challenges. Lancet Neurol 2006;5:343-54
  • Miller DH, Leary SM. Primary-progressive multiple sclerosis. Lancet Neurol 2007;6:903-12
  • Confavreux C, Vukusic S, Adeleine P. Early clinical predictors and progression of irreversible disability in multiple sclerosis: an amnesic process. Brain 2003;126:770-82
  • Eriksson M, Andersen O, Runmarker B. Long-term follow up of patients with clinically isolated syndromes, relapsing-remitting and secondary progressive multiple sclerosis. Mult Scler 2003;9:260-74
  • Jacobs LD, Kaba SE, Miller CM, Correlation of clinical, magnetic resonance imaging, and cerebrospinal fluid findings in optic neuritis. Ann Neurol 1997;41:392-8
  • Brex PA, Ciccarelli O, O'Riordan JI, A longitudinal study of abnormalities on MRI and disability from multiple sclerosis. N Engl J Med 2002;346:158-64
  • Optic Neuritis Study Group. The 5-year risk of MS after optic neuritis. Experience of the optic neuritis treatment trial. Neurology 1997;49:1404-13
  • Minneboo A, Barkhof F, Polman CH, Infratentorial lesions predict long-term disability in patients with initial findings suggestive of multiple sclerosis. Arch Neurol 2004;61:217-21
  • Comi G, Filippi M, Barkhof F, Effect of early interferon treatment on conversion to definite multiple sclerosis: a randomised study. Lancet 2001;357:1576-82
  • Weinshenker BG, Bass B, Rice GP, The natural history of multiple sclerosis: a geographically based study. 2. Predictive value of the early clinical course. Brain 1989;112(Pt 6):1419-28
  • Frederiksen JL, Larsson HB, Olesen J, Stigsby B. MRI, VEP, SEP and biothesiometry suggest monosymptomatic acute optic neuritis to be a first manifestation of multiple sclerosis. Acta Neurol Scand 1991;83:343-50
  • Morrissey SP, Miller DH, Kendall BE, The significance of brain magnetic resonance imaging abnormalities at presentation with clinically isolated syndromes suggestive of multiple sclerosis. A 5-year follow-up study. Brain 1993;116(Pt 1):135-46
  • Soderstrom M, Lindqvist M, Hillert J, Optic neuritis: findings on MRI, CSF examination and HLA class II typing in 60 patients and results of a short-term follow-up. J Neurol 1994;241:391-7
  • Bergamaschi R. Prognostic factors in multiple sclerosis. Int Rev Neurobiol 2007;79:423-47
  • Hernan MA, Jick SS, Logroscino G, Cigarette smoking and the progression of multiple sclerosis. Brain 2005;128:1461-5
  • Degenhardt A, Ramagopalan SV, Scalfari A, Ebers GC. Clinical prognostic factors in multiple sclerosis: a natural history review. Nat Rev Neurol 2009;5:672-82
  • Freedman MS, Thompson EJ, Deisenhammer F, Recommended standard of cerebrospinal fluid analysis in the diagnosis of multiple sclerosis: a consensus statement. Arch Neurol 2005;62:865-70
  • Tourtellotte WW, Staugaitis SM, Walsh MJ, The basis of intra-blood-brain-barrier IgG synthesis. Ann Neurol 1985;17:21-7
  • Link H, Huang YM. Oligoclonal bands in multiple sclerosis cerebrospinal fluid: an update on methodology and clinical usefulness. J Neuroimmunol 2006;180:17-28
  • Rolak LA. The diagnosis of multiple sclerosis. Neurol Clin 1996;14:27-43
  • Martinelli V, Comi G, Filippi M, Paraclinical tests in acute-onset optic neuritis: basal data and results of a short follow-up. Acta Neurol Scand 1991;84:231-6
  • Masjuan J, Alvarez-Cermeno JC, Garcia-Barragan N, Clinically isolated syndromes: a new oligoclonal band test accurately predicts conversion to MS. Neurology 2006;66:576-8
  • Frederiksen JL, Larsson HB, Olesen J. Correlation of magnetic resonance imaging and CSF findings in patients with acute monosymptomatic optic neuritis. Acta Neurol Scand 1992;86:317-22
  • Tumani H, Tourtellotte WW, Peter JB, Felgenhauer K. Acute optic neuritis: combined immunological markers and magnetic resonance imaging predict subsequent development of multiple sclerosis. The Optic Neuritis Study Group. J Neurol Sci 1998;155:44-9
  • Beck RW. The optic neuritis treatment trial. Implications for clinical practice. Optic Neuritis Study Group. Arch Ophthalmol 1992;110:331-2
  • Soderstrom M, Ya-Ping J, Hillert J, Link H. Optic neuritis: prognosis for multiple sclerosis from MRI, CSF, and HLA findings. Neurology 1998;50:708-14
  • Nilsson P, Larsson EM, Maly-Sundgren P, Predicting the outcome of optic neuritis: evaluation of risk factors after 30 years of follow-up. J Neurol 2005;252:396-402
  • Ghezzi A, Martinelli V, Torri V, Long-term follow-up of isolated optic neuritis: the risk of developing multiple sclerosis, its outcome, and the prognostic role of paraclinical tests. J Neurol 1999;246:770-5
  • Petzold A, Pittock S, Lennon V, Neuromyelitis optica-IgG (aquaporin-4) autoantibodies in immune mediated optic neuritis. J Neurol Neurosurg Psychiatry 2010;81:109-11
  • Petzold A. Isolated, relapsing and progressive demyelinating diseases of the central nervous system. J Neurol 2008;255(Suppl 6):69-76
  • Stendahl-Brodin L, Link H. Relation between benign course of multiple sclerosis and low-grade humoral immune response in cerebrospinal fluid. J Neurol Neurosurg Psychiatry 1980;43:102-5
  • Zeman AZ, Kidd D, McLean BN, A study of oligoclonal band negative multiple sclerosis. J Neurol Neurosurg Psychiatry 1996;60:27-30
  • Muller FA, Hanny PE, Wichmann W, Cerebrospinal fluid immunoglobulins and multiple sclerosis. Correspondence with magnetic resonance imaging and visually evoked potential changes. Arch Neurol 1989;46:367-71
  • Baumhefner RW, Tourtellotte WW, Syndulko K, Quantitative multiple sclerosis plaque assessment with magnetic resonance imaging. Its correlation with clinical parameters, evoked potentials, and intra-blood-brain barrier IgG synthesis. Arch Neurol 1990;47:19-26
  • Joseph FG, Hirst CL, Pickersgill TP, CSF oligoclonal band status informs prognosis in multiple sclerosis: a case control study of 100 patients. J Neurol Neurosurg Psychiatry 2009;80:292-6
  • Imrell K, Landtblom AM, Hillert J, Masterman T. Multiple sclerosis with and without CSF bands: clinically indistinguishable but immunogenetically distinct. Neurology 2006;67:1062-4
  • Kikuchi S, Fukazawa T, Niino M, HLA-related subpopulations of MS in Japanese with and without oligoclonal IgG bands. Human leukocyte antigen. Neurology 2003;60:647-51
  • Tintore M, Rovira A, Rio J, Do oligoclonal bands add information to MRI in first attacks of multiple sclerosis? Neurology 2008;70:1079-83
  • Siritho S, Freedman MS. The prognostic significance of cerebrospinal fluid in multiple sclerosis. J Neurol Sci 2009;279:21-5
  • Felgenhauer K, Reiber H. The diagnostic significance of antibody specificity indices in multiple sclerosis and herpes virus induced diseases of the nervous system. Clin Investig 1992;70:28-37
  • Sindic CJ, Monteyne P, Laterre EC. The intrathecal synthesis of virus-specific oligoclonal IgG in multiple sclerosis. J Neuroimmunol 1994;54:75-80
  • Frederiksen JL, Sindic CJ. Intrathecal synthesis of virus-specific oligoclonal IgG, and of free kappa and free lambda oligoclonal bands in acute monosymptomatic optic neuritis. Comparison with brain MRI. Mult Scler 1998;4:22-6
  • Jarius S, Franciotta D, Bergamaschi R, Polyspecific, antiviral immune response distinguishes multiple sclerosis and neuromyelitis optica. J Neurol Neurosurg Psychiatry 2008;79:1134-6
  • Reiber H, Ungefehr S, Jacobi C. The intrathecal, polyspecific and oligoclonal immune response in multiple sclerosis. Mult Scler 1998;4:111-17
  • Brettschneider J, Tumani H, Kiechle U, IgG antibodies against measles, rubella, and varicella zoster virus predict conversion to multiple sclerosis in clinically isolated syndrome. PLoS ONE 2009;4:e7638
  • Sharief MK, Thompson EJ. The predictive value of intrathecal immunoglobulin synthesis and magnetic resonance imaging in acute isolated syndromes for subsequent development of multiple sclerosis. Ann Neurol 1991;29:147-51
  • Villar LM, Masjuan J, Gonzalez-Porque P, Intrathecal IgM synthesis predicts the onset of new relapses and a worse disease course in MS. Neurology 2002;59:555-9
  • Villar LM, Masjuan J, Gonzalez-Porque P, Intrathecal IgM synthesis is a prognostic factor in multiple sclerosis. Ann Neurol 2003;53:222-6
  • Villar LM, Sadaba MC, Roldan E, Intrathecal synthesis of oligoclonal IgM against myelin lipids predicts an aggressive disease course in MS. J Clin Invest 2005;115:187-94
  • Thangarajh M, Gomez-Rial J, Hedstrom AK, Lipid-specific immunoglobulin M in CSF predicts adverse long-term outcome in multiple sclerosis. Mult Scler 2008;14:1208-13
  • Perini P, Ranzato F, Calabrese M, Intrathecal IgM production at clinical onset correlates with a more severe disease course in multiple sclerosis. J Neurol Neurosurg Psychiatry 2006;77:953-5
  • Jongen PJ, Nijeholt G, Lamers KJ, Cerebrospinal fluid IgM index correlates with cranial MRI lesion load in patients with multiple sclerosis. Eur Neurol 2007;58:90-5
  • Schneider R, Euler B, Rauer S. Intrathecal IgM-synthesis does not correlate with the risk of relapse in patients with a primary demyelinating event. Eur J Neurol 2007;14:907-11
  • Berger T, Rubner P, Schautzer F, Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event. N Engl J Med 2003;349:139-45
  • Tomassini V, De GL, Reindl M, Mult Scler. 2007;13:1086-94
  • Greeve I, Sellner J, Lauterburg T, Anti-myelin antibodies in clinically isolated syndrome indicate the risk of multiple sclerosis in a Swiss cohort. Acta Neurol Scand 2007;116:207-10
  • Lampasona V, Franciotta D, Furlan R, Similar low frequency of anti-MOG IgG and IgM in MS patients and healthy subjects. Neurology 2004;62:2092-4
  • Lim ET, Berger T, Reindl M, Anti-myelin antibodies do not allow earlier diagnosis of multiple sclerosis. Mult Scler 2005;11:492-4
  • Rauer S, Euler B, Reindl M, Berger T. Antimyelin antibodies and the risk of relapse in patients with a primary demyelinating event. J Neurol Neurosurg Psychiatry 2006;77:739-42
  • Pelayo R, Tintore M, Montalban X, Antimyelin antibodies with no progression to multiple sclerosis. N Engl J Med 2007;356:426-8
  • Kuhle J, Pohl C, Mehling M, Lack of association between antimyelin antibodies and progression to multiple sclerosis. N Engl J Med 2007;356:371-8
  • de Waegh SM, Lee VM, Brady ST. Local modulation of neurofilament phosphorylation, axonal caliber, and slow axonal transport by myelinating Schwann cells. Cell 1992;68:451-63
  • Petzold A. Neurofilament phosphoforms: surrogate markers for axonal injury, degeneration and loss. J Neurol Sci 2005;233:183-98
  • Lycke JN, Karlsson JE, Andersen O, Rosengren LE. Neurofilament protein in cerebrospinal fluid: a potential marker of activity in multiple sclerosis. J Neurol Neurosurg Psychiatry 1998;64:402-4
  • Malmestrom C, Haghighi S, Rosengren L, Neurofilament light protein and glial fibrillary acidic protein as biological markers in MS. Neurology 2003;61:1720-5
  • Norgren N, Rosengren L, Stigbrand T. Elevated neurofilament levels in neurological diseases. Brain Res 2003;987:25-31
  • Petzold A, Eikelenboom MJ, Keir G, Axonal damage accumulates in the progressive phase of multiple sclerosis: three year follow up study. J Neurol Neurosurg Psychiatry 2005;76:206-11
  • Teunissen CE, Iacobaeus E, Khademi M, Combination of CSF N-acetylaspartate and neurofilaments in multiple sclerosis. Neurology 2009;72:1322-9
  • Salzer J, Svenningsson A, Sundstrom P. Neurofilament light as a prognostic marker in multiple sclerosis. Mult Scler 2010;16:287-92
  • Brettschneider J, Petzold A, Junker A, Tumani H. Axonal damage markers in the cerebrospinal fluid of patients with clinically isolated syndrome improve predicting conversion to definite multiple sclerosis. Mult Scler 2006;12:143-8
  • Norgren N, Sundstrom P, Svenningsson A, Neurofilament and glial fibrillary acidic protein in multiple sclerosis. Neurology 2004;63:1586-90
  • Lim ET, Sellebjerg F, Jensen CV, Acute axonal damage predicts clinical outcome in patients with multiple sclerosis. Mult Scler 2005;11:532-6
  • Petzold A, Rejdak K, Plant GT. Axonal degeneration and inflammation in acute optic neuritis. J Neurol Neurosurg Psychiatry 2004;75:1178-80
  • Comabella M, Fernandez M, Martin R, Cerebrospinal fluid chitinase 3-like 1 levels are associated with conversion to multiple sclerosis. Brain 2010;133:1082-93
  • Tumani H, Lehmensiek V, Rau D, CSF proteome analysis in clinically isolated syndrome (CIS): candidate markers for conversion to definite multiple sclerosis. Neurosci Lett 2009;452:214-17
  • Teunissen CE, Petzold A, Bennett JL, A consensus protocol for the standardization of cerebrospinal fluid collection and biobanking. Neurology 2009;73:1914-22
  • Wingerchuk DM, Hogancamp WF, O'Brien PC, Weinshenker BG. The clinical course of neuromyelitis optica (Devic's syndrome). Neurology 1999;53:1107-14
  • de SJ, Stojkovic T, Ferriby D, Devic's neuromyelitis optica: clinical, laboratory, MRI and outcome profile. J Neurol Sci 2002;197:57-61
  • O'Riordan JI, Gallagher HL, Thompson AJ, Clinical, CSF, and MRI findings in Devic's neuromyelitis optica. J Neurol Neurosurg Psychiatry 1996;60:382-7
  • Kira J. Multiple sclerosis in the Japanese population. Lancet Neurol 2003;2:117-27
  • Papais-Alvarenga RM, Miranda-Santos CM, Puccioni-Sohler M, Optic neuromyelitis syndrome in Brazilian patients. J Neurol Neurosurg Psychiatry 2002;73:429-35
  • Chopra JS, Radhakrishnan K, Sawhney BB, Multiple sclerosis in North-West India. Acta Neurol Scand 1980;62:312-21
  • Wu JS, Zhang MN, Carroll WM, Kermode AG. Characterisation of the spectrum of demyelinating disease in Western Australia. J Neurol Neurosurg Psychiatry 2008;79:1022-6
  • Misu T, Fujihara K, Nakashima I, Pure optic-spinal form of multiple sclerosis in Japan. Brain 2002;125:2460-8
  • Wingerchuk DM, Weinshenker BG. Neuromyelitis optica: clinical predictors of a relapsing course and survival. Neurology 2003;60:848-53
  • Wingerchuk DM, Lennon VA, Lucchinetti CF, The spectrum of neuromyelitis optica. Lancet Neurol 2007;6:805-15
  • Ghezzi A, Bergamaschi R, Martinelli V, Clinical characteristics, course and prognosis of relapsing Devic's Neuromyelitis Optica. J Neurol 2004;251:47-52
  • Lennon VA, Wingerchuk DM, Kryzer TJ, A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 2004;364:2106-12
  • Lennon VA, Kryzer TJ, Pittock SJ, IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 2005;202:473-7
  • Jarius S, Wildemann B. AQP4 antibodies in neuromyelitis optica: diagnostic and pathogenetic relevance. Nat Rev Neurol 2010;6:383-92
  • Matiello M, Lennon VA, Jacob A, NMO-IgG predicts the outcome of recurrent optic neuritis. Neurology 2008;70:2197-200
  • Weinshenker BG, Wingerchuk DM, Vukusic S, Neuromyelitis optica IgG predicts relapse after longitudinally extensive transverse myelitis. Ann Neurol 2006;59:566-9
  • Kira J. Neuromyelitis optica and asian phenotype of multiple sclerosis. Ann NY Acad Sci 2008;1142:58-71
  • Roemer SF, Parisi JE, Lennon VA, Pattern-specific loss of aquaporin-4 immunoreactivity distinguishes neuromyelitis optica from multiple sclerosis. Brain 2007;130:1194-205
  • Misu T, Fujihara K, Kakita A, Loss of aquaporin 4 in lesions of neuromyelitis optica: distinction from multiple sclerosis. Brain 2007;130:1224-34
  • Sinclair C, Kirk J, Herron B, Absence of aquaporin-4 expression in lesions of neuromyelitis optica but increased expression in multiple sclerosis lesions and normal-appearing white matter. Acta Neuropathol 2007;113:187-94
  • Misu T, Fujihara K, Nakamura M, Loss of aquaporin-4 in active perivascular lesions in neuromyelitis optica: a case report. Tohoku J Exp Med 2006;209:269-75
  • Misu T, Takano R, Fujihara K, Marked increase in cerebrospinal fluid glial fibrillar acidic protein in neuromyelitis optica: an astrocytic damage marker. J Neurol Neurosurg Psychiatry 2009;80:575-7
  • Takano R, Misu T, Takahashi T, Astrocytic damage is far more severe than demyelination in NMO: a clinical CSF biomarker study. Neurology 2010;75:208-16
  • Petzold A, Eikelenboom MJ, Gveric D, Markers for different glial cell responses in multiple sclerosis: clinical and pathological correlations. Brain 2002;125:1462-73
  • Petzold A, Marignier R, Verbeek MM, Confavreux C. Glial but not axonal protein biomarkers as a new supportive diagnostic criteria for Devic neuromyelitis optica? Preliminary results on 188 patients with different neurological diseases. J Neurol Neurosurg Psychiatry 2010;82(4):467-9
  • Miyazawa I, Nakashima I, Petzold A, High CSF neurofilament heavy chain levels in neuromyelitis optica. Neurology 2007;68:865-7
  • Takahashi T, Fujihara K, Nakashima I, Anti-aquaporin-4 antibody is involved in the pathogenesis of NMO: a study on antibody titre. Brain 2007;130:1235-43
  • Jarius S, Aboul-Enein F, Waters P, Antibody to aquaporin-4 in the long-term course of neuromyelitis optica. Brain 2008;131:3072-80
  • Blennow K, de Leon MJ, Zetterberg H. Alzheimer's disease. Lancet 2006;368:387-403
  • Dubois B, Feldman HH, Jacova C, Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 2007;6:734-46
  • McKhann G, Drachman D, Folstein M, Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984;34:939-44
  • Roman GC. Defining dementia: clinical criteria for the diagnosis of vascular dementia. Acta Neurol Scand Suppl 2002;178:6-9
  • McKeith IG, Ballard CG, Perry RH, Prospective validation of consensus criteria for the diagnosis of dementia with Lewy bodies. Neurology 2000;54:1050-8
  • Visser PJ, Scheltens P, Verhey FR. Do MCI criteria in drug trials accurately identify subjects with predementia Alzheimer's disease? J Neurol Neurosurg Psychiatry 2005;76:1348-54
  • deToledo-Morrell L, Stoub TR, Bulgakova M, MRI-derived entorhinal volume is a good predictor of conversion from MCI to AD. Neurobiol Aging 2004;25:1197-203
  • Visser PJ, Verhey FR, Hofman PA, Medial temporal lobe atrophy predicts Alzheimer's disease in patients with minor cognitive impairment. J Neurol Neurosurg Psychiatry 2002;72:491-7
  • Kantarci K, Petersen RC, Boeve BF, DWI predicts future progression to Alzheimer disease in amnestic mild cognitive impairment. Neurology 2005;64:902-4
  • Korf ES, Wahlund LO, Visser PJ, Scheltens P. Medial temporal lobe atrophy on MRI predicts dementia in patients with mild cognitive impairment. Neurology 2004;63:94-100
  • Wiltfang J, Lewczuk P, Riederer P, Consensus paper of the WFSBP Task Force on Biological Markers of Dementia: the role of CSF and blood analysis in the early and differential diagnosis of dementia. World J Biol Psychiatry 2005;6:69-84
  • Ibach B, Binder H, Dragon M, Cerebrospinal fluid tau and beta-amyloid in Alzheimer patients, disease controls and an age-matched random sample. Neurobiol Aging 2006;27:1202-11
  • Sjogren M, Vanderstichele H, Agren H, Tau and Abeta42 in cerebrospinal fluid from healthy adults 21-93 years of age: establishment of reference values. Clin Chem 2001;47:1776-81
  • Mattsson N, Blennow K, Zetterberg H. CSF biomarkers: pinpointing Alzheimer pathogenesis. Ann NY Acad Sci 2009;1180:28-35
  • Mattsson N, Zetterberg H, Hansson O, CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA 2009;302:385-93
  • Petzold A, Chapman MD, Schraen S, An unbiased, staged, multicentre, validation strategy for Alzheimer's disease CSF tau levels. Exp Neurol 2010;223:432-8
  • Blennow K, Hampel H. CSF markers for incipient Alzheimer's disease. Lancet Neurol 2003;2:605-13
  • Andreasen N, Sjogren M, Blennow K. CSF markers for Alzheimer's disease: total tau, phospho-tau and Abeta42. World J Biol Psychiatry 2003;4:147-55
  • Kanemaru K, Kameda N, Yamanouchi H. Decreased CSF amyloid beta42 and normal tau levels in dementia with Lewy bodies. Neurology 2000;54:1875-6
  • Hulstaert F, Blennow K, Ivanoiu A, Improved discrimination of AD patients using beta-amyloid(1-42) and tau levels in CSF. Neurology 1999;52:1555-62
  • Sjogren M, Minthon L, Davidsson P, CSF levels of tau, beta-amyloid(1-42) and GAP-43 in frontotemporal dementia, other types of dementia and normal aging. J Neural Transm 2000;107:563-79
  • Blennow K, Vanmechelen E. CSF markers for pathogenic processes in Alzheimer's disease: diagnostic implications and use in clinical neurochemistry. Brain Res Bull 2003;61:235-42
  • Visser PJ, Verhey F, Knol DL, Prevalence and prognostic value of CSF markers of Alzheimer's disease pathology in patients with subjective cognitive impairment or mild cognitive impairment in the DESCRIPA study: a prospective cohort study. Lancet Neurol 2009;8:619-27
  • Vandermeeren M, Mercken M, Vanmechelen E, Detection of tau proteins in normal and Alzheimer's disease cerebrospinal fluid with a sensitive sandwich enzyme-linked immunosorbent assay. J Neurochem 1993;61:1828-34
  • Riemenschneider M, Lautenschlager N, Wagenpfeil S, Cerebrospinal fluid tau and beta-amyloid 42 proteins identify Alzheimer disease in subjects with mild cognitive impairment. Arch Neurol 2002;59:1729-34
  • Hansson O, Zetterberg H, Buchhave P, Association between CSF biomarkers and incipient Alzheimer's disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol 2006;5:228-34
  • Andreasen N, Minthon L, Vanmechelen E, Cerebrospinal fluid tau and Abeta42 as predictors of development of Alzheimer's disease in patients with mild cognitive impairment. Neurosci Lett 1999;273:5-8
  • Buerger K, Teipel SJ, Zinkowski R, CSF tau protein phosphorylated at threonine 231 correlates with cognitive decline in MCI subjects. Neurology 2002;59:627-9
  • Herukka SK, Hallikainen M, Soininen H, Pirttila T. CSF Abeta42 and tau or phosphorylated tau and prediction of progressive mild cognitive impairment. Neurology 2005;64:1294-7
  • Bouwman FH, van der Flier WM, Schoonenboom NS, Longitudinal changes of CSF biomarkers in memory clinic patients. Neurology 2007;69:1006-11
  • Li G, Sokal I, Quinn JF, CSF tau/Abeta42 ratio for increased risk of mild cognitive impairment: a follow-up study. Neurology 2007;69:631-9
  • Snider BJ, Fagan AM, Roe C, Cerebrospinal fluid biomarkers and rate of cognitive decline in very mild dementia of the Alzheimer type. Arch Neurol 2009;66:638-45
  • Kester MI, van der Vlies AE, Blankenstein MA, CSF biomarkers predict rate of cognitive decline in Alzheimer disease. Neurology 2009;73:1353-8
  • van der Vlies AE, Verwey NA, Bouwman FH, CSF biomarkers in relationship to cognitive profiles in Alzheimer disease. Neurology 2009;72:1056-61
  • Wallin AK, Blennow K, Zetterberg H, CSF biomarkers predict a more malignant outcome in Alzheimer disease. Neurology 2010;74:1531-7
  • Fodero-Tavoletti MT, Okamura N, Furumoto S, 18F-THK523: a novel in vivo tau imaging ligand for Alzheimer's disease. Brain 2011;134(4):1089-100
  • Kadir A, Nordberg A. Target-specific PET probes for neurodegenerative disorders related to dementia. J Nucl Med 2010;51:1418-30
  • Amatsubo T, Yanagisawa D, Morikawa S, Amyloid imaging using high-field magnetic resonance. Magn Reson Med Sci 2010;9:95-9
  • Herholz K. Cerebral glucose metabolism in preclinical and prodromal Alzheimer's disease. Expert Rev Neurother 2010;10:1667-73
  • Szymanski P, Markowicz M, Janik A, Neuroimaging diagnosis in neurodegenerative diseases. Nucl Med Rev Cent East Eur 2010;13:23-31
  • Stam CJ, Jones BF, Manshanden I, Magnetoencephalographic evaluation of resting-state functional connectivity in Alzheimer's disease. Neuroimage 2006;32:1335-44
  • Stam CJ, de HW, Daffertshofer A, Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer's disease. Brain 2009;132:213-24
  • Petzold A, Keir G, Warren J, A systematic review and meta-analysis of CSF neurofilament protein levels as biomarkers in dementia. Neurodegener Dis 2007;4:185-94
  • de JD, Jansen RW, Pijnenburg YA, CSF neurofilament proteins in the differential diagnosis of dementia. J Neurol Neurosurg Psychiatry 2007;78:936-8
  • Bennett DA, Beckett LA, Murray AM, Prevalence of parkinsonian signs and associated mortality in a community population of older people. N Engl J Med 1996;334:71-6
  • de Rijk MC, Launer LJ, Berger K, Prevalence of Parkinson's disease in Europe: A collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group. Neurology 2000;54:S21-3
  • Emre M. Dementia associated with Parkinson's disease. Lancet Neurol 2003;2:229-37
  • Schrag A, Ben-Shlomo Y, Quinn NP. Prevalence of progressive supranuclear palsy and multiple system atrophy: a cross-sectional study. Lancet 1999;354:1771-5
  • Mahapatra RK, Edwards MJ, Schott JM, Bhatia KP. Corticobasal degeneration. Lancet Neurol 2004;3:736-43
  • Zaccai J, McCracken C, Brayne C. A systematic review of prevalence and incidence studies of dementia with Lewy bodies. Age Ageing 2005;34:561-6
  • Rahkonen T, Eloniemi-Sulkava U, Rissanen S, Dementia with Lewy bodies according to the consensus criteria in a general population aged 75 years or older. J Neurol Neurosurg Psychiatry 2003;74:720-4
  • Gilman S, Low PA, Quinn N, Consensus statement on the diagnosis of multiple system atrophy. J Neurol Sci 1999;163:94-8
  • Mark MH. Lumping and splitting the Parkinson plus syndromes: dementia with Lewy bodies, multiple system atrophy, progressive supranuclear palsy, and cortical-basal ganglionic degeneration. Neurol Clin 2001;19:607-27; vi
  • Wenning GK, Kraft E, Beck R, Cerebellar presentation of multiple system atrophy. Mov Disord 1997;12:115-17
  • Wenning GK, Quinn NP. Parkinsonism. Multiple system atrophy. Baillieres Clin Neurol 1997;6:187-204
  • Wenning GK, Colosimo C, Geser F, Poewe W. Multiple system atrophy. Lancet Neurol 2004;3:93-103
  • Litvan I, Agid Y, Calne D, Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology 1996;47:1-9
  • Pittman AM, Myers AJ, Duckworth J, The structure of the tau haplotype in controls and in progressive supranuclear palsy. Hum Mol Genet 2004;13:1267-74
  • Doody RS, Jankovic J. The alien hand and related signs. J Neurol Neurosurg Psychiatry 1992;55:806-10
  • Boeve BF, Silber MH, Ferman TJ, Association of REM sleep behavior disorder and neurodegenerative disease may reflect an underlying synucleinopathy. Mov Disord 2001;16:622-30
  • Hawkes C. Olfaction in neurodegenerative disorder. Mov Disord 2003;18:364-72
  • Suchowersky O, Reich S, Perlmutter J, Practice Parameter: diagnosis and prognosis of new onset Parkinson disease (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2006;66:968-75
  • Marras C, Rochon P, Lang AE. Predicting motor decline and disability in Parkinson disease: a systematic review. Arch Neurol 2002;59:1724-8
  • Post B, Merkus MP, de Haan RJ, Speelman JD. Prognostic factors for the progression of Parkinson's disease: a systematic review. Mov Disord 2007;22:1839-51
  • Chiu WZ, Kaat LD, Seelaar H, Survival in progressive supranuclear palsy and frontotemporal dementia. J Neurol Neurosurg Psychiatry 2010;81:441-5
  • Nieforth KA, Golbe LI. Retrospective study of drug response in 87 patients with progressive supranuclear palsy. Clin Neuropharmacol 1993;16:338-46
  • Kompoliti K, Goetz CG, Litvan I, Pharmacological therapy in progressive supranuclear palsy. Arch Neurol 1998;55:1099-102
  • Pankratz N, Nichols WC, Uniacke SK, Genome-wide linkage analysis and evidence of gene-by-gene interactions in a sample of 362 multiplex Parkinson disease families. Hum Mol Genet 2003;12:2599-608
  • Abdo WF, de JD, Hendriks JC, Cerebrospinal fluid analysis differentiates multiple system atrophy from Parkinson's disease. Mov Disord 2004;19:571-9
  • Abdo WF, van de Warrenburg BP, Munneke M, CSF analysis differentiates multiple-system atrophy from idiopathic late-onset cerebellar ataxia. Neurology 2006;67:474-9
  • Abdo WF, Bloem BR, van Geel WJ, CSF neurofilament light chain and tau differentiate multiple system atrophy from Parkinson's disease. Neurobiol Aging 2007;28:742-7
  • Borroni B, Malinverno M, Gardoni F, Tau forms in CSF as a reliable biomarker for progressive supranuclear palsy. Neurology 2008;71:1796-803
  • Holmberg B, Rosengren L, Karlsson JE, Johnels B. Increased cerebrospinal fluid levels of neurofilament protein in progressive supranuclear palsy and multiple-system atrophy compared with Parkinson's disease. Mov Disord 1998;13:70-7
  • Holmberg B, Johnels B, Ingvarsson P, CSF-neurofilament and levodopa tests combined with discriminant analysis may contribute to the differential diagnosis of Parkinsonian syndromes. Parkinsonism Relat Disord 2001;8:23-31
  • Mollenhauer B, Trenkwalder C, von AN, Beta-amlyoid 1-42 and tau-protein in cerebrospinal fluid of patients with Parkinson's disease dementia. Dement Geriatr Cogn Disord 2006;22:200-8
  • Mollenhauer B, Bibl M, Wiltfang J, Total tau protein, phosphorylated tau (181p) protein, beta-amyloid(1-42), and beta-amyloid(1-40) in cerebrospinal fluid of patients with dementia with Lewy bodies. Clin Chem Lab Med 2006;44:192-5
  • Ohrfelt A, Grognet P, Andreasen N, Cerebrospinal fluid alpha-synuclein in neurodegenerative disorders-a marker of synapse loss? Neurosci Lett 2009;450:332-5
  • Parnetti L, Tiraboschi P, Lanari A, Cerebrospinal fluid biomarkers in Parkinson's disease with dementia and dementia with Lewy bodies. Biol Psychiatry 2008;64:850-5
  • Urakami K, Wada K, Arai H, Diagnostic significance of tau protein in cerebrospinal fluid from patients with corticobasal degeneration or progressive supranuclear palsy. J Neurol Sci 2001;183:95-8
  • Polinsky RJ, Brown RT, Burns RS, Low lumbar CSF levels of homovanillic acid and 5-hydroxyindoleacetic acid in multiple system atrophy with autonomic failure. J Neurol Neurosurg Psychiatry 1988;51:914-19
  • Spillantini MG, Schmidt ML, Lee VM, Alpha-synuclein in Lewy bodies. Nature 1997;388:839-40
  • McKeith IG, Galasko D, Kosaka K, Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology 1996;47:1113-24
  • Tokuda T, Salem SA, Allsop D, Decreased alpha-synuclein in cerebrospinal fluid of aged individuals and subjects with Parkinson's disease. Biochem Biophys Res Commun 2006;349:162-6
  • Mollenhauer B, Cullen V, Kahn I, Direct quantification of CSF alpha-synuclein by ELISA and first cross-sectional study in patients with neurodegeneration. Exp Neurol 2008;213:315-25
  • Hong Z, Shi M, Chung KA, DJ-1 and alpha-synuclein in human cerebrospinal fluid as biomarkers of Parkinson's disease. Brain 2010;133:713-26
  • Mignot E, Lammers GJ, Ripley B, The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch Neurol 2002;59:1553-62
  • Yasui K, Inoue Y, Kanbayashi T, CSF orexin levels of Parkinson's disease, dementia with Lewy bodies, progressive supranuclear palsy and corticobasal degeneration. J Neurol Sci 2006;250:120-3
  • Baumann C, Ferini-Strambi L, Waldvogel D, Parkinsonism with excessive daytime sleepiness–a narcolepsy-like disorder? J Neurol 2005;252:139-45
  • Vermes I, Steur EN, Jirikowski GF, Haanen C. Elevated concentration of cerebrospinal fluid tissue transglutaminase in Parkinson's disease indicating apoptosis. Mov Disord 2004;19:1252-4
  • Andringa G, Lam KY, Chegary M, Tissue transglutaminase catalyzes the formation of alpha-synuclein crosslinks in Parkinson's disease. FASEB J 2004;18:932-4
  • Holmberg B, Johnels B, Blennow K, Rosengren L. Cerebrospinal fluid Abeta42 is reduced in multiple system atrophy but normal in Parkinson's disease and progressive supranuclear palsy. Mov Disord 2003;18:186-90
  • Verbeek MM, Abdo WF, de JD, Cerebrospinal fluid Abeta42 levels in multiple system atrophy. Mov Disord 2004;19:238-40
  • Mollenhauer B, Bibl M, Esselmann H, Tauopathies and synucleinopathies: do cerebrospinal fluid beta-amyloid peptides reflect disease-specific pathogenesis? J Neural Transm 2007;114:919-27
  • Bibl M, Esselmann H, Mollenhauer B, Blood-based neurochemical diagnosis of vascular dementia: a pilot study. J Neurochem 2007;103:467-74
  • Abdo WF, van de Warrenburg BP, Kremer HP, CSF biomarker profiles do not differentiate between the cerebellar and parkinsonian phenotypes of multiple system atrophy. Parkinsonism Relat Disord 2007;13:480-2
  • Brettschneider J, Petzold A, Sussmuth SD, Neurofilament heavy-chain NfH(SMI35) in cerebrospinal fluid supports the differential diagnosis of Parkinsonian syndromes. Mov Disord 2006;21:2224-7
  • Rosen DR, Siddique T, Patterson D, Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993;362:59-62
  • Norris F, Shepherd R, Denys E, Onset, natural history and outcome in idiopathic adult motor neuron disease. J Neurol Sci 1993;118:48-55
  • Armon C, Moses D. Linear estimates of rates of disease progression as predictors of survival in patients with ALS entering clinical trials. J Neurol Sci 1998;160(Suppl 1):S37-41
  • Czaplinski A, Yen AA, Simpson EP, Appel SH. Predictability of disease progression in amyotrophic lateral sclerosis. Muscle Nerve 2006;34:702-8
  • Kurtzke JF. Motor neuron(e) disease. Br Med J (Clin.Res.Ed) 1982;284:141-2
  • Louwerse ES, Visser CE, Bossuyt PM, Weverling GJ. Amyotrophic lateral sclerosis: mortality risk during the course of the disease and prognostic factors. The Netherlands ALS Consortium. J Neurol Sci 1997;152(Suppl 1):S10-17
  • Chio A, Mora G, Leone M, Early symptom progression rate is related to ALS outcome: a prospective population-based study. Neurology 2002;59:99-103
  • Forbes RB, Colville S, Cran GW, Swingler RJ. Unexpected decline in survival from amyotrophic lateral sclerosis/motor neurone disease. J Neurol Neurosurg Psychiatry 2004;75:1753-5
  • Bourke SC, Tomlinson M, Williams TL, Effects of non-invasive ventilation on survival and quality of life in patients with amyotrophic lateral sclerosis: a randomised controlled trial. Lancet Neurol 2006;5:140-7
  • Millul A, Beghi E, Logroscino G, Survival of patients with amyotrophic lateral sclerosis in a population-based registry. Neuroepidemiology 2005;25:114-19
  • Testa D, Lovati R, Ferrarini M, Survival of 793 patients with amyotrophic lateral sclerosis diagnosed over a 28-year period. Amyotroph Lateral Scler Other Motor Neuron Disord 2004;5:208-12
  • Thijs V, Peeters E, Theys P, Demographic characteristics and prognosis in a Flemish amyotrophic lateral sclerosis population. Acta Neurol Belg 2000;100:84-90
  • Beghi E, Mennini T, Bendotti C, The heterogeneity of amyotrophic lateral sclerosis: a possible explanation of treatment failure. Curr Med Chem 2007;14:3185-200
  • Apostolski S, Nikolic J, Bugarski-Prokopljevic C, Acta Neurol Scand 1991;83:96-8
  • Sussmuth SD, Tumani H, Ecker D, Ludolph AC. Amyotrophic lateral sclerosis: disease stage related changes of tau protein and S100 beta in cerebrospinal fluid and creatine kinase in serum. Neurosci Lett 2003;353:57-60
  • Brettschneider J, Petzold A, Sussmuth SD, Axonal damage markers in cerebrospinal fluid are increased in ALS. Neurology 2006;66:852-6
  • Jimenez-Jimenez FJ, Hernanz A, Medina-Acebron S, Tau protein concentrations in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Acta Neurol Scand 2005;111:114-17
  • Sjogren M, Davidsson P, Wallin A, Decreased CSF-beta-amyloid 42 in Alzheimer's disease and amyotrophic lateral sclerosis may reflect mismetabolism of beta-amyloid induced by disparate mechanisms. Dement Geriatr Cogn Disord 2002;13:112-18
  • Sussmuth SD, Sperfeld AD, Hinz A, CSF glial markers correlate with survival in amyotrophic lateral sclerosis. Neurology 2010;74:982-7
  • Kuhle J, Regeniter A, Leppert D, A highly sensitive electrochemiluminescence immunoassay for the neurofilament heavy chain protein. J Neuroimmunol 2010;220(1-2):114-19
  • Rosengren LE, Karlsson JE, Karlsson JO, Patients with amyotrophic lateral sclerosis and other neurodegenerative diseases have increased levels of neurofilament protein in CSF. J Neurochem 1996;67:2013-18
  • Zetterberg H, Jacobsson J, Rosengren L, Cerebrospinal fluid neurofilament light levels in amyotrophic lateral sclerosis: impact of SOD1 genotype. Eur J Neurol 2007;14:1329-33
  • Munoz DG, Greene C, Perl DP, Selkoe DJ. Accumulation of phosphorylated neurofilaments in anterior horn motoneurons of amyotrophic lateral sclerosis patients. J Neuropathol Exp Neurol 1988;47:9-18
  • Lu CH, Kalmar B, Malaspina A, A method to solubilise protein aggregates for immunoassay quantification which overcomes the neurofilament "hook" effect. J Neurosci Methods 2010;195(2):143-50
  • Wong NK, He BP, Strong MJ. Characterization of neuronal intermediate filament protein expression in cervical spinal motor neurons in sporadic amyotrophic lateral sclerosis (ALS). J Neuropathol Exp Neurol 2000;59:972-82
  • Petzold A, Thompson EJ, Keir G, Longitudinal one-year study of levels and stoichiometry of neurofilament heavy and light chain concentrations in CSF in patients with multiple system atrophy. J Neurol Sci 2009;279:76-9
  • Tanaka M, Kikuchi H, Ishizu T, Intrathecal upregulation of granulocyte colony stimulating factor and its neuroprotective actions on motor neurons in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 2006;65:816-25
  • Kuhle J, Lindberg RL, Regeniter A, Increased levels of inflammatory chemokines in amyotrophic lateral sclerosis. Eur J Neurol 2009;16:771-4
  • Tateishi T, Yamasaki R, Tanaka M, CSF chemokine alterations related to the clinical course of amyotrophic lateral sclerosis. J Neuroimmunol 2010;222:76-81
  • Ono S, Imai T, Shimizu N, Decreased plasma levels of fibronectin in amyotrophic lateral sclerosis. Acta Neurol Scand 2000;101:391-4
  • Sussmuth SD, Brettschneider J, Ludolph AC, Tumani H. Biochemical markers in CSF of ALS patients. Curr Med Chem 2008;15:1788-801
  • Takano R, Misu T, Takahashi T, A prominent elevation of glial fibrillary acidic protein in the cerebrospinal fluid during relapse in neuromyelitis optica. Tohoku J Exp Med 2008;215:55-9
  • Takano R, Misu T, Takahashi T, Astrocytic damage is far more severe than demyelination in NMO: a clinical CSF biomarker study. Neurology 2010;75:208-16
  • Aoki M, Volkmann I, Tjernberg LO, Amyloid beta-peptide levels in laser capture microdissected cornu ammonis 1 pyramidal neurons of Alzheimer's brain. Neuroreport 2008;19:1085-9
  • Dickson DW. The pathogenesis of senile plaques. J Neuropathol Exp Neurol 1997;56:321-39
  • Ekegren T, Hanrieder J, Aquilonius SM, Bergquist J. Focused proteomics in post-mortem human spinal cord. J Proteome Res 2006;5:2364-71
  • Boylan K, Yang C, Crook J, Immunoreactivity of the phosphorylated axonal neurofilament H subunit (pNF-H) in blood of ALS model rodents and ALS patients: evaluation of blood pNF-H as a potential ALS biomarker. J Neurochem 2009;111:1182-91
  • Hardy JA, Higgins GA. Alzheimer's disease: the amyloid cascade hypothesis. Science 1992;256:184-5
  • Meldrum B, Garthwaite J. Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol Sci 1990;11:379-87
  • Milo R, Kahana E. Multiple sclerosis: geoepidemiology, genetics and the environment. Autoimmun Rev 2010;9:A387-94
  • Julien JP. Amyotrophic lateral sclerosis. unfolding the toxicity of the misfolded. Cell 2001;104:581-91
  • Manetto V, Sternberger NH, Perry G, Phosphorylation of neurofilaments is altered in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 1988;47:642-53
  • Gallo JM. Kennedy's disease: a triplet repeat disorder or a motor neuron disease? Brain Res Bull 2001;56:209-14
  • Fabrizi GM, Cavallaro T, Angiari C, Giant axon and neurofilament accumulation in Charcot-Marie-Tooth disease type 2E. Neurology 2004;62:1429-31
  • Sasaki T, Gotow T, Shiozaki M, Aggregate formation and phosphorylation of neurofilament-L Pro22 Charcot-Marie-Tooth disease mutants. Hum Mol Genet 2006;15:943-52
  • Zhai J, Lin H, Julien JP, Schlaepfer WW. Disruption of neurofilament network with aggregation of light neurofilament protein: a common pathway leading to motor neuron degeneration due to Charcot-Marie-Tooth disease-linked mutations in NFL and HSPB1. Hum Mol Genet 2007;16:3103-16
  • Cairns NJ, Armstrong RA. Quantification of the pathological changes in the temporal lobe of patients with a novel neurofilamentopathy: neurofilament inclusion disease (NID). Clin Neuropathol 2004;23:107-12
  • Save MP, Shetty VP, Shetty KT, Antia NH. Alterations in neurofilament protein(s) in human leprous nerves: morphology, immunohistochemistry and Western immunoblot correlative study. Neuropathol Appl Neurobiol 2004;30:635-50
  • Shetty VP, Shetty KT, Save MP, Antia NH. M. leprae-induced alteration in the neurofilament phosphorylation leads to demyelination in leprous nerves: a hypothesis. Indian J Lepr 1999;71:121-35
  • Kushkuley J, Metkar S, Chan WK, Aluminum induces neurofilament aggregation by stabilizing cross-bridging of phosphorylated c-terminal sidearms. Brain Res 2010;1322:118-23
  • Portelius E, Brinkmalm G, Tran AJ, Identification of novel APP/Abeta isoforms in human cerebrospinal fluid. Neurodegener Dis 2009;6:87-94
  • Portelius E, Andreasson U, Ringman JM, Distinct cerebrospinal fluid amyloid beta peptide signatures in sporadic and PSEN1 A431E-associated familial Alzheimer's disease. Mol Neurodegener 2010;5:2
  • Zetterberg H, Andreasson U, Hansson O, Elevated cerebrospinal fluid BACE1 activity in incipient Alzheimer disease. Arch Neurol 2008;65:1102-7
  • Kanungo J, Zheng YL, Amin ND, Pant HC. Targeting Cdk5 activity in neuronal degeneration and regeneration. Cell Mol Neurobiol 2009;29:1073-80
  • De SB, Vassar R, Golde T. The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol 2010;6:99-107
  • Petzold A, Verwey NA, van UK, Batch prepared protein standards for cerebrospinal fluid (CSF) biomarkers for neurodegeneration. J Neurosci Methods 2010;193:296-9
  • Mattsson N, Zetterberg H, Hansson O, CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA 2009;302:385-93

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.